Productos naturales en la búsqueda de compuestos antimicrobianos :

estrategias actuales

Authors

  • María L. Tibaldi Bollati Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica.
  • Eugenia Rodríguez Ristau Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica.
  • Alejandro I.  Recio Balsells Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica.
  • Yamila S.  Contessi Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica.
  • Félix Condat Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica.
  • Viviana E. Nicotra Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica.
  • Carina N. Casero Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica.
  • Manuela E.  García Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica.

Keywords:

Productos naturales, actividad antimicrobiana, resistencia a fármacos, semisíntesis, vehiculización

Abstract

Antimicrobial resistance is one of the most serious health problems worldwide, as many pathogens are rapidly developing resistance to the existing treatments. In the current scenario, there is no effective therapeutic agent with the potential to reverse antimicrobial resistance, so many leading laboratories (at industrial and academic level) are working intensively to discover new therapeutic agents. In this sense, natural compounds of plant origin are relatively less studied in the context of antimicrobial drug development.


Natural products have been of great interest in the drug discovery process due to their structural diversity and complexity, chemical novelty, and bioactivity. Thus, to date, the isolation of natural compounds from various organisms has been described, including bacteria, fungi, invertebrates, marine organism and plants. All of these have made significant contributions to the development of drugs for various human diseases. To cite some examples, doxorubicin, bleomycins, penicillins, epothilones, paclitaxel, camptothecin, podophyllotoxins and vinca alkaloids are today some of the best-known active ingredients derived from bacteria, fungi or plants. For all above, in this perspective article, we will address the topic from the different approaches that are currently used to explore the antimicrobial therapeutic potential of metabolites of plant origin or their derivatives. 

Finally, after analyzing the sections presented, we arrive to the conclusion of the urgent need for exhaustive research into the antimicrobial potential of plant metabolites. Indeed, these privileged biologically relevant structures can constitute new chemical entities with improved antimicrobial efficacy through their derivatization or vehiculization. Another important point to highlight is the need to examine the role of these compounds together with antibiotics currently used in clinical practice in order
to explore possible synergistic effects.

 

Downloads

Download data is not yet available.

References

CroftsT.S., GasparriniA.J., DantasG. Next-generation approachestounderstand and combattheantibioticresistome. Nat. Rev. Microbiol.(2017)

: 422-434.

Chis A.A., Rus L.L., Morgovan C., Arseniu A.M., Frum A., Vonica-Tincu A.L., y col. Microbial Resistance to Antibiotics and Effective Antibiotherapy.

Biomedicines.(2022) 10(1121): 1-38.

Zhen X, Lundborg CS, Sun X, Hu X, Dong H. Economic burden of antibiotic resistance in ESKAPE organisms: A systematic review. Antimicrob.

Resist. Infect. Control.(2019) 8(137): 1-23.

O’Neill, J. TheReviewon AntimicrobialResistance, AntimicrobialResistance: Tacklingacrisisforthehealth and wealthofnations.(2015) 1-22.

MinisteriodeSaludArgentino. NuevaLeydePrevenciónyControldelaResistenciaAntimicrobiana, 10deagostode2022. https://www.argentina.

gob.ar/noticias/nueva-ley-de-prevencion-y-control-de-la-resistencia-antimicrobiana, últimoacceso29/9/2023.

Durand G.A., RaoultD., DubourgG. Antibioticdiscovery: history, methodsand perspectives. Int. J. Antimicrob. Agents.(2019) 53: 371-382.

Antibioticresistancethreatsin theUnited States, 2019Atlanta, Georgia. https://stacks.cdc.gov/view/cdc/82532

Annunziato G. Strategies to Overcome Antimicrobial Resistance (AMR) Making Use of Non-Essential Target Inhibitors: A Review. Int. J. Mol. Sci.

(2019) 20(5844): 1-25.

RossiterS.E., FletcherM.H., WuestW.M. NaturalProductsasPlatformstoOvercomeAntibioticResistance. Chem. Rev.(2017) 117: 12415-12474.

Jadimurthy R., Jagadish S., Nayak S.C., Kumar S., Mohan C.D., Rangappa K.S. Phytochemicals as Invaluable Sources of Potent Antimicrobial

AgentstoCombatAntibioticResistance., Life(2023) 13(948): 1-34.

DiasD.A., UrbanS., RoessnerU. AHistoricaloverviewofnaturalproductsin drugdiscovery. Metabolites.(2012) 2: 303-336.

Toledo C., Kutschker A. Plantas Medicinales en el Parque nacional los alerces, Chubut, Patagonia argentina. Bol. Soc.

Argent. Bot.(2012) 47: 461-470.

Estomba D., Ladio A., Lozada M. Medicinal wild plant knowledge and gathering patterns in a Mapuche community

fromNorth-westernPatagonia. J. Ethnopharmacol.(2006) 103: 109-119.

FarmacopeaArgentina, 2013,7maedición, AdministraciónNacionaldeMedicamentos, AlimentosyTecnologíaMédica,

CiudadAutónomadeBuenosAires, Argentina: MinisteriodeSalud delaNación.

Yagüe E., Sun H., Hu Y. East Wind, West Wind: Toward the modernization of traditional Chinese medicine. Front. Neurosci.(

16(1057817): 1-17.

LiG., Lou H.X. Strategiestodiversifynaturalproductsfordrugdiscovery. Med. Res. Rev.(2018) 38: 1255-1294.

Newman D.J., Cragg G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to

/2019. J. Nat. Prod.(2020) 83: 770-803.

Van Der Kooy F., Sullivan S.E. The complexity of medicinal plants: The traditional Artemisia annua formulation, current

statusandfutureperspectives. J. Ethnopharmacol.(2013) 150: 1-13.

Majhi S., Das D. Chemical derivatization of natural products: Semisynthesis and pharmacological aspects- A decade update.

Tetrahedron.(2021) 78(131801): 1-22.

Evans B.E., Rittle K.E., Bock M.G., Dipardo R.M., Freidinger R.M., Whitter W.L., y col. Articles Methods for Drug Discovery: Development of Potent,

Selective, OrallyEffectiveCholecystokinin Antagonistst. J. Med. Chem.(1988) 31: 2235-2246.

Lovering F., Bikker J., Humblet C. Escape from flatland: Increasing saturation as an approach to improving clinical success. J. Med. Chem. (2009)

: 6752-6756.

Camp D., GaravelasA., CampitelliM. AnalysisofPhysicochemicalPropertiesforDrugsofNaturalOrigin. J NatProd.(2015) 78(6):1370-1382.

Subramanian A.P., Jaganathan S.K., Manikandan A., Pandiaraj K.N., Gomathi N., Supriyanto E. Recent trends in nano-based drug delivery systemsforefficientdeliveryofphytochemicalsinchemotherapy.

RSCAdv.(2016) 6: 48294-48314.

Cadoná F.C., Machado A.K., Bodenstein D., Rossoni C., Favarin F.R., Ourique A.F., editores. Natural product–based nanomedicine: Polymeric

nanoparticlesasdeliverycargoesoffoodbioactivesand nutraceuticalsforanticancerpurposes. En: AdvancesandAvenuesintheDevelopmentof

NovelCarriersforBioactivesandBiologicalAgents. Elsevier; 2020, p. 37–67.

Brown D.G., BoströmJ. WhereDoRecentSmallMoleculeClinicalDevelopmentCandidatesComeFrom? J. Med. Chem.(2018) 61(21): 9442-

HillR.A., Sutherland A. Hotoffthepress. Nat. Prod. Rep.(2014) 31: 1671-1675.

GrivasP.D., KiarisH., Papavassiliou A.G. Tacklingtranscriptionfactors: Challengesin antitumortherapy. TrendsMol. Med.(2011) 17: 537-538.

AsakawaY., LudwiczukA. ChemicalConstituentsofBryophytes: Structuresand BiologicalActivity. J. Nat. Prod.(2018) 81: 641-660.

RíosJ.L., RecioM.C. Medicinalplantsandantimicrobialactivity. J. Ethnopharmacol.(2005) 100: 80-84.

Gertsch J. Botanicaldrugs, synergy, and networkpharmacology: Forth and backtointelligentmixtures. PlantaMed.(2011) 77: 1086-1098.

CaesarL.K., Cech N.B. Synergyand antagonisminnaturalproductextracts: When 1+ 1doesnotequal2. Nat. Prod. Rep.(2019) 36: 869-888.

Doern C.D. Whendoes2plus2equal5? Areviewofantimicrobialsynergytesting. J. Clin. Microbiol.(2014) 52: 4124-4128.

Dal Piaz F., Bader A., Malafronte N., D’Ambola M., Petrone A.M., Porta A., y col. Phytochemistry of compounds isolated from the leaf-surface

extractofPsiadiapunctulata(DC.) Vatkegrowingin SaudiArabia. Phytochem.(2018) 155: 191-202.

Donadio G., Chini M.G., Parisi V., Mensitieri F., Malafronte N., Bifulco G., y col. Diterpenoid Constituents of Psiadia punctulata and Evaluation of

TheirAntimicrobialActivity. J. Nat. Prod.(2022) 85(7):1667-1680.

Besbes Hlila M., Mosbah H., Majouli K., Ben Nejma A., Ben Jannet H., Mastouri M., y col. Antimicrobial Activity of Scabiosa arenaria Forssk.

ExtractsandPureCompoundsUsingBioguided Fractionation. ChemBiodivers.(2016) 1: 1262-1272.

CastroI., FabreN., Bourgeade-DelmasS., SaffonN., GandiniC., Sauvain M., ycol. StructuralCharacterization andAnti-infectiveActivityof9,10-Seco-

-norcycloartaneGlycosidesIsolated fromtheFlowersofthePeruvianMedicinalPlantCordialutea. J. Nat. Prod.(2019) 82(12): 3233-3341.

El-ShiekhR.A., Hassan M., HashemR.A., Abdel-SattarE. Bioguidedisolation ofantibiofilmand antibacterialpregnaneglycosidesfromcaralluma

quadrangula: Disarmingmultidrug-resistantpathogens. Antibiotics.(2021) 10(7): 1-11.

Ramallo, I.A., Salazar, M.O., Furlan, R.L. EnzymaticBioautographicMethods. En: TargetingEnzymesforPharmaceuticalDevelopment. Methods

in MolecularBiology. Labrou, N. Editor. NuevaYork(EstadosUnidos): EditorialHumana, 2020, vol2089, p. 179-189.

ChomaI.M., GrzelakE.M. Bioautographydetection inthin-layerchromatography. J. Chromatogr. A.(2011) 1218: 2684-2691.

Morel A.F, Araujo C.A., Da Silva U.F., Hoelzel S.C., Zachiazachia R., Bastos N.R. Antibacterial cyclopeptide alkaloids from the bark of Condalia buxifolia.

Phytochem.(2002) 61: 561-566.

TatsutaK. Totalsynthesisofthebigfourantibioticsand related antibiotics. J. Antibiot.(2013) 66: 107-129.

Tatsuta,K., Yoshimoto, T., Gunji, H.; Okado, Y., Takahashi, M. TheFirstTotalSynthesisofNatural (-)-Tetracycline. Chem. Lett.(2000) 29: 646-647.

Van Der Hooft J.J., Mohimani H., Bauermeister A., Dorrestein P.C., Duncan K.R., Medema M.H. Linking genomics and metabolomics to chart

specializedmetabolicdiversity. Chem. Soc. Rev.(2020) 49: 3297-3314.

Miethke M., Pieroni M., Weber T., Brönstrup M., Hammann P., Halby L., y col. Towards the sustainable discovery and development of new

antibiotics. Nat. Rev. Chem.(2021) 5: 726-749.

Lukežic T., Lešnik U., Podgoršek A., Horvat J., Polak T., Šala, M., y col. Identification of the chelocardin biosynthetic gene cluster from Amycolatopsis

sulphurea: aplatformforproducingnoveltetracyclineantibiotics. Microbiology(2013) 159: 2524-2532.

Grandclaudon C., BirudukotaN.V.S., ElgaherW.A.M., JumdeR.P., YahiaouiS., ArisettiN., ycol. Semisynthesisandbiological

evaluation ofamidochelocardinderivativesasbroad-spectrumantibiotics. Eur. J. Med. Chem.(2020) 188(112005): 1-11.

GallowayW.R., Isidro-LlobetA., SpringD.R. Diversity-oriented synthesisasatoolforthediscoveryofnovelbiologicallyactivesmallmolecules.

Nat. Comm.(2010) 1: 1-13.

BurkeM.D., SchreiberS.L. APlanningStrategyforDiversity-OrientedSynthesis. Angew. Chem. Int. Ed.(2004) 43: 46-58.

Kong, Y., Li, L., Zhao, L., Yu, P., Li, D. A patent review of berberine and its derivatives with various pharmacological activities

(2016–2020). ExpertOpinion onTherapeuticPatents.(2022) 32(2): 211-223.

Zhang Y., Gu Y., Ren H., Wang S., Zhong H., Zhao X., y col. Gut microbiome-related effects of berberine and probiotics on

type2diabetes(thePREMOTEstudy). Nat. Commun.(2020) 11(1): 1-12.

Chiou W.F., YenM.H., ChenC.F. Mechanismofvasodilatoryeffectofberberineinratmesentericartery. Eur. J. Pharmacol.

(1991) 201: 35-40.

Sun H., AnsariM.F., BattiniN., BheemanaboinaR.R.Y., Zhou C.H. NovelpotentialartificialMRSADNAintercalators: Synthesisand

biologicalevaluationofberberine-derived thiazolidinediones. Org. Chem. Front.(2019) 6(3): 319-334.

Gao W.W., Gopala L., Bheemanaboina R.R.Y., Zhang G.B., Li S., Zhou C.H. Discovery of 2-aminothiazolyl berberine derivativesaseffectivelyantibacterialagentstoward

clinicallydrug-resistantGram-negativeAcinetobacterbaumanii. Eur. J. Med. Chem.

(2018) 146: 15-37.

Olleik H., Yacoub T., Hoffer L., Gnansounou S.M., Benhaiem‐Henry K., Nicoletti C., y col. Synthesis and evaluation of the antibacterial activities of

‐substituted berberinederivatives. Antibiotics.(2020) 9(7): 1-31.

DemekhinO.D., ZagrebaevA.D., BurovO.N., KletskiiM.E., PavlovichN.V., BereznyakE.A., ycol. Thefirst13-vinylderivativesofberberine: synthesis

andantimicrobialactivity. Chem. Heterocycl. Compd.(2019) 55(11):1128-1130.

WangJ., YangT., ChenH., Xu Y.N., Yu L.F., Liu T., ycol. Thesynthesisand antistaphylococcalactivityof9,13-disubstituted berberinederivatives. Eur.

J. Med. Chem.(2017) 127: 424-433.

Chen L., Zhu L., Chen J., Chen W., Qian X., Yang Q. Crystal structure-guided design of berberine-based novel chitinase inhibitors. J. Enzyme Inhib.

Med. Chem.(2020) 35(1):1937-1943.

Ling Y., Wu L.L., Qian L.I., Hu Q.M., Zhang S.Y., Kang L., y col. Novel berberine derivatives: Design, synthesis, antimicrobial effects, and molecular

dockingstudies. Chin. J. Nat. Med.(2018) 16: 774-781.

Jeyakkumar P., Zhang L., Avula S.R., Zhou C.H. Design, synthesis and biological evaluation of berberine-benzimidazole hybrids as new type of

potentiallyDNA-targetingantimicrobialagents. Eur. J. Med. Chem.(2016) 122: 205-215.

Jia D., Dou Y., Li Z., Zhou X., Gao Y., Chen K., y col. Design, synthesis and evaluation of a baicalin and berberine hybrid compound as therapeutic

agentforulcerativecolitis. Bioorg. Med. Chem.(2020) 28(20): 115697.

Khan S., Hussain A., Attar F., Bloukh S.H., Edis Z., Sharifi M., y col. A review of the berberine natural polysaccharide nanostructures as potential

anticancerand antibacterialagents. BiomedicineandPharmacotherapy.(2022) 146: 112531.

QianC.-D., WuX.-C., TengY., ZhaoW.-P., LiO., FangS.- G., HuangZ.-H., GaoH.-C. Battacin(OctapeptinB5), aNewCyclicLipopeptideAntibioticfromPaenibacillusTianmuensisActiveagainstMultidrug-

ResistantGram-NegativeBacteria. Antimicrob. AgentsChemother.(2012) 56: 1458-1465.

Kihara S., De Zoysa G. H., Shahlori R., Vadakkedath P. G., Ryan T. M., Mata, J. P., Sarojini, V., McGillivray, D. J. Solution Structure of Linear Battacin

Lipopeptides − the Effect of Lengthening Fatty Acid Chain. Soft Matter. (2019) 15: 7501-7508.

YimV., KavianiniaI., KnottenbeltM. K., FergusonS. A., CookG. M., SwiftS., ChakrabortyA., Allison J. R., Cameron A. J., HarrisP. W. R., BrimbleM. A.

“CLipP”ingonLipidstoGenerateAntibacterialLipopeptides. Chem. Sci.(2020) 11: 5759-5765.

Méndez L., SalazarM.O., RamalloA.I, Furlan R.L. Brominated extractsassourceofbioactivecompounds. ACSComb Sci.(2011) 13(2): 200-204.

López S.N., RamalloA.I., GonzalezSierraM., ZacchinoS.A., Furlan R.L. Chemicallyengineered extractsasan alternativesourceofbioactivenatural

product-likecompounds. PNAS(2006) 104(2): 441-444.

Ramallo A.I., Salazar M.O., García P., Furlan R.L. Chemical Diversification of Natural Product Extracts. En: Studies in Natural Products Chemistry.

Atta-ur-Rahman F.R.S, editor. Ámsterdam,(PaísesBajos): EditorialElsevierB.V.; 2019, vol60, p. 371-398.

Hoffman P.S. Antibacterialdiscovery: 21stcenturychallenges. Antibiotics.(2020) 9(5): 1-10.

RiceL.B. Federalfundingforthestudyofantimicrobialresistancein nosocomialpathogens: NoESKAPE. J. Infect. Dis.(2008) 197: 1079-1081.

ZhaoS., AdamiakJ.W., BonifayV., MehlaJ., ZgurskayaH.I., Tan D.S. Definingnewchemicalspacefordrugpenetration intoGram-negativebacteria.

Nat. Chem. Biol.(2020) 16(12): 1293-1302.

Du D., Wang-Kan X., NeubergerA., vanVeen H.W., PosK.M., PiddockL.J.V., ycol. Multidrugeffluxpumps: structure, function andregulation. Nat.

Rev. Microbiol.(2018) 16: 523-539.

AndrewsL.D., KaneT.R., DozzoP., HaglundC.M., HilderbrandtD.J., LinsellM.S., ycol. Optimization and MechanisticCharacterizationofPyridopyrimidineInhibitorsofBacterialBiotin

Carboxylase. J Med. Chem.(2019) 62(16):7489-7505.

RichterM.F., Drown B.S., RileyA.P., GarciaA., ShiraiT., SvecR.L., ycol. Predictivecompoundaccumulation rulesyield abroad-spectrumantibiotic.

Nature(2017) 545(7654):299-304.

Muñoz K.A., Hergenrother P.J. Facilitating Compound Entry as a Means to Discover Antibiotics for Gram-Negative Bacteria. Acc. Chem. Res.

(2021) 54(6): 1322-1333.

MorrisonK.C., HergenrotherP.J. Natural productsasstarting pointsforthesynthesisofcomplexand diversecompounds. Nat. Prod. Rep.(2014)

(1): 6-14.

Motika S.E., Hergenrother P.J. Re-engineering natural products to engage new biological targets. Nat. Prod. Rep. (2020)

(11): 1395-1403.

Richter M.F., Hergenrother P.J. The challenge of converting gram-positive-only compounds into broad-spectrum antibiotics.

Ann. N. Y. Acad. Sci.(2019) 1435: 18-38.

Parkinson E.I., Bair J.S., Nakamura B.A., Lee H.Y., Kuttab H.I., Southgate E.H., y col. Deoxynybomycins inhibit mutant DNA

gyraseand rescuemiceinfectedwith fluoroquinolone-resistantbacteria. Nat. Commun.(2015) 22,6: 6947.

ParkerE.N., Drown B.S., GeddesE.J., LeeH.Y., IsmailN., LauG.W., ycol. Implementation ofpermeationrulesleadstoaFabI

inhibitorwith activityagainstGram-negativepathogens. NatureMicrobiology(2020) 5: 67-75.

Parker E.N., Cain B.N., Hajian B., Ulrich R.J., Geddes E.J., Barkho S., y col. An Iterative Approach Guides Discovery of the

FabIInhibitorFabimycin, aLate-StageAntibioticCandidatewith In VivoEfficacyagainstDrug-ResistantGram-NegativeInfections.

ACSCent. Sci.(2022) 8(8): 1145-1158.

Motika S.E., Ulrich R.J., Geddes E.J., Lee H.Y., Lau G.W., Hergenrother P.J. Gram-Negative Antibiotic Active through Inhibitionofan

EssentialRiboswitch. J. Am. Chem. Soc.(2020) 142(24):10856-10862.

Perlmutter S.J., Geddes E.J., Drown B.S., Motika S.E., Lee M.R., Hergenrother P.J. Compound Uptake into E. coli Can Be

Facilitated byN-AlkylGuanidiniumsand Pyridiniums. ACSInfect. Dis.(2021) 7(1):162-173.

Zhang C., Yan L., Wang X., Zhu S., Chen C., Gu Z., y col. Progress, challenges, and future of nanomedicine. Nano Today.

(2020) 35: 101008.

MinY., CasterJ.M., Eblan M.J., WangA.Z. ClinicalTranslationofNanomedicine. Chem. Rev.(2015) 115: 11147-11190.

LiZ., ZhaoT., LiJ., Yu Q., FengY., XieY., ycol. NanomedicineBased onNaturalProducts: ImprovingClinicalApplication Potential. J. Nanomat.(2022)

: 3066613.

ChamundeeswariM., JeslinJ., VermaM.L. Nanocarriersfordrugdeliveryapplications. Environ. Chem. Lett.(2019) 17: 849-865.

Mansuri A., Chaudhari R., Nasra S., Meghani N., Ranjan S., Kumar A. Development of food-grade antimicrobials of fenugreek oil nanoemulsion— bioactivityand toxicityanalysis. Environ. Sci. Pollut. Res.(2023) 30(10): 24907-24918.

Cui R., Jiang K., Yuan M., Cao J., Lin L., Tang Z., y col. Antimicrobial film based on polylactic acid and carbon nanotube for controlled cinnamaldehyderelease.

J. Mater. Res. Technol.(2020) 9(5):10130-10138.

Rodenak-Kladniew B., Scioli Montoto S., Sbaraglini M.L., Di Ianni M., Ruiz M.E., Talevi A., y col. Hybrid Ofloxacin/eugenol co-loaded solid lipid

nanoparticleswithenhancedand targetableantimicrobialproperties. Int. J. Pharm.(2019) 569: 118575.

Zhang Y., Cheng X., Zhang Y., Xue X., Fu Y. Biosynthesis of silver nanoparticles at room temperature using aqueous aloe leaf extract and antibacterialproperties.

ColloidsSurf. APhysicochem. Eng. Asp.(2013) 423: 63-68.

Sabino C. P., Wainwright M., Ribeiro M. S., Sellera F. P., Dos Anjos C., da Silva Baptista, M., Lincopan, N. Global priority multidrug-resistant pathogensdonotresistphotodynamictherapy.

J. Photochem. Photobiol. B, Biol.(2020) 208: 111893

Kwiatkowski S., Knap B., Przystupski D., Saczko J., Kdzierska E., Knap-Czop K., y col. Photodynamic therapy – mechanisms, photosensitizers and

combinations. Biomed. Pharmacother.(2018) 106: 1098-1107.

WarrierA., MazumderN., PrabhuS., SatyamoorthyK., MuraliT.S. Photodynamictherapytocontrolmicrobialbiofilms. PhotodiagnosisPhotodyn.

Ther.(2021) 33: 102090.

Hochma E., Yarmolinsky L., Khalfin B., Nisnevitch M., Ben-Shabat S., Nakonechny F. Antimicrobial Effect of Phytochemicals from Edible Plants.

Processes.(2021) 9: 2089.

RoyR., TiwariM., DonelliG., TiwariV. Strategiesforcombatingbacterialbiofilms: Afocuson anti-biofilmagentsand theirmechanismsofaction.

Virulence.(2018) 9: 522-554.

Hong E.J., Choi D.G., Shim M.S. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm. Sin.

B(2016) 6: 297-307.

XiaoL., Gu L., HowellS.B., SailorM.J. Poroussilicon nanoparticlephotosensitizersforsingletoxygenand theirphototoxicityagainstcancercells. ACSNano

(2011) 5(5): 3651-3659.

Published

2023-12-16