Efecto del tabaco en células madre de la cavidad bucal. Una revisión breve

Autores

  • Gloria Cifuentes-Suazo Facultad de Odontología, Universidad Andrés Bello, Concepción, Chile. Fundación Kimntrum, Concepción, Chile

Palavras-chave:

células madre, tabaco, nicotina, cavidad oral

Resumo

En los últimos años, las células madres mesenquimales (CMM) se han convertido en la piedra angular de la ingeniería tisular y medicina regenerativa. Las CMM se pueden obtener fácilmente de los tejidos adultos, es en este ámbito que la obtención y utilización de las CMM orales, se han convertido en una buena fuente de experimentación. No es desconocido que las CMM tienen gran poder regenerativo, alta capacidad proliferativa, de diferenciación y alto potencial osteogénico. Sin embargo, pueden ser afectados por múltiples factores externos. El objetivo de este artículo es describir el efecto del tabaco sobre las CMM orales. El cigarrillo y sus componentes son un factor de riesgo para varias enfermedades a nivel de cavidad oral, tienen muchos efectos adversos en la biología celular de la boca, por eso, no se hace extraño pensar en la afectación que estos componentes pueden tener en las CMM de origen oral. Los últimos estudios realizados demuestran que la nicotina y el humo condensado del cigarrillo tiene efectos biológicos negativos sobre las CMM, en particular de las orales. A pesar de la literatura existente, no está del todo claro cuáles son los mecanismos involucrados en los efectos negativos del tabaco sobre las CMM orales y cómo podrían ser revertidos.

Referências

1. Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med.2014;12(1):1-14.

2. Kamel AHM, Kamal SM, Abubakr N. Effect of smoking on the proliferation capacity and osteogenic potential of human dental pulp stem cells (DPSCs).Dent Med Probl. 2020;57(1):1-6.

3. De Becker A, Riet IV. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells.2016;8(3):73–87.

4. Taketani T, Oyama C, Mihara A, et al. Ex vivo expanded allogeneic mesenchymal stem cells with bone marrow transplantation improved osteogenesis in infants with severe hypophosphatasia.Cell Transplant. 2015;24(10):1931–1943.

5. Huang S, Xu L, Zhang Y, et al. Systemic and local administration of allogeneic bone marrow-derived mesenchymal stem cells promotes fracture healing in rats. Cell Transplant. 2015;24(12):2643–2655.

6. Murena L, Canton G, Vulcano E, et al. Treatment of humeral shaft aseptic nonunions in elderly patients with opposite structural allograft, BMP-7, and mesenchymal stem cells. Orthopedics. 2014;37:e201–206.

7. Ambrosio C, Zomer H, Vidane A, Gonçalves N. Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives. Stem Cells Cloning, 2015;8(1):125-134.

8. Liu J, Yu F, Sun Y, et al. Characteristics and Potential Applications of Human Dental Tissue-Derived Mesenchymal Stem Cells. Stem Cells. 2015;33(3):627–638.

9. Mori G, Ballini A, Carbone C, et al. Osteogenic Differentiation of Dental Follicle Stem Cells. Int J Med Sci. 2012; 9(6):480–487.

10. Assadollahi V, Mohammadi E, Fathi F, et al. Effects of cigarette smoke condensate on proliferation and pluripotency gene expression in mouse embryonic stem cells. J Cell Biochem. 2018;120(3):4071-4080.

11. Silva Vargas D. Efectos del condensado de humo de cigarrillo y nicotina sobre la migración y diferenciación miofibroblástica en fibroblastos gingivales humanos [Memoria para optar al título profesional de Bioquímico]. Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Departamento de Biología y Bioquímica Molecular; 2010.

12. Behera SN, Xian H, Balasubramanian R. Human health risk associated with exposure to toxic elements in mainstream and sidestream cigarette smoke. Sci Total Environ. 2014;472:947–956.

13. Souto G. R., Queiroz-Junior C. M., Costa F. O., Mesquita R. A. Smoking effect on chemokines of the human chronic periodontitis. Immunobiology.2014;219(8):633–636.

14. Albuquerque EX, Pereira EF, Alkondon M, et al. Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol Rev.2009;89(1):73–120.

15. Schraufstatter IU, DiScipio RG, Khaldoyanidi SK. Alpha 7 subunit of nAChR regulates migration of human mesenchymal stem cells. J Stem Cells. 2009;4(4):203–215.

16. Hoogduijn MJ, Cheng A, Genever PG. Functional nicotinic and muscarinic receptors on mesenchymal stem cells. Stem Cells Dev. 2009;18(1):103–112.

17. Michailovici I, Harrington HA, Azogui HH, et al. Nuclear to cytoplasmic shuttling of ERK promotes differentiation of muscle stem/ progenitor cells. Development.2014;141(13): 2611–2620.

18. Zhu W., Liang M. Periodontal Ligament Stem Cells: Current Status, Concerns, and Future Prospects. Stem Cells Int. 2015; 2015:1–11.

19. Greenberg J.M., Carballosa C.M., Cheung H.S. Concise Review: The Deleterious Effects of Cigarette Smoking and Nicotine Usage and Mesenchymal Stem Cell Function and Implications for Cell-Based Therapies. ST CELLS Transla Med.2017;6(9):1815–1821.

20. Wahl EA, Schenck TL, Machens HG, et al. Acute stimulation of mesenchymal stem cells with cigarette smoke extract affects their migration, differentiation, and paracrine potential. Sci Rep. 2016;6(1):1-9.

21. Zeng HL, Qin YL, Chen HZ, et al. Effects of nicotine on proliferation and survival in human umbilical cord mesenchymal stem. J Biochem Mol. 2014;28(4):181-189.

22. Matson JP, Cook JG. Cell cycle proliferation decisions: The impact of single cell analyses. FEBS J. 2016;284(3):362–375.

23. Ayo-Yusuf OA, Olutola BG. Epidemiological association between osteoporosis and combined smoking and use of snuff among South African women. Niger J Clin Pract. 2014;17(2):174–177.

24. Pearson RG, Clement RG, Edwards KL, et al. Do smokers have greater risk of delayed and non-union after fracture, osteotomy and arthrodesis? A systematic review with metaanalysis. BMJ Open. 2016;6(11):1-10.

25. Scolaro JA, Schenker ML, Yannascoli S et al. Cigarette smoking increases complications following fracture: A systematic review. J Bone Joint Surg Am. 2014;96(8):674–681.

26. Sopori M. Effects of cigarette smoke on the immune system. Nature Reviews Immunology. 2002;2(5):372–377.

27. Benowitz NL, Hukkanen J, Jacob P. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol.2009;(192):29–60.

28. Lindell G, Lunell E, Graffner H. Transdermally administered nicotine accumulates in gastric juice. Eur J Clin Pharmacol.1996;51(3-4):315–318.

29. Wu L, Yang K, Gui Y, Wang X. Nicotine-upregulated miR-30a arrests cell cycle in G1 phase by directly targeting CCNE2 in human periodontal ligament cells. Biochem Cell Biol. 2019;0(1):2-29.

30. Du A, Cheng Y, Zhao S, et al. MicroRNA expression profiling of nicotine-treated human periodontal ligament cells. J Oral Sci. 2019;61(2):206-212.

31. Yu W, Hu B, Shi X, et al. Nicotine inhibits osteogenic differentiation of human periodontal ligament cells under cyclic tensile stress through canonical Wnt pathway and α7 nicotinic acetylcholine receptor. J Periodont Res. 2018; 53(4):555–564.

32. Chen CS, Lee SS, Yu HC, et al. Effects of nicotine on cell growth, migration, and production of inflammatory cytokines and reactive oxygen species by cementoblasts. J Dent Sci. 2015;10(2):154–160.

33. Kallala R, Barrow J, Graham SM, et al. The in vitro and in vivo effects of nicotine on bone, bone cells and fracture repair. Expert Opin Drug Saf. 2015;12(2):209-233.

34. Hermizi H, Faizah O, Lima-Nirwana S, et al. Nicotine impaired bone histomorphometric parameters and bone remodeling biomarkers in Sprague Dawley male rats. Ann Microsc. 2007; 7:10-24.

35. Fang Y, Svoboda KH. Nicotine inhibits myofibroblast differentiation in human gingival fibroblasts. J Cell Biochem. 2005;95(6):1108-1119.

36. Moga M, Bosca AB, Soritau O, et al. Nicotine Cytotoxicity on the Mesenchymal Stem Cells Derived from Human Periodontium. Romanian Biotech Lett.2016;21(4):11763 – 11772.

37. Ng TK, Huang L, Cao D, et al. Cigarette smoking hinders human periodontal ligament-derived stem cell proliferation, migration and differentiation potentials. Sci Rep. 2015;5(1):1-7.

38. Luan Y, Deqin Y. The effect of Toll-like receptor 4 in nicotine suppressing the osteogenic potential of periodontal ligament stem cells.West China J of Stomatology.2017; 35(4):368-372.

39. Baodi H, Jiandong D, Yingjie Z. MicroRNA-18b mediates the inhibitory effects of nicotine on periodontal ligament-derived stem cell. Int J Clin Exp Med.2018; 11(4):3604-3611.

Publicado

2021-08-03