Flexural strength and elastic module of high, medium and low density resins

Authors

  • Mario Sezin Universidad Nacional de Córdoba. Facultad de Odontología,Departamento de Rehabilitación Bucal Cátedra de Operatoria I “A”.

Keywords:

Physical properties, viscoelastic properties, composite resins, flexion resistance, elastic module.

Abstract

Aim: To determine the flexural strength and elastic modulus of high, medium and low density composite resins. Material and methods: 88 specimens of 25mmx2mmx2mm were divided into 11 groups of 8 according to the resin. Group 1: Filtek Z350 XT, group 2: Rok, group 3: Filtek P60, group 4: Filtek Z250 XT, group 5: Polofil Supra, group 6: Te-Econom Plus, Group 7: Grandio, Group 8: Brilliant New Line, Group 9: Prisma AP.H, group 10: Wave Flow and Group 11: Brilliant Flow. Four samples were preserved for 24 hours and four for 30 days.  An universal test machine was used with a head speed of 1mm per minute by applying a three points load until fracture. Kruskal Wallis test was applied.  Results: Flexural strength 24 hours (MPa): higher values Filtek Z250 XT (112, 25 +/-4.52), Filtek P60 (110, 75 +/-6.43) and Grandio (109, 98 +/-9, 12) and lower Brilliant Flow (49, 00 +/-2.27). 30 days: higher values Grandio (124, 35 +/-14.78), Filtek P60 (119, 98 +/-11.60) and lower Rok (59, 50 +/-4.94) with significant differences (p<0,05). Elastic module 24 hours (GPa): Higher values Grandio (8.33 +/-0.46), Filtek Z250 XT (6.96 +/-0.51), Filtek P60 (6.46 +/-0.29) and lower Brilliant Flow (1.52 +/-0.16). 30 days: higher value Grandio (10.51 +/-0.47) and lower Wave Flow (2.17 +/-0.13) with significant differences (p<0,05). The time influenced significantly increasing values for both tests (p<0,05). Conclusion: Composite resins showed different behaviors. Time factor influenced increasing values excepting Rok and Filtek Z250 XT which kept its approximately equal values.

References

Ruiz JM, Ceballos L, Fuentes MV, Osorio R, Toledano M, García Godoy F. Propiedades mecánicas de resinas compuestas modificadas o no con poliácidos. Avances en Odontoestomatología 2003;19(6): 291-297.

Lu H, Lee YK, Oguri M, Powers JM. Properties of a dental resin composite with a spherical inorganic filler. Operative Dentistry 2006;31(6):734–40.

Sabbagh J, Ryelandt L, Bachérius L, Biebuyck JJ, Vreven J, Lambrechts P, Leloup G. Characterization of the inorganic fraction of resin composites. J Oral Rehabil. 2004;31(11):1090-101.

Papadogiannis D, Tolidis K, Lakes R, Papadogiannis Y. Viscoelastic properties of low-shrinking composite resins compared to packable composite resins. Dent Mater J. 2011;30(3):350-7.

Attar N, Tam LE, McComb D. Flow, strength, stiffness and radiopacity of flowable resin composites. J Can Dent Assoc. 2003;69(8):516-21.

Sinval A, Rodrigues S, Ferracane J, Della Bona A. Flexural strength and

Weibull analysis of a microhybrid and a nanofill composite evaluated by 3- and 4-point bending tests. Dent Mater.2008;24(3):426-31.

Thomaidis S, Kakaboura A, Mueller W, Zinelis S. Mechanical properties of contemporary composite resins and their interrelations. Dent Mater.2013;29(8): e132-e41.

Sideridou I, Karabela M, Vouvoudi E. Physical properties of current dental nanohybrid and nanofill light-cured resin composites. Dent Mater.2011; 27(6): 598-607.

Mitra SB, Wu D, Holmes BN. An application of nanotechnology in advanced dental materials. J Am Dent Assoc.2003;134(10):1382–90.

Braga RR, Ballester RY, Ferracane JL. Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dent Mater. 2005;21(10):962-70.

Lin J, Shinya A, Lassila LVJ, Vallittu PK. Composite resin reinforced with pre-tensioned fibers: a three-dimensional finite element study on stress distribution. Odontology. 2013;101(1):29-33.

Lin J, Sun M, Zheng Z, Shinya A, Han J, Lin H, Zheng G, Shinya A. Effects of rotating fatigue on the mechanical properties of microhybrid and nanofiller-containing composites. Dent Mater J. 2013;32(3):476-83.

Heintze SD, Zimmerli B. Relevance of in vitro tests of adhesive and composite dental materials, a review in 3 parts. Part 1: Approval requirements and standardized testing of composite materials according to ISO specifications. Schweiz Monatsschr Zahnmed 2011; 121:804-816.

Ilie N, Hickel R. Investigations on mechanical behaviour of dental composites. Clin Oral Investig. 2009;13(4):427-38.

Adabo G, Dos Santos C, Fonseca R, Vaz L. The volumetric fraction of inorganic particles and the flexural strength of composites for posterior teeth. J Dent. 2003;31(5):353-9.

Ernst C, Martin M, Stuff S, Willershausen B. Clinical performance of a packable resin composite for posterior teeth after 3 years. Clin Oral Investig. 2001;5(3):148-55.

Sumino N, Tsubota K, Takamizawa T, Shiratsuchi K, Miyazaki M, Latta MA. Comparison of the wear and flexural characteristics of flowable resin composites for posterior lesions. Acta Odontol Scand. 2013;71(3-4):820-7.

Kim K-H, Ong J L, Okuno O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent. 2002;87(6): 642-9.

Rodrigues Junior S, Zanchi C, Carvalho R, Demarco F. Flexural strength and modulus of elasticity of different types of resin-based composites.

Braz Oral Res. 2007;21(1):16-21.

Ilie N, Rencz A, Hickel R. Investigations towards nano-hybrid resin-based composites. Clin Oral Investig. 2013;17(1):185-93.

Curtis A, Palin W, Fleming G, Shortall A, Marquis P. The mechanical properties of nanofilled resin-based composites: the impact of dry and wet cyclic pre-loading on bi-axial flexure strength. Dent

Mater.2009;25(2):188-97.

Calheiros F, Pfeifer C, Brandão LL, Agra C, Ballester R. Flexural properties of resin composites: influence of specimen dimensions and storage conditions. Dent Mater J. 2013;32(2):228-32.

Downloads

Published

2018-12-19

Issue

Section

RESEARCH