Diagnóstico de aterosclerosis con inteligencia artificial: un enfoque innovador para una enfermedad compleja

Autores/as

  • Melanie B. Farneti Universidad Católica de Córdoba. Facultad de Ingeniería; Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC); Consejo Nacional de Investigaciones Científicas y Tecnológicas. Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui". (CIMETSA).
  • Danilo G. Ceschin Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC); Consejo Nacional de Investigaciones Científicas y Tecnológicas. Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui". (CIMETSA).

Palabras clave:

Aterosclerosis, Inteligencia artificial, Enfermedades cardiovasculares

Resumen

La aterosclerosis es una enfermedad inflamatoria crónica, progresiva y multifactorial, caracterizada por la acumulación de placas ateromatosas en las paredes arteriales, lo que puede provocar eventos cardiovasculares graves como infartos de miocardio y accidentes cerebrovasculares. Su patogénesis es compleja e involucra una interacción dinámica entre dislipidemia, inflamación crónica, disfunción endotelial y estrés oxidativo, factores que contribuyen a su alta mortalidad y morbilidad global. Dado su impacto económico y sanitario significativo, la predicción temprana y precisa de la aterosclerosis es esencial para mejorar los resultados clínicos y reducir los costos de salud. En este contexto, la inteligencia artificial (IA) ha surgido como una herramienta poderosa en la predicción y diagnóstico de la aterosclerosis. La integración de datos clínicos, ómicos y de dispositivos wearables mediante técnicas de IA, como el aprendizaje automático y el aprendizaje profundo, ofrece un enfoque innovador para la medicina personalizada y de precisión. Estos sistemas pueden identificar patrones sutiles en grandes volúmenes de datos, lo que permite una mejor evaluación del riesgo, personalización del tratamiento y optimización de recursos sanitarios. Sin embargo, persisten desafíos en la necesidad de conjuntos de datos grandes y diversos para entrenar los modelos, así como en la interpretabilidad de los resultados. A pesar de estos retos, la IA presenta un gran potencial para revolucionar el diagnóstico y tratamiento de la aterosclerosis, lo que
justifica la necesidad de seguir perfeccionando estas tecnologías. 

Referencias

Albertini RA, Ferrer DG, Romagnoli PA, Tinti ME, Amigone JL, Capra R, et al. Association between cardiovascular disease risk scores and subclinical atherosclerosis prevalence in non-elderly adult patients from Argentina. Int J Cardiovasc Imaging. 10 de octubre de 2017;33(10):1521-9.

Depuydt MAC, Prange KHM, Slenders L, Örd T, Elbersen D, Boltjes A, et al. Microanatomy of the Human Atherosclerotic Plaque by Single-Cell Transcriptomics. Circ Res. 6 de noviembre de 2020;127(11):1437-55.

Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics—2020 update: A report from the American Heart Association. Circulation. 2020. 139-596 p.

Actis Dato V, Paz MC, Rey FE, Sánchez MC, Llorente-Cortés V, Chiabrando GA, et al. Transcriptional analysis reveals that the intracellular lipid accumulation impairs gene expression profiles involved in insulin response-associated cardiac functionality.

Duan X, Hu H, Wang L, Chen L. Aldehyde dehydrogenase 1 family: A potential molecule target for diseases.

Cell Biol Int. julio de 2024;48(7):909-22.

Vuong TNAM, Bartolf‐Kopp M, Andelovic K, Jungst T, Farbehi N, Wise SG, et al. Integrating Computational and Biological Hemodynamic Approaches to Improve Modeling of Atherosclerotic Arteries. Adv Sci. julio de 2024;11(26):2307627.

Zhang J, Han R, Shao G, Lv B, Sun K. Artificial Intelligence in Cardiovascular Atherosclerosis Imaging. J Pers Med. 8 de marzo de 2022;12(3):420.

Paraskevas KI, Saba L, Suri JS. Applications of Artificial Intelligence in Vascular Diseases. Angiology. Agosto de 2022;73(7):597-8.

Nagendran M, Chen Y, Lovejoy CA, Gordon AC, Komorowski M, Harvey H, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ. 25 de marzo de 2020;368:m689.

Wu X, Zhang H. Omics Approaches Unveiling the Biology of Human Atherosclerotic Plaques. Am J Pathol. 1 de abril de 2024;194(4):482-98.

Bhaltadak V, Ghewade B, Yelne S, Bhaltadak V, Ghewade B, Yelne S. A Comprehensive Review on Advancements in Wearable Technologies: Revolutionizing Cardiovascular Medicine. Cureus [Internet]. 29 de mayo de 2024 [citado 21 de agosto de 2024];16. Disponible en: https://www.cureus.com/articles/244512-a-comprehensive-review-on-advancements-in-wearable-technologies-revolutionizing-cardiovascular-medicine#!/

Sci Rep. 30 de mayo de 2023;13(1):8761.

Rian Oktafiani, Arief Hermawan, Donny Avianto. Max Depth Impact on Heart Disease Classification: Decision Tree and Random Forest. J RESTI Rekayasa Sist Dan Teknol Inf. 21 de febrero de 2024;8(1):160-8.

Subarkah P, Damayanti WR, Permana RA. Comparison of Correlated Algorithm Accuracy Naive Bayes Classifier and Naive Bayes Classifier for Classification of heart failure. Ilk J Ilm. 31 de agosto de 2022;14(2):120-5.

Chen Q, Ma N. Heart Disease Prediction Method Based On ANN. Highlights Sci Eng Technol. 13 de marzo de 2024;85:411-7.

Alskaf E, Dutta U, Scannell CM, Chiribiri A. Deep learning applications in coronary anatomy imaging: a systematic review and meta-analysis. J Med Artif Intell. diciembre de 2022;5:11-11.

Princy RJP, Parthasarathy S, Hency Jose PS, Raj Lakshminarayanan A, Jeganathan S. Prediction of Cardiac Disease using Supervised

Machine Learning Algorithms. En: 2020 4th International Conference on Intelligent Computing and Control Systems

(ICICCS) [Internet]. Madurai, India: IEEE; 2020 [citado 19 de agosto de 2024]. p. 570-5. Disponible en: https://ieeexplore.ieee.

org/document/9121169/

Cartaya AE, Maiocchi S, Buglak NE, Torzone S, Messinger G, Bahnson ESM. Application of Machine Learning and Virtual

Reality for Volumetric Analysis of Arterial Lesions [Internet]. 2022 [citado 19 de agosto de 2024]. Disponible en: http://biorxiv.

org/lookup/doi/10.1101/2022.12.23.521811

Ishwaran H, Lu M. Random Survival Forests. En: Kenett RS, Longford NT, Piegorsch WW, Ruggeri F, editores. Wiley StatsRef: Statistics Reference Online [Internet]. 1.a ed. Wiley; 2019 [citado 19 de agosto de 2024]. p. 1-13. Disponible en: https://onlinelibrary.

wiley.com/doi/10.1002/9781118445112.stat08188

Ambale-Venkatesh B, Yang X, Wu CO, Liu K, Hundley WG, McClelland R, et al. Cardiovascular Event Prediction by Machine Learning: The Multi-Ethnic Study of Atherosclerosis. Circ Res. 13 de octubre de 2017;121(9):1092-101.

Ciu T, Oetama RS. Logistic Regression Prediction Model for Cardiovascular Disease. IJNMT Int J New Media Technol. 2 de julio de 2020;7(1):33-8.

Esmaeili P, Roshanravan N, Ghaffari S, Mesri Alamdari N, Asghari-Jafarabadi M. Unraveling atherosclerotic cardiovascular disease risk factors through conditional probability analysis with Bayesian networks: insights from the AZAR cohort study. Sci Rep. 22 de febrero de 2024;14(1):4361.

Suresh T, Assegie TA, Rajkumar S, Komal Kumar N. A hybrid approach to medical decision-making: diagnosis of heart disease with machine-learning model. Int J Electr Comput Eng IJECE. 1 de abril de 2022;12(2):1831.

Zhao C, Ye J, Zhu Z, Huang Y. FLRNN-FGA: Fractional-Order Lipschitz Recurrent Neural Network with Frequency-Domain Gated Attention Mechanism for Time Series Forecasting. Fractal Fract. 22 de julio de 2024;8(7):433.

Masuda T, Nakaura T, Funama Y, Oda S, Okimoto T, Sato T, et al. Deep learning with convolutional neural network for estimation of the characterisation of coronary plaques: Validation using IB-IVUS. Radiography. febrero de 2022;28(1):61-7.

Kumari V, Kumar N, Kumar K S, Kumar A, Skandha SS, Saxena S, et al. Deep Learning Paradigm and Its Bias for Coronary Artery Wall Segmentation in Intravascular Ultrasound Scans: A Closer Look. J Cardiovasc Dev Dis. 4 de diciembre de 2023;10(12):485.

Li YC, Shen TY, Chen CC, Chang WT, Lee PY, Huang CCJ. Automatic Detection of Atherosclerotic Plaque and Calcification From Intravascular Ultrasound Images by Using Deep Convolutional Neural Networks. IEEE Trans Ultrason Ferroelectr Freq Control. mayo de 2021;68(5):1762-72.

Haq IU, Haq I, Xu B. Artificial intelligence in personalized cardiovascular medicine and cardiovascular imaging. Cardiovasc Diagn Ther. junio de 2021;11(3):911-23.

Choi E, Schuetz A, Stewart WF, Sun J. Using recurrent neural network models for early detection of heart failure onset. J Am Med Inform Assoc. 1 de marzo de 2017;24(2):361-70.

Guo A, Beheshti R, Khan YM, Langabeer JR, Foraker RE. Predicting cardiovascular health trajectories in time-series electronic health records with LSTM models. BMC Med Inform Decis Mak. diciembre de 2021;21(1):5.

Johri AM, Singh KV, Mantella LE, Saba L, Sharma A, Laird JR, et al. Deep learning artificial intelligence framework for multiclass coronary artery disease prediction using combination of conventional risk factors, carotid ultrasound, and intraplaque neovascularization. Comput Biol Med. noviembre de 2022;150:106018.

Jamthikar AD, Gupta D, Johri AM, Mantella LE, Saba L, Kolluri R, et al. Low-Cost Office-Based Cardiovascular Risk Stratification Using Machine Learning and Focused Carotid Ultrasound in an Asian-Indian Cohort. J Med Syst. diciembre de 2020;44(12):208.

Sabbah M. A Machine Learning Approach for Atherosclerosis Detection in Murine Models. Med Res Arch [Internet]. 2023 [citado 20 de agosto de 2024];11(9). Disponible en: https://esmed.org/MRA/mra/article/view/4350

Ng C. Generative Adversarial Network (Generative Artificial Intelligence) in Pediatric Radiology: A Systematic Review. Children. 10 de agosto de 2023;10(8):1372.

Bhagawati M, Paul S. Generative Adversarial Network-based Deep Learning Framework for Cardiovascular Disease Risk Prediction. En: 2024 5th International Conference on Innovative Trends in Information Technology (ICITIIT) [Internet]. Kottayam, India: IEEE; 2024 [citado 20 de agosto de 2024]. p. 1-4. Disponible en: https://ieeexplore. ieee.org/document/10580562/

Han D, Liu J, Sun Z, Cui Y, He Y, Yang Z. Deep learning analysis in coronary computed tomographic angiography imaging for the assessment of patients with coronary artery stenosis. Comput Methods Programs Biomed. noviembre de 2020;196:105651.

Sopic M, Vilne B, Gerdts E, Trindade F, Uchida S, Khatib S, et al. Multiomics tools for improved atherosclerotic cardiovascular disease management. Trends Mol Med. 1 de diciembre de 2023;29(12):983-95.

Usova EiI, Alieva AS, Yakovlev AN, Alieva MS, Prokhorikhin AA, Konradi AO, et al. Integrative Analysis of Multi-Omics and Genetic Approaches—A New Level in Atherosclerotic Cardiovascular Risk Prediction. Biomolecules. noviembre de 2021;11(11):1597.

Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, Mannucci PM, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. marzo de 2009;41(3):334-41.

Webb TR, Erdmann J, Stirrups KE, Stitziel NO, Masca NGD, Jansen H, et al. Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease. J Am Coll Cardiol. 2017;69(7):823-36.

Lusis AJ. Genetics of atherosclerosis. Trends Genet. 1 de junio de 2012;28(6):267-75.

Stakhneva EM, Striukova EV, Ragino YI. Proteomic Studies of Blood and Vascular Wall in Atherosclerosis. Int J Mol Sci. Enero de 2021;22(24):13267.

Theofilatos K, Stojkovic S, Hasman M, van der Laan SW, Baig F, Barallobre-Barreiro J, et al. Proteomic Atlas of Atherosclerosis: The Contribution of Proteoglycans to Sex Differences, Plaque Phenotypes, and Outcomes. Circ Res. 15 de septiembre de 2023;133(7):542-58.

Joshi A, Rienks M, Theofilatos K, Mayr M. Systems biology in cardiovascular disease: a multiomics approach. Nat Rev Cardiol. mayo de 2021;18(5):313-30.

Nurmohamed NS, Kraaijenhof JM, Mayr M, Nicholls SJ, Koenig W, Catapano AL, et al. Proteomics and lipidomics in atherosclerotic cardiovascular disease risk prediction. Eur Heart J. 7 de mayo de 2023;44(18):1594-607.

Djekic D, Nicoll R, Novo M, Henein M. Metabolomics in atherosclerosis. IJC Metab Endocr. 1 de septiembre de 2015;8:26-30.

Wang Z, Zhu C, Nambi V, Morrison AC, Folsom AR, Ballantyne CM, et al. Metabolomic Pattern Predicts Incident Coronary Heart Disease. Arterioscler Thromb Vasc Biol. julio de 2019;39(7):1475-82.

Cai J, Chong CCY, Cheng CY, Lim CC, Sabanayagam C. Circulating Metabolites and Cardiovascular Disease in Asians with Chronic Kidney Disease. Cardiorenal Med. 5 de septiembre de 2023;13(1):301-9.

Hegenbarth JC, Lezzoche G, De Windt LJ, Stoll M. Perspectives on Bulk-Tissue RNA Sequencing and Single-Cell RNA Sequencing for Cardiac Transcriptomics. Front Mol Med [Internet]. 22 de febrero de 2022 [citado 21 de agosto de 2024];2. Disponible

en: https://www.frontiersin.org/journals/molecular-medicine/articles/10.3389/fmmed.2022.839338/full

DeGroat W, Abdelhalim H, Patel K, Mendhe D, Zeeshan S, Ahmed Z. Discovering biomarkers associated and predicting cardiovascular disease with high accuracy using a novel nexus of machine learning techniques for precision medicine. Sci Rep. 2 de enero de 2024;14(1):1.

Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, et al. Introduction to Radiomics. J Nucl Med Off Publ Soc Nucl Med. abril de 2020;61(4):488-95.

Gui C, Cao C, Zhang X, Zhang J, Ni G, Ming D. Radiomics and artificial neural networks modelling for identification of high-risk carotid plaques. Front Cardiovasc Med. 6 de julio de 2023;10:1173769.

Zhang R, Zhang Q, Ji A, Lv P, Zhang J, Fu C, et al. Identification of high-risk carotid plaque with MRI-based radiomics and machine learning. Eur Radiol. 1 de mayo de 2021;31(5):3116-26.

Föllmer B, Williams MC, Dey D, Arbab-Zadeh A, Maurovich-Horvat P, Volleberg RHJA, et al. Roadmap on the use of artificial intelligence for imaging of vulnerable atherosclerotic plaque in coronary arteries. Nat Rev Cardiol. enero de 2024;21(1):51-64

Bing R, Driessen RS, Knaapen P, Dweck MR. The clinical utility of hybrid imaging for the identification of vulnerable plaque and vulnerable patients. J Cardiovasc Comput Tomogr. 1 de septiembre de 2019;13(5):242-7.

Del-Valle-Soto C, Briseño RA, Valdivia LJ, Nolazco-Flores JA. Unveiling wearables: exploring the global landscape of biometric applications and vital signs and behavioral impact. BioData Min. 11 de junio de 2024;17(1):15.

Prati F, Biccirè FG, Budassi S. Present and future of coronary risk assessment. Eur Heart J Suppl. 1 de octubre de 2021;23(Supplement_E):E123-7.

Williams MC, Kwiecinski J, Doris M, McElhinney P, D’Souza MS, Cadet S, et al. Low-Attenuation Noncalcified Plaque on Coronary Computed Tomography Angiography Predicts Myocardial Infarction. Circulation. 5 de mayo de 2020;141(18):1452-62.

Nafakhi H, Almosawi A, Alnafakh H, Mousa W. The relationship of socioeconomic status with coronary artery calcification and pericardial fat. Pol Heart J Kardiologia Pol. 2017;75(4):368-75.

Saba L, Nardi V, Cau R, Gupta A, Kamel H, Suri JS, et al. Carotid Artery Plaque Calcifications: Lessons From Histopathology to Diagnostic Imaging. Stroke. enero de 2022;53(1):290-7.

Pisu F, Williamson BJ, Nardi V, Paraskevas KI, Puig J, Vagal A, et al. Machine Learning Detects Symptomatic Plaques in Patients With Carotid Atherosclerosis on CT Angiography. Circ Cardiovasc Imaging. junio de 2024;17(6):e016274.

Albertini RA, Nicolas JC, Actis Dato V, Ferrer DG, Tinti ME, Capra RH, et al. Decreased low-density lipoprotein receptor-related protein 1 expression in pro-inflammatory monocytes is associated with subclinical atherosclerosis. Front Cardiovasc Med. 2022;9:949778.

Khera R, Oikonomou EK, Nadkarni GN, Morley JR, Wiens J, Butte AJ, et al. Transforming Cardiovascular Care With Artificial Intelligence: From Discovery to Practice: JACC State-of-the-Art Review. J Am Coll Cardiol. 2 de julio de 2024;84(1):97-114.

Mueller S, Wintergerst MWM, Falahat P, Holz FG, Schaefer C, Schahab N, et al. Multiple instance learning detects peripheral arterial disease from high-resolution color fundus photography. Sci Rep. 26 de enero de 2022;12(1):1389.

Andreini D, Melotti E, Vavassori C, Chiesa M, Piacentini L, Conte E, et al. Whole-Blood Transcriptional Profiles Enable Early Prediction of the Presence of Coronary Atherosclerosis and High-Risk Plaque Features at Coronary CT Angiography. Biomedicines.

2 de junio de 2022;10(6):1309.

Zhou Y, Yuan J, Fan Y, An F, Chen J, Zhang Y, et al. Proteomic landscape of human coronary artery atherosclerosis. Int J Mol Med. julio de 2020;46(1):371-83.

Lee R, Fischer R, Charles PD, Adlam D, Valli A, Di Gleria K, et al. A novel workflow combining plaque imaging, plaque and plasma proteomics identifies biomarkers of human coronary atherosclerotic plaque disruption. Clin Proteomics. diciembre de 2017;14(1):22.

Parlak İE, Çelik MT, Işık G, Yıldız A. Determination of Critical Factors for the Success of Machine Learning Libraries by Considering

Fuzzy Factor Interrelationships [Internet]. 2023 [citado 21 de agosto de 2024]. Disponible en: https://www.ssrn.com/abstract=4642987

Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Für Med Phys. mayo de 2019;29(2):102-27.

Iqbal S, N. Qureshi A, Li J, Mahmood T. On the Analyses of Medical Images Using Traditional Machine Learning Techniques and Convolutional Neural Networks. Arch Comput Methods Eng. 1 de junio de 2023;30(5):3173-233.

Kwak GH, Hui P. DeepHealth: Review and challenges of artificial intelligence in health informatics [Internet]. arXiv; 2019 [citado 21 de agosto de 2024]. Disponible en: https://arxiv.org/abs/1909.00384

Misra BB, Langefeld C, Olivier M, Cox LA. Integrated omics: tools, advances and future approaches. J Mol Endocrinol. Enero de 2019;62(1):R21-45.

Marcoulides KM, Grimm KJ. Data Integration Approaches to Longitudinal Growth Modeling. Educ Psychol Meas. Diciembre de 2017;77(6):971-89.

O’Neill RT, Temple R. The Prevention and Treatment of Missing Data in Clinical Trials: An FDA Perspective on the Importance of Dealing With It. Clin Pharmacol Ther. marzo de 2012;91(3):550-4.

Stiglic G, Kocbek P, Fijacko N, Sheikh A, Pajnkihar M. Challenges associated with missing data in electronic health records: A case study of a risk prediction model for diabetes using data from Slovenian primary care. Health Informatics J. septiembre de 2019;25(3):951-9.

Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials – a practical guide with flowcharts. BMC Med Res Methodol. diciembre de 2017;17(1):162.

Mensah GA. Charting the Future for Ethnicity and Health Research: Clinical and Population Science Insights From the MESA. Glob Heart. 1 de septiembre de 2016;11(3):365.

Mazzotti DR, Keenan BT, Lim DC, Gottlieb DJ, Kim J, Pack AI. Symptom Subtypes of Obstructive Sleep Apnea Predict Incidence of Cardiovascular Outcomes. Am J Respir Crit Care Med. 15 de agosto de 2019;200(4):493-506.

Rogith D, Yusuf RA, Hovick SRA, Peterson SK, Burton-Chase AM, Li Y, et al. Attitudes regarding privacy of genomic information in personalized cancer therapy. J Clin Oncol. 20 de mayo de 2013;31(15_suppl):9576-9576.

Oliver JM, Slashinski MJ, Wang T, Kelly PA, Hilsenbeck SG, McGuire AL. Balancing the Risks and Benefits of Genomic Data Sharing: Genome Research Participants’ Perspectives. Public Health Genomics. 2012;15(2):106-14.

Calia C, Chakrabarti A, Sarabwe E, Chiumento A. Maximising impactful and locally relevant mental health research: ethical considerations. Wellcome Open Res. 26 de septiembre de 2022;7:240.

Möllmann NR, Mirbabaie M, Stieglitz S. Is it alright to use artificial intelligence in digital health? A systematic literature review on ethical considerations. Health Informatics J. octubre de 2021;27(4):146045822110523.

Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, et al. Multi‐Omics Factor Analysis—a framework for unsupervised integration of multi‐omics data sets. Mol Syst Biol. junio de 2018;14(6):e8124.

Eicher T, Kinnebrew G, Patt A, Spencer K, Ying K, Ma Q, et al. Metabolomics and Multi-Omics Integration: A Survey of Computational Methods and Resources. Metabolites. 15 de mayo de 2020;10(5):202.

Wright JD, Folsom AR, Coresh J, Sharrett AR, Couper D, Wagenknecht LE, et al. The ARIC (Atherosclerosis Risk In Communities) Study: JACC Focus Seminar 3/8. J Am Coll Cardiol. 15 de junio de 2021;77(23):2939-59.

Wang AS, Rao Z, Cao R, Blaes AH, Coresh J, Joshu CE, et al. Development and Characterization of Proteomic Aging Clocks in the Atherosclerosis Risk in Communities (ARIC) Study [Internet]. 2023 [citado 21 de agosto de 2024]. Disponible en: http://medrxiv.org/lookup/doi/10.1101/2023.09.06.23295174

Descargas

Publicado

2024-12-16