Characterization of olive plantations from LANDSAT images
Keywords:
NDVI, Oliviculture, Age, Irrigation System, La RiojaAbstract
Remote sensing allows us to record the energy reflected by crops, to study their spatial and temporal variability. The objective of the work was to determine relationships between cultural management characteristics of olive plantations (Olea Europaea L.) and data derived from remote sensing. Eight lots located in La Rioja were surveyed during the period 2016-2018. Age, conduction system and irrigation were recorded. From 72 Landsat 8 images, the Normalized Difference Vegetation Index (NDVI) was obtained for each lot, a time series (2013-2019) was constructed and descriptive statistics of the index were calculated. The results allowed us to differentiate young growing plantations from adult plantations at the zenith of production. The temporal frequency of data collection made it possible to discriminate lots by age, type of irrigation system, and to identify times when specific tasks such as harvesting, suspension in the water supply and rainfall anomalies were carried out.
References
Castillo P. 2013. El complejo olivícola argentino: principales tendencias para el aceite de oliva y aceituna de mesa. Doc. CIEA 09: 159-180.
Consejo Oleícola Internacional. 2019. Balances Aprobados. Disponible en: http://www.internationaloliveoil.org/. Recuperado Agosto 2019.
Correa-Tedesco G, Rousseaux MC, Searles PS. 2010. Plant growth and yield responses in olive (Olea europaea) to different irrigation levels in an arid region of Argentina. Agricultural Water Management 97(11): 1829-1837.
De la Rosa R, León L, Guerrero N, Rallo L, Barranco D. 2007. Preliminary results of an olive cultivar trial at high density. Australian Journal of Agricultural Research, 58(5), 392-395.
De Salmuni GS, Velasco I, Fresina M, Flores AL. 2007. Irrigated area determination: a case study in the Province of San Juan, Argentina. GeoJournal 70(4): 273-279.
Ferreres E, Goldhamer DA, Sadras VO. 2012. Yield response to water of fruit trees and vines: guidelines. En: FAO Irrigation and Drainage Paper. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, (66), 246-497pp.
Kefi M, Pham TD, Kashiwagi K, Yoshino K. 2016. Identification of irrigated olive growing farms using remote sensing techniques. Euro-Mediterranean Journal for Environmental Integration 1(1): 3.
Ministerio de Agricultura Ganadería y Pesca de la Nación. 2018. Dirección de Prensa y Comunicación. Disponible en: https://www.agroindustria.gob.ar/sitio/areas/prensa/?accion=noticia&id_info=181011201301. Recuperado noviembre 2019.
Mulla DJ. 2013. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems engineering 114(4): 358-371.
Nimo M, Garciarena I. 2017. I Reunión Comisión Regional Cuyo. Ministerio de Agroindustria. Presidencia de la Nación. Disponible en https://www.agroindustria.gob.ar/sitio/areas/cfa/regionales/_archivos//000000_2017/000000_Cuyo/000000_1ra%20Reuni%C3%B3n/000000_Material/000000_Regional%20CUYO.pdf. Recuperado noviembre 2019.
Nimo M. 2018. Cadena de Valor de Olivo. Ministerio de Producción y Trabajo, Presidencia de la Nación.
Nolasco M, Willington E, Bocco M. 2015. Uso del suelo agrícola: comparación entre series temporales e imágenes satelitales individuales para su clasificación. Revista de Investigaciones de la Facultad de Ciencias Agrarias-UNR (26): 017-021.
Noori O, Panda SS. 2016. Site-specific management of common olive: Remote sensing, geospatial, and advanced image processing applications. Computers and Electronics in Agriculture 127: 680-689.
Rondanini DP, Castro DN, Searles PS, Rousseaux MC. 2011. Fatty acid profiles of varietal virgin olive oils (Olea europaea L.) from mature orchards in warm arid valleys of Northwestern Argentina (La Rioja). Grasas y aceites 62(4): 399-409.
Rubio-Delgado J, Vega MA, Lavado JF, Villar M. 2018. Teledetección y agricultura de precisión aplicadas al olivar tradicional. In Sistemas de información geográfica y teledetección: aplicaciones en el análisis territorial, 55-68pp.
Sayago S, Bocco M. 2018. Crop yield estimation using satellite images: comparison of linear and non-linear models. AgriScientia 35(1): 1-9.
Trentacoste ER, Puertas CM, Sadras VO. 2015. Effect of irrigation and tree density on vegetative growth, oil yield and water use efficiency in young olive orchard under arid conditions in Mendoza, Argentina. Irrigation science 33(6): 429-440.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 M. F. Pérez Nores, V. Gonzalez, M. Paccioretti, M. Nolasco
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Attribution - Non-Commercial - Share Alike (by-nc-sa): No commercial use of the original work or any derivative works is permitted, distribution of which must be under a license equal to that governing the original work.