Niosomas como herramientas nanotecnológicas para el transporte de compuestos bioactivos

Autores/as

  • María Emilia Arriaga Universidad Nacional de Córdoba. Facultad de Ciencias Químicas.
  • María Eugenia Barnetche Universidad Nacional de Córdoba. Facultad de Ciencias Químicas.
  • Martina Foresi Universidad Nacional de Córdoba. Facultad de Ciencias Químicas.
  • Noelia D. Machado Universidad Nacional de Córdoba. Facultad de Ciencias Químicas.
  • Nelson D. Marcano Aguilera Universidad Nacional de Córdoba. Facultad de Ciencias Químicas.
  • Erica M. Pachón Gómez Universidad Nacional de Córdoba. Facultad de Ciencias Químicas.
  • Juan Cruz Pineda Universidad Nacional de Córdoba. Facultad de Ciencias Químicas.
  • O. Fernando Silva Universidad Nacional de Córdoba. Facultad de Ciencias Químicas.
  • Carolina E. Tissera Universidad Nacional de Córdoba. Facultad de Ciencias Químicas.
  • Raquel V. Vico Universidad Nacional de Córdoba. Facultad de Ciencias Químicas.
  • Mariana A. Fernández Universidad Nacional de Córdoba. Facultad de Ciencias Químicas.

Palabras clave:

Nanotecnología, Vesículas, Geles, Fármacos, Alimentos

Resumen

El campo de investigación en nanotecnología ha mostrado un importante progreso en el desarrollo de nuevos nanoportadores como potenciales sistemas de transporte y liberación de compuestos bioactivos en distintas áreas de interés. Los niosomas son una clase de agregado molecular formados por el autoensamblado de tensioactivos no iónicos en agua. La estructura única de los niosomas presenta interesantes características, con capacidad de incorporar tanto principios activos hidrofílicos como hidrofóbicos. En este trabajo se resumen resultados recientes relacionados al uso de niosomas como transportadores de fármacos para uso sistémico, a la incorporación de niosomas en geles para aplicaciones tópicas, y finalmente a las posibilidades de estos sistemas para su empleo en la fortificación de alimentos. Los resultados descriptos permiten vislumbrar el gran potencial de esta nueva tecnología. 

Referencias

Machado, N. D., Fernández, M. A., Díaz, D. D. Recent Strategies in Resveratrol Delivery Systems. ChemPlusChem (2019), 84, 951–973.

Machado, N. D., Gutiérrez, G., Matos, M., Fernández, M. A. Preservation of the Antioxidant Capacity of Resveratrol via En-capsulation in Niosomes. Foods (2021), 10, 988.

Shukla, T., Upmanyu, N., Prakash Pandey, S., Gosh, D. Lipid Nanocarriers for Drug Targeting, págs. 1–47, Elsevier, 2018.

Tavano, L., Alfano, P., Muzzalupo, R., De Cindio, B. Niosomes vs microemulsions: New carriers for topical delivery of Capsaicin. Colloids Surf. B, Biointerfaces (2011), 87, 333-339.

Moghassemi, S., Hadjizadeh, A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Controlled Release (2014), 185, 22–36.

Machado, N. D., Silva, O. F., de Rossi, R. H., Fernández, M. A. Cyclodextrin modified niosomes to encapsulate hydrophilic compounds. RSC Advances (2018), 8, 29909–29916.

García-Manrique, P., Machado, N. D., Fernández, M. A., Blanco-López, M. C., Matos, M., Gutiérrez, G. Effect of drug molecu¬lar weight on niosomes size and encapsulation efficiency. Colloids Surf. B: Biointerfaces (2020), 186, 110711.

Chen, S., Hanning, S., Falconer, J., Locke, M., Wen, J. Recent advances in non-ionic surfactant vesicles (nio¬somes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm. (2019), 144, 18-39.

Ge, X., Wei, M., He, S., Yuan, W. Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Applica¬tion in Drug Delivery. Pharmaceutics (2019), 11, 55.

Thabet, Y., Elsabahy, M., Eissa, N. G. Methods for preparation of niosomes: A focus on thin-film hydra¬tion method. Methods (2022), 199, 9-15.

Bhardwaj, P., Tripathi, P., Gupta, R., Pandey, S. Niosomes: a review on niosomal research in the last de¬cade. J. Drug Delivery Sci. Technol. (2020), 56, 101581.

Izhar, M. P., Hafeez, A., Kushwaha, P., Simrah, Drug delivery through niosomes: a comprehensive review with therapeutic applications. J. Cluster Sci. (2023), 34, 2257–2273.

Yasamineh, S., Yasamineh, P., Ghafouri Kalajahi, H., Gholizadeh, O., Yekanipour, Z., Afkhami, H., Eslami, M., Hossein Kheirkhah, A., Taghizadeh, M., Yazdani, Y., Dadashpour, M. A state-of-the-art review on the recient advances of niosomes as a targeted drug delivery system. Int. J. Pharm. (2022), 624, 121878.

Witika, B. A., Bassey, K. E., Demana, P. H., Siwe-Noundou, X., Poka, M. S. Current advances in speciali¬sed niosomal drug delivery: manufacture, characterization and drug delivery applications. Int. J. Mol. Sci. (2022), 23.

(https://worldwide.espacenet.com/).

Arafa, M. G., Ayoub, B. M. Nano-vesicles of salbutamol sulphate in metered dose inhalers: formulation, characterization and in vitro evaluation. Int. J. App. Pharm. (2017) 9, 100-105.

Parizi, M. H., Farajzadeh, S., Sharifi, I., Pardakhty, A., Parizi, M. H. D., Sharifi, H., Salarkia, E., Hassanzadeh, S. Antileishmanial Activity of Niosomal Combination Forms of Tioxolone along with Benzoxonium Chloride against Leishmania tropica. Korean J Parasitology (2019), 57, 359–368.

Mostafavi, M., Khazaeli, P., Sharifi, I., Farajzadeh, S., Sharifi, H., Keyhani, A., Hakimi Parizi, M., Kakooei, S., A Novel Niosomal Combination of Selenium Coupled with Glucantime against Leishmania tropica. Korean J. Parasitology (2019), 57, 1-8.

Rao, R., Preparation and evaluation of Ramipril Niosomes using Sonication method. Acta Pharm. Sci. (2011), 53, 441-446.

Makvana, C., Sahoo, S. Formulation and Evaluation of Controlled Release Maintenance Dose Loaded Niosomes of An¬ti-Hypertensive Drug. Int. J. Pharm. Sci. Drug Res. (2019), 11.

a) Mohamed, M. I., Kassem, M. A., Khalil, R. M., Younis, M. M., Darwish, A. B.; Salama, A., Wagdi, M. A. Biointerface Res. Appl. Chem. (2021), 11, 14640

b) Mohamed, M. I., Kassem, M. A., Khalil, R. M., Younis, M. M., Darwish, A. B., Salama, A., Wagdi, M. A. Enhancement of the Anti-inflammatory Efficacy of Betamethasone Valerate via Niosomal Encapsulation. Biointerface Res. App. Chem. (2021), 11, 14640 – 14660.

Limongi, T., Susa, F., Marini, M., Allione, M., Torre, B., Pisano, R., di Fabrizio, E. Lipid-Based Nanovesicular Drug Delivery Systems. Nanomaterials (Basel, Switzerland) (2021), 11, 3391.

Wagh, V., Deshmukh, O. Itraconazole Niosomes Drug Delivery System and Its Antimycotic Activity against Candida albicans. ISRN Pharmaceutics (2012), 2012, 653465.

Bragagni, M., Mennini, N., Furlanetto, S., Orlandini, S., Ghelardini, C., Mura, P. Development and characterization of func¬tionalized niosomes for brain targeting of dynorphin-B. Eur. J. Pharm. Biopharm.: Official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, (2014), 87, 73–79.

S., S., S., S. C., Vijayan, V., Nair, S. C. Anti-epileptic drug loaded niosomal transdermal patch for enhanced skin permeation. Int. J. App. Pharm. (2019), 11, 31–43.

Mohamad Saimi, N. I., Salim, N., Ahmad, N., Abdulmalek, E., Abdul Rahman, M. B., Aerosolized Niosome Formulation Con-taining Gemcitabine and Cisplatin for Lung Cancer Treatment: Optimization, Characterization and In Vitro Evaluation. Pharma¬ceutics (2021), 13, 59.

Parchami, M., Haghiralsadat, F., Sadeghian-Nodoushan, F., Hemati, M., Shahmohammadi, S., Ghasemi, N., Sargazi, G., A new approach to the development and assessment of doxorubicin-loaded nanoliposomes for the treatment of osteosarcoma in 2D and 3D cell culture systems. Heliyon (2023), 9, e15495.

Cetin, E. O., Salmanoglu, D. S., Ozden, I., Ors-Kumoglu, G., Akar, S., Demirozer, M., Karabey, F., Kilic, K. D., Kirilmaz, L., Uya¬nikgil, Y., Sevimli-Gur, C. Preparation of Ethanol Extract of Propolis Loaded Niosome Formulation and Evaluation of Effects on Different Cancer Cell Lines. Nutrition and cancer (2022), 74, 265–277.

Dabbagh Moghaddam, F., Akbarzadeh, I., Marzbankia, E. et al. Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect. Cancer Nano (2021), 12, 14.

Ruckmani, K., Sankar, V. Formulation and optimization of Zidovudine niosomes. AAPS Pharm. Sci. Tech., (2010), 11, 1119–1127.

Abdal-Hammid, S., Kassab, H., Hussein, L., Haiss, M., Alkufi, H. Spanlastics Nanovesicles: An Emerging and Innovative Approach for Drug Delivery. Maaen J. Med. Sci. (2023), 2, 100-107.

Rai. V, Mishra. K, Yadav. S, Yadav. P. Nanoemulsion as Pharmaceutical Carrier for Dermal and Transdermal Drug Delivery: Formulation Development, Stability Issues, Basic Considerations and Applications. J. Control. Release (2018), 270, 203–225.

Patel. K., Kumar. P, Thakkar, P. Formulation of Niosomal Gel for Enhanced Transdermal Lopinavir Delivery and Its Comparative Evaluation with Ethosomal Gel. AAPS Pharm. Sci. Tech. (2012), 13, 1502–1510.

Nigro. F, Santos. P, Pereira, S, Elias, M. Niosome-based hydrogel as a potential drug delivery system for topical and transdermal applications, Int. J. Polym. Mat. Polym. Biomat. (2022), 71, 444-461.

Stagnoli, S, Garro, C., Ertekin, O., Heid, S., Seyferth, S., Soria, G., Correa, N. M., Leal-Egaña, A., Boccaccini, A. R. Topical systems for the controlled release of antineoplastic Drugs: Oxidized Alginate-Gelatin Hydrogel/ Unilamellar vesicles, J. Coll. Interface Sci. (2023), 629, 1066-1080.

Machado, N. D. , Diseño y caracterización de sistemas anfifílicos como transportadores de moléculas de inte¬rés en diferentes campos, Tesis Doctoral, Córdoba (Argentina), Universidad Nacional de Córdoba, 2019.

Machado, N. D., Fernández, M. A., Häering, M., Saldías, C., Díaz Díaz, D. Niosomes encapsulated in biohydrogels for tunable delivery of phytoalexin resveratrol. RSC Adv. (2019), 9, 7601.

Meng, S., Wang, L., Lin, Z., Liu, Z., Xi, L., Wang, Z., Zheng, Y. Loading of water-insoluble celastrol into nio¬some hydrogels for improved topical permeation and anti-psoriasis activity. Colloids Surf. B Biointerfaces (2019), 182, 110352.

Wagas, M. K., Sadia, H., Khan, M. I., Omer, M.O., Siddique, M. I., Qamar, S., Zaman, M., Butt, M. H., Mustafa, M. W., Rasool, N., Development and characterization of niosomal gel of fusidic acid: in-vitro and ex-vivo approaches, Designed Monomers Polym. (2023), 25, 165-174.

Sohrabi, S., Haeri, A., Mahboubi, A., Mortazavi, A., Dadashzadeh, S. Chitosan Gel-Embedded Moxifloxacin Niosomes: An Efficient Antimicrobial Hybrid System for Burn Infection. Int. J. Biol. Macromol. (2016), 85, 625–633.

Salem, H.F., Kharshoum, R. M., Abou-Taleb, H. A., Farouk, H. O., Zaki, R. M. Pharmaceutics (2021), 13, 138.

Alkilani, A. Z., Musleh, B., Hamed, R., Swellmeen, L., Basheer, H. A. J. Funct. Biomater. (2023), 14, 57.

Salem, H.F., Kharshoum, R. M., Gamal, A., El-Ela, F. I. A., Abdellatif, K. R. A. J. Liposome.Res. (2019), 30, 126-135.

Alali, M., Alqubaisy, M., Aljaafari, M. N., Alali, A. O., Baqais, L., Molouki, A., Abushelaibi, A., Lai, K-S, Lim, S. H. E. Nutraceuti¬cals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations, Molecules (2021), 26, 2540.

Melcrová, A., Pokorna, S., Pullanchery, S., Kohagen, M., Jurkiewicz, P., Hof, M., Jungwirth, P., Cremer, P. S., Cwiklik, L. The complex nature of calcium cation interactions with phospholipid bilayers. Sci. Rep. 2016, 6, 38035.

Márquez, A. L., Wagner, J. R., Rheology of double (w/o/w) emulsions prepared with soybean milk and fortified with cal-cium. J. Texture Studies, (2010), 41, 651-671.

Barbosa-Nuñez, J. A., Herrera-Rodríguez, S. E., García-Marquez, E., Espinosa-Andrews, H. A comparative study on the physi-cochemical properties and gastrointestinal delivery of calcium niosomes produced by low and high-energy techniques, Open¬Nano (2024), 17, 100205.

Gutiérrez, G., Matos, M., Barrero, P., Pando, D., Iglesias O, Pazos, C. Iron-entrapped niosomes and their potential application for yogurt fortification. LWT- Food Sci. Technol. (2016), 74, 550-556.

Sirati, R., Khajehrahimi, A. E., Kazempoor, R., Kakoolaki, S., Ghorbanzadeh, A. Development, physicochemical characterization, and antimicrobial evaluation of niosome-loaded oregano essential oil against fish-borne pathogens, Heliyon (2024), 10, e26486.

Du, X, Huang, X., Wang, L., Mo, L., Jing, H., Bai, H., Wang, H. Nanosized niosomes as effective delivery device to improve the stability and bioaccessibility of goat milk whey protein peptide. Food Res. Int. (2022), 161, 111729.

Rezvani, M., Hesari, J., Peighambardoust, S. H., Manconi, M., Hamishehkar, H., Escribano-Ferrer, E. Potential application of nanovesicles (niosomes and liposomes) for fortification of functional beverages with Isoleucine-Proline-Proline: A comparative study with central composite design approach, Food Chemistry (2019), 293, 368–377 (6) Giletto, G., Verónica., Stella., Nicolas., Mariana., Adrian Alexis. Endocarditis infecciosa por Pseudomonas stutzeri: a propósito de un caso. (2022). SADI. 0670-P (7) Navarrete A., Tapia Gómez A., López-Gómez M., López-Ruz M. A., Jiménez A. A rare case of Pseudomonas aeruginosa endo¬carditis. Review of the literatura. Scielo. (2007). ISSN 0212-7199.

Descargas

Publicado

2024-12-16