Biosíntesis de nanopartículas metálicas y de óxidos metálicos. Aplicación en remediación ambiental
Palabras clave:
Nanotecnologías, Nanopartículas del metal, Medio ambiente, OxidosResumen
En los últimos tiempos, es bastante notorio el elevado ritmo de avances innovadores en diferentes sectores industriales tales como el farmacéutico, agrícola, alimentario, textil, entre otros, provocando así la generación de infinidad de contaminantes emergentes (CE) que afectan en forma desmedida la salud humana y especialmente el medio ambiente. Es así que resulta imperante el uso de estrategias que permitan la mitigación de los impactos aquí ocasionados. Como solución a esta problemática, la nanotecnología ofrece herramientas sencillas, poco costosas y amigables para el medio ambiente, permitiendo obtener nanomateriales con una gran variedad de aplicaciones en este ámbito. La síntesis “Green” o biosíntesis se ha convertido en un método eco-amigable, sostenible y confiable para la obtención de nanomateriales, en especial metálicos/óxidos metálicos que permiten reducir el efecto nocivo de los CE y a su vez promueven metodologías menos destructivas que las convencionalmente estipuladas para este tipo de síntesis. En este trabajo, nos enfocamos en realizar una revisión exhaustiva sobre las alternativas de síntesis biológica de nanopartículas metálicas/óxidos metálicos, así como sus aplicaciones en remediación ambiental, destacando su uso en el biosensado, captura de contaminantes y como catalizadores heterogéneos en reacciones de degradación de CE.
Referencias
Zhu, Y., Liu, X., Hu, Y., Wang, R., Chen, M., Wu, J., y col. Behavior, remediation effect and toxicity of nanomaterials in wáter environments. Env. Res., (2019) 174, 54-60.
Jamkhande, P. G., Ghule, N. W., Bamer, A. H., Kalaskar, M. G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J.D.D.S.T. (2019) 53-101174.
Maheshwari, N., Atneriya, U. K., Tekade, M., Sharma, M. C., Elhissi, A., & Tekade, R. K. Biomaterials and Bionanotechnology. (2019).
Carmen, Z., & Daniel, S. Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview. En InTech eBooks. (2012).
Croce, R., Cinà, F., Lombardo, A., Crispeyn, G., Cappelli, C. I., Vian, M., y col. Aquatic toxicity of several textile dye formulations: Acute and chronic assays with Daphnia magna and Raphidocelis subcapitata. Ecotoxicology And Environmental Safety, (2017) 144, 79-87.
Sudova, E., Machova, J., Svobodova, Z., & Vesely, T. Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review. Veterinární Medicína, (2007) 52(12), 527-539.
Kato, Y., & Suzuki, M. Synthesis of Metal Nanoparticles by Microorganisms. Crystals, (2020) 10(7), 589.
Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., y col. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, (2007) 18(10), 105104.
Ovais, M., Khalil, A. T., Islam, N. U., Ahmad, I., Ayaz, M., Saravanan, M., y col. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied Microbiology And Biotechnology, (2018) 102(16), 6799-6814.
Garg, K. K., Jain, D., Rajpurohit, D., Kushwaha, H. S., Daima, H. K., Stephen, B. J., y col. Agricultural Significance of Silica Nanoparticles
Synthesized from a Silica Solubilizing Bacteria. Comments On Inorganic Chemistry, (2021) 42(4), 209-225.
Nie, P., Zhao, Y., & Xu, H. Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. Ecotoxicology And Environmental Safety, (2023) 253, 114636.
Jain, D., Kour, R., Bhojiya, A. A., Meena, R. H., Singh, A., Mohanty, S. R., y col. Zinc tolerant plant growth promoting bacteria alleviates phytotoxic effects of zinc on maize through zinc immobilization. Scientific Reports, (2020) 10(1).
Singh, D., Jain, D., Rajpurohit, D., Jat, G., Kushwaha, H. S., Singh, A., y col. Bacteria assisted green synthesis of copper oxide nanoparticles and their potential applications as antimicrobial agents and plant growth stimulants. Frontiers In Chemistry, (2023) 11.
Priyadarshini, E., Priyadarshini, S. S., Cousins, B. G., & Pradhan, N. Metal-Fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere, (2021) 274, 129976.
Altammar, K. A. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Frontiers In Microbiology, (2023) 14.
Pantidos, N. Biological Synthesis of Metallic Nanoparticles by Bacteria, Fungi and Plants. Journal Of Nanomedicine & Nanotechnology, (2014) 05(05).
Das, V. L., Thomas, R., Varghese, R. T., Soniya, E. V., Mathew, J., & Radhakrishnan, E. K. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech, (2013) 4(2), 121-126.
Shu, M., He, F., Li, Z., Zhu, X., Ma, Y., Zhou, Z., Yang, Z., Gao, F., & Zeng, M. (2020). Biosynthesis and Antibacterial Activity of Silver Nanoparticles Using Yeast Extract as Reducing and Capping Agents. Nanoscale Research Letters, 15(1).
Fawcett, D., Verduin, J. J., Shah, M., Sharma, S. B., & Poinern, G. E. J. (2017). A Review of Current Research into the Biogenic Synthesis of Metal and Metal Oxide Nanoparticles via Marine Algae and Seagrasses. Journal Of Nanoscience, (2017), 1-15.
Khan, A. U., Khan, M., Malik, N., Cho, M. H., & Khan, M. M. Recent progress of algae and blue–green algae-assisted synthesis of gold nanoparticles for various applications. Bioprocess And Biosystems Engineering, (2018) 42(1), 1-15.
Senthilkumar, P., Surendran, L., Sudhagar, B., & Kumar, D. S. R. S. Facile green synthesis of gold nanoparticles from marine algae Gelidiella acerosa and evaluation of its biological Potential. SN Applied Sciences, (2019) 1(4).
Alghuthaymi, M. A., Rajkuberan, C., Santhiya, T., Krejcar, O., Kuča, K., Periakaruppan, R., & Prabukumar, S. Green Synthesis of Gold Nanoparticles Using Polianthes tuberosa L. Floral Extract. Plants, (2021) 10(11), 2370.
Shamsuddin, M., & Nordin, N. R. Biosynthesis of copper(II) oxide nanoparticles using Murayya koeniggi aqueous leaf extract and its catalytic activity in 4-nitrophenol reduction. Malaysian Journal Of Fundamental And Applied Sciences, (2019) 15(2), 218-224.
Amer, M., & Awwad, A. Green Synthesis of Copper Nanoparticles by Citrus Limon Fruits Extract, Characterization and Antibacterial Activity. Chemistry International, (2021) 7(1) 1-8.
Ally, N., & Gumbi, B. A review on metal nanoparticles as nano-sensors for environmental detection of emerging contaminants. Mater. Today (2023).
De Jesus, R. A., De Assis, G. C., De Oliveira, R. J., Costa, J. A. S., Da Silva, C. M. P., Bilal, M., Iqbal, H. M., Ferreira, L. F. R., & Figueiredo, R. T. Environmental remediation potentialities of metal and metal oxide nanoparticles: Mechanistic biosynthesis, influencing factors, and application standpoint. Environ. Technol. & Inno. (2021), 24, 101851.
Das, P. K., Mohanty, C., Purohit, G. K., Mishra, S., & Palo, S. Nanoparticle assisted environmental remediation: Applications, toxicological implications and recommendations for a sustainable environment. Environ. Nanotechnol. Monit. & Manag. (2022), 18, 100679.
Prosposito, P., Burratti, L., & Venditti, I. Silver Nanoparticles as Colorimetric Sensors for Water Pollutants. Chemosensors (2020), 8(2), 26.
Wu, A., Zhao, X., Wang, J., Tang, Z., Zhao, T., Niu, L., Yu, W., Yang, C., Fang, M., Lv, H., Liu, S., & Wu, F. Application of solid-phase extraction based on magnetic nanoparticle adsorbents for the analysis of selected persistent organic pollutants in environmental water: A review of recent advances. Crit. Rev. In Environ. Sci. And Technol. (2020), 51(1), 44-112.
Fu, Y., Yin, Z., Qin, L., Huang, D., Yi, H., Liu, X., Liu, S., Zhang, M., Li, B., Li, L., Wang, W., Zhou, X., Li, Y., Zeng, G., & Lai, C. Recent progress of noble metals with tailored features in catalytic oxidation for organic pollutants degradation. J. Hazard. Mat. (2022), 422, 126950.
Baral, T., Datta, C., & Das, S. Cu Nanoparticle-Based Solution and Paper Strips for Colorimetric and Visual Detection of Heavy Metal Ions. ACS Omega (2022), 7(42), 37279-37285.
Memon, R., Memon, A. A., Sherazi, S. T. H., Sirajuddin, S., Balouch, A., Shah, M. R., Mahesar, S. A., Rajar, K., & Agheem, M. H. Application of synthesized copper nanoparticles using aqueous extract of Ziziphus mauritiana L. leaves as a colorimetric sensor for the detection of Ag+. Turk. J. Chem. (2020), 44(5), 1376-1385.
Ma, J., Zhang, Y., Ouyang, J., Wu, X., Luo, J., Liu, S., & Gong, X. A facile preparation of dicyclohexano-18-crown-6 ether impregnated titanate nanotubes for strontium removal from acidic solution. Solid State Sci. (2019), 90, 49-55.
Herrera, E., Aprea, M. S., Riva, J. S., Silva, O. F., Bercoff, P. G., & Granados, A. FePd nanowires modified with cyclodextrin.
Characterization and catalytic properties evaluated by a model reduction reaction. Appl. Surf. Sci. (2020), 529, 147029.
Ardakani, L. S., Alimardani, V., Tamaddon, A. M., Amani, A. M., & Taghizadeh, S. Green synthesis of iron-based nanoparticles using Chlorophytum comosum leaf extract: methyl orange dye degradation and antimicrobial properties. Heliyon (2021), 7(2), e06159.
Herrera, E., Riva, J., Aprea, S., Silva, O. F., Bercoff, P. G., & Granados, A. M. FePd nanowires modified with cyclodextrin as improved catalysts: effect of the alloy composition on colloidal stability and catalytic capacity. Catal. Sci. & Technol. (2022), 12(9), 2962-2971.
Ali, F.T., El-Sheikh, H.H., El-Hady, M. M., Elaasser, M. M., El-Agamy, D. M. Silver Nanoparticles Synthesized by Penicillium citreonigrum and Fusarium moniliforme Isolated from El-Sharkia, Egypt. International Journal of Scientific & Engineering Research. (2014), 5(14), 181-192.
Bhatnagar, S., Kobori, T., Ganesh, D., Ogawa, K., Aoyagi, H. Biosynthesis of Silver Nanoparticles Mediated by Extracellular Pigment from Talaromyces purpurogenus and Their Biomedical Applications. Nanomaterials. (2019), 9(7), 1042.
Kupryashina, M. A., Vetchinkina, E. P., Burov, A. M., Ponomareva, E. G., Nikitina, V. E. Biosynthesis of gold nanoparticles by Azospirillum brasilense. Microbiology. (2013), 82, 833-840.
Prakash D, Mahale V, Bankar A, Nawani N, Mahale V, Prakash D. Biosynthesis of colloidal gold nanoparticles by Streptomyces sp. NK52 and its anti-lipid peroxidation activity. Indian J Exp Biol. (2013), 51(11), 969-972.
Yeary, L. W., Moon, J. W., Love, L. J., Thompson, J. R., Rawn, Phelps, T. J. Magnetic properties of biosynthesized magnetite nanoparticles. IEEE Transactions on Magnetics. (2005), 41(12), 4384-4389.
Martins, M., Mourato, C., Sanches, S., Noronha, J. P., Barreto Crespo, M. T., Pereira, I. A. C. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Research. (2017), 108, 160-168.
Abboud, Y., Saffaj, T., Chagraoui, A., El Bouari, A., Brouzi, K., Tanane, O., Ihssane, B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Applied Nanoscience. (2014), 4, 571-576.
Azizi, S., Ahmad, M. B., Namvar, F., Mohamad, R. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Materials Letters. (2014), 116, 275-277.
Nkosinathi, DG, Albertus, BK, Jabulani, SSE et al. Biosynthesis, Characterization, and Application of Iron Nanoparticles: in Dye Removal and as Antimicrobial Agent. Water, Air & Soil Pollut 231, 130 (2020).
Allam, NG, Ismail, GA, El-Gemizy, WM et al. Biosynthesis of silver nanoparticles by cell-free extracts from some bacteria species for dye removal from wastewater. Biotechnol Lett 41, 379–389 (2019).
Debnath, B., et al. The effective adsorption of tetracycline onto zirconia nanoparticles synthesized by novel microbial green technology. J. Environ. Manage., Volume 261,2020,110235.
Pandian, Ch., Palanivel, R., Dhananasekaran, S., Green synthesis of nickel nanoparticles using Ocimun Sanctum and their application in dye and pollutant adsorption. Chin. J. Chem. Eng., Volume 23, 2015, 1307-1315.
Khodadadi, B., Bordbar, M., Nasrollahzadeh, M., Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia Hydrangea extract: Catalytic activity for reduction or organic dyes. J. Colloid. Interface Sci., Volume 490, 2017, Pages 1-10.
Kerour, A., Boudjadar, S., Bourzami, R., Allouche, B., Eco-friendly synthesis of cuprous oxide (Cu2O) nanoparticles and improvement of their solar photocatalytic activities. J. Solid. State Chem., Volume 263, 2018, Pages 79-83.
Mahanty, S., et al., Mycosynthesis of iron oxide nanoparticles using manglicolous fungi isolated from Indian sundarbans and its application for the treatment of chromium containing solution: Synthesis, adsorption isotherm, kinetics and thermodynamics study, Environ. Nanotechnol. Monit. & Manage., Volume 12, 2019, 100276.
Elegbede, JA. , Lateef, A. , Azeez, MA. , et al. Silver – gold alloy nanoparticles biofabricated by fungal xylanases exhibited potent biomedical and catalytic activities. Biotechnol. Progress . 2019 ; 35 :e2829.
Chatterjee, S., Mahanty, S., Das, P., Chaudhuri, P., Das, S., Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr(VI) from aqueous solution, J. Chem. Eng., Volume 385, 2020, 123790.
Bhattacharya, P., Mukherjee, D., Deb, N., Swarnakar, S., Anerjee, S., Application of green synthesized ZnO nanoparticles coated ceramic ultrafiltration membrane for remediation of pharmaceutical components from synthetic water: Reusability assay of treated water on seed germination. J. Environ. Chem. Eng., Volume 8, 2020, 103803.
Arya, A., Mishra, V., Chundawat, T. S., Green synthesis of silver nanoparticles from green algae (Botryococcus braunii) and its catalytic behavior for the synthesis of benzimidazoles, Chem. Data Collect., Volume 20, 2019, 100190.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Richard R. Ahumada, Martina Foresi, Alejandro M. Granados
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Licencia Creative Commons BY NC
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
-
Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
-
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.