ANÁLISIS SENSORIAL Y DETERMINACIÓN DE VIDA ÚTIL DE RÚCULA "BABY LEAF" OBTENIDA EN UNA PRODUCCIÓN HIDROPÓNICA

Autores/as

  • MARIA ROSA MONDINO
  • S. G. Cuggino Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Biología Celular. Córdoba. Argentina
  • S. B. Kopp Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Biología Celular. Córdoba. Argentina

Palabras clave:

eruca sativa, hidroponia, postocosecha, envase

Resumen

La rúcula (Eruca sativa) se puede cosechar en la etapa "baby leaf", con hojas de una longitud de 8-12 cm, ideales para cultivar en sistemas hidropónicos de raíz flotante e incorporar Bacillus subtilis para mejorar el crecimiento. Su vida útil poscosecha depende de varios factores, pero se puede extender mediante el uso de envases. El objetivo fue realizar un análisis sensorial y determinar la vida útil de la rúcula producida con Bacillus subtilis y almacenada en dos tipos de envases. Se tomaron fotografías de la rúcula envasada durante un período de 9 días, para realizar, mediante un panel de evaluadores, una evaluación visual de la calidad.  La rúcula cosechada en el día 0 presentó excelente apariencia, color uniforme y ausencia de deshidratación. Las plantas con solución nutritiva y agregado de Bacillus subtilis a los 5 días de la siembra, presentaron un menor deterioro, manteniendo una calidad comercial durante 9 días. En relación a los envases, las bandejas de polietileno obtuvieron mejores calificaciones y lograron una vida útil óptima de 5 días para todos los tratamientos, mientras que, en las bolsas de polipropileno la vida útil fue de solo 3 días.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Beltrano J, Giménez DO, Ruscitti M F, Carbone A V, Andreau Vasicek A L, Ronco B L, Martínez S B, Gabi M. 2015. Cultivo en hidroponía. Libro digital. ISBN 978-950-34-1258-9.

Castro-Ibáñez I, Gil M I & Allende A. 2017. Ready-to-eat vegetables: Current problems and potential solutions to reduce microbial risk in the production chain. LWT-food science and technology, 85, 284-292 pp. http://dx.doi.org/10.1016/j.lwt.2016.11.073

Chávez Paredes M A. 2018. Obtención de un biofungicida a base de Bacillus subtilis mediante fermentación líquida sumergida utilizando residuos agroindustriales.[Bachelor's thesis, Escuela Superior Politécnica de Chimborazo]. http://dspace.espoch.edu.ec/handle/123456789/10548.

De Frias J A, Luo Y, Zhou B, Turner E R, Millner P D, & Nou X. 2018. Minimizing pathogen growth and quality deterioration of packaged leafy greens by maintaining optimum temperature in refrigerated display cases with doors. Food Control, 92, 488-495 pp. https://doi.org/10.1016/j.foodcont.2018.05.024.

Francis G A, Gallone A, Nychas G J, Sofos J N, Colelli G, Amodio M L. 2012. Factors affecting quality and safety offresh-cut produce. Critical reviews in food science and nutrition,52, 595-610. pp. https://doi.org/10.1080/10408398.2010.503685

Genuncio G C, Silva R A C, Sá N M, Mary W & Zonta E. 2011. Produtividade de rúcula hidropónica cultivada em diferentes épocas e vazões de solução nutritiva.Horticultura Brasileira 29:605-608.https://doi.org/10.1590/S0102-05362011000400027.

Kader A A. 2011. Tecnología poscosecha de cultivos hortofrutícolas. 3ra ed. Kader A A editor técnico.

Karnoutsos P, Karagiovanidis M, Bantis F, Chatzistathis T, Koukounaras A, & Ntinas G K. 2021. Controlled root‐zone temperature effect on baby leaf vegetables yield and quality in a floating system under mild and extreme weather conditions. Journal of the Science of Food and Agriculture, 101(9), 3933-3941.

https://doi.org/10.1002/jsfa.1103

Kim J G, Luo Y, & Gross K C. 2004. Effect of package film on the quality of fresh-cut salad savoy. Postharvest Biology and Technology, 32(1), 99-107. https://doi.org/10.1016/J.postharvbio.2003.10.006.

Koukounaras A, Siomos A S, & Sfakiotakis E. 2007. Postharvest CO2 and ethylene production and quality of rocket (Eruca sativa Mill.) leaves are affected by leaf age and storage temperature. Postharvest Biology and Technology, 46(2), 167–173 pp. https://doi.org/10.1016/j.postharvbio.2007.04.007.

Lee J S, Chandra D. 2018. Effects of different packaging materials and methods on the physical, biochemical and sensory qualities of lettuce. J Food Sci Technol 55 (5), 1685–1694 pp. https://doi.org/10.1007/s13197-018-3081-6.

Luo Y, He Q, & McEvoy J L. 2010. Effect of storage temperature and duration on the behavior of Escherichia coli O157: H7 on packaged fresh‐cut salad containing romaine and iceberg lettuce. Journal of food science, 75(7), 390-397pp. https://ift.onlinelibrary.wiley.com/doi/full/10.1111/j.1750-3841.2010.01722.x

Mathias-Rettig K, Ah-Hen K. 2014. El color en los alimentos: un criterio de calidad medible. Agro Sur. 42(2):57- 66.

Mosquera S, González-Jaramillo L M, Orduz S, & Villegas-Escobar V. 2014. Multiple response optimization of Bacillus subtilis EA-CB0015 culture and identification of antifungal metabolites. Biocatalysis and Agricultural Biotechnology, 3(4), 378–385 pp.

Nihorimbere V, Cawoy H, Seyer A, Brunelle A, Thonart P, & Ongena M. 2012. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciensS499. FEMS Microbiology Ecology, 79(1), 176–191 pp. https://doi.org/10.1111/j.1574-6941.2011.01208.x.

Nguyen T V, Ross T, Van Chuyen H. 2019. Evaluation of the effectiveness of three disinfectant agents in prolonging the shelf life of freshly cut baby spinach: quality and food safety aspects. AIMS Agriculture and Food, 4 (2).

Ortiz Mackinson M, Mondino C, & Cosolito P. 2014. Evaluación de alternativas de manejo de poscosecha en hortalizas de hoja sobre las pérdidas a nivel minorista. Fave. Sección ciencias agrarias, 13(1), 35-50 pp. http://www.scielo.org.ar/scielo.php?pid=S166677192014000100004&script=sci_arttext.

Pérez A. 2018. Efecto del uso de mallas raschel de colores en plantas de lactuca sativa l. var. waldmann´s green bajo sistema hidropónico de raíz flotante. [Trabajo de Titulación. Universidad Nacional De San Agustín De Arequipa. Arequipa, Perú].

Purquerio L F V, & Melo P C T. 2011. Hortaliças pequenas e saborosas. Horticultura Brasileira, 29(1), 1-1.

Ruelas-Chacón, X. Reyes-Vega, M de la L. Valdivia-Urdiales, B. Contrera-Esquivel, J. C. Montañez-Sáenz, J. C. Aguilera-Carbó, A. F. Peralta-Rodríguez, R. D. 2013. Conservación de frutas y hortalizas frescas y mínimamente procesadas con recubrimientos comestibles. Revista Científica de la Universidad Autónoma de Coahuila. 5(9):31-37 pp.

Salinas-Hernández R M, González-Aguilar G A, Pirovani M E, Ulinmontejo F. 2007. Modelación de deterioro de productos vegetales frescos cortados. www.ujat.mx/publicaciones/uciencia 23 (2):183196 pp.

Sikora M, Złotek U, Kordowska-Wiater M, Swieca M. 2020. Effect of basil leaves and wheat bran on the antioxidant capacity, sensory properties and microbiological quality of shredded iceberg lettuce during storage. Antioxidantes, 9 (4), 355 p. https://doi.org/10.3390/antiox9040355.

Toivonen P M A, & Brummell D. A. 2008. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables.Postharvest Biology and Technology, 48, 1–14 pp. https://doi.org/10.1016/j.postharvbio.2007.09.004.

Torales A C, Chaves A, Rodríguez S del C. 2010. Cambios en la calidad de rúcula mínimamente procesada: efectos de distintos envases. Revista Iberoamericana de Tecnología Postcosecha. 11(2):196-203 pp. https://www.redalyc.org/articulo.oa?id=81315809012

Vanaclocha A C, & Requena J A. 2003. Procesos de conservación de alimentos. Mundi-Prensa.

Vandekinderen I, Devlieghere F, De Meulenaer B, Ragaert P, & Van Camp J. 2009. Optimization and evaluation of a decontamination step with peroxyacetic acid for fresh-cut produce. Food Microbiology, 26(8), 882–888 pp. https://doi.org/10.1016/J.FM.2009.06.004.

Velasco A, Castellanos-Hernández O, Acevedo-Hernández G, Aarland R C, Rodríguez-Sahagún A. 2020. Rhizospheric bacteria with potential benefits in agriculture. Terra Latinoamericana, 38(2), 343–355 pp. https://doi.org/10.28940/terra.v38i2.470.

Yildiz F. 2017. Initial preparation, handling and distribution of minimally processed refrigerated fruits and vegetables. Minimally processed refrigerated fruits and vegetables. 53-92 pp. https://link.springer.com/chapter/10.1007/978-1-4939-7018-6_3.

Zoffoli J P, Evseev A, Naranjo Gatica P, & Rodríguez J. 2015. El Futuro de los Biopolímeros en el envase de Frutas.

Descargas

Publicado

2023-12-26

Número

Sección

INFORMES DE RESULTADOS/AVANCES