Aplicación de la melatonina en enfermedades no transmisibles
HTML
PDF

Palabras clave

sistema circadiano
citoprotección
inflamación
melatonina
enfermedades no transmisibles

Cómo citar

Cardinali, D. P. (2025). Aplicación de la melatonina en enfermedades no transmisibles. Pinelatinoamericana, 5(1), 48-58. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/48386

Resumen

La alteración circadiana, caracterizada por trastornos del sueño, y la inflamación de bajo grado (metainflamación) se observan comúnmente en las enfermedades crónicas no transmisibles (ENT). Los trastornos cardiovasculares, las enfermedades neurodegenerativas, la diabetes, el síndrome metabólico y el cáncer representan más del 80% de las muertes por ENT. La melatonina ayuda a mitigar las secuelas clínicas y los síntomas de las ENT. Este efecto se basa en las amplias acciones de la melatonina como antioxidante y como agente antiinflamatorio e inmunomodulador. En modelos animales de ENT, el tratamiento con melatonina previene diversas alteraciones relacionadas con la inflamación leve, incluido el daño oxidativo y la alteración mitocondrial, en dosis que, cuando se proyectan alométricamente a los seres humanos, oscilan entre 1 y 3 mg/kg/día. Si se espera que la melatonina mejore la salud en las ENT, las dosis bajas que se utilizan actualmente en los ensayos clínicos (es decir, 2-10 mg/día) son insuficientes. La dosis y los niveles de melatonina utilizados deben reevaluarse en función de la información de la investigación preclínica presentada.

HTML
PDF

Referencias

Ahmadi, Z. y Ashrafizadeh, M. (2020). Melatonin as a potential modulator of Nrf2. In Fundamental and Clinical Pharmacology (Vol. 34, Issue 1, pp. 11–19). Blackwell Publishing Ltd. https://doi.org/10.1111/fcp.12498

Andersen, L. P. H., Gögenur, I., Rosenberg, J. y Reiter, R. J. (2016). The Safety of Melatonin in Humans. Clinical Drug Investigation, 36(3), 169–175. https://doi.org/10.1007/S40261-015-0368-5

Auld, F., Maschauer, E. L., Morrison, I., Skene, D. J. y Riha, R. L. (2017). Evidence for the efficacy of melatonin in the treatment of primary adult sleep disorders. In Sleep Medicine Reviews (Vol. 34, pp. 10–22). W.B. Saunders Ltd. https://doi.org/10.1016/j.smrv.2016.06.005

Bader, V. y Winklhofer, K. F. (2020). Mitochondria at the interface between neurodegeneration and neuroinflammation. Seminars in Cell and Developmental Biology, 99, 163–171. https://doi.org/10.1016/j.semcdb.2019.05.028

Barbé-Tuana, F., Funchal, G., Schmitz, C. R. R., Maurmann, R. M. y Bauer, M. E. (2020). The interplay between immunosenescence and age-related diseases. Seminars in Immunopathology, 42(5), 545–557. https://doi.org/10.1007/S00281-020-00806-Z

Cardinali, D. P. (2019a). Are melatonin doses employed clinically adequate for melatonin-induced cytoprotection? Melatonin Research, 2(2), 106–132. https://doi.org/10.32794/mr11250025

Cardinali, D. P. (2019b). Melatonin: Clinical perspectives in neurodegeneration. Frontiers in Endocrinology, 10(JULY). https://doi.org/10.3389/fendo.2019.00480

Cardinali, D. P. (2020). High doses of melatonin as a potential therapeutic tool for the neurologic sequels of covid-19 infection. Melatonin Research, 3(3), 311–317. https://doi.org/10.32794/mr11250064

Cardinali, D. P. (2023). La melatonina: Una esperanza frustrada en la fase aguda de la pandemia COVID-19, una posibilidad terapéutica en el COVID prolongado. Pinelatinoamericana, 3(1), 5-13. https://revistas.unc.edu.ar/index.php/pinelatam/article/view/39717

Cardinali, D. P. (2024). Melatonin as a chronobiotic/cytoprotective agent in bone. Doses involved. Journal of Pineal Research, 76(1). https://doi.org/10.1111/JPI.12931

Cardinali, D. P., Brown, G. M. y Pandi-Perumal, S. R. (2022). Melatonin’s Benefits and Risks as a Therapy for Sleep Disturbances in the Elderly: Current Insights. Nature and Science of Sleep, 14, 1843–1855. https://doi.org/10.2147/NSS.S380465

Cardinali, D. P. y Garay, A. (2023). Melatonin as a Chronobiotic/Cytoprotective Agent in REM Sleep Behavior Disorder. Brain Sciences, 13(5). https://doi.org/10.3390/brainsci13050797

Cardinali, D. P., Pandi-Perumal, S. R. y Brown, G. M. (2023). Melatonin as a Chronobiotic and Cytoprotector in Healthy Aging. 277–312. https://doi.org/10.1007/978-3-031-22468-3_14

Dubocovich, M. L., Delagrange, P., Krause, D. N., Sugden, D., Cardinali, D. P. y Olcese, J. (2010). International union of basic and clinical pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacological Reviews, 62(3). https://doi.org/10.1124/pr.110.002832

Ferracioli-Oda, E., Qawasmi, A. y Bloch, M. H. (2013). Meta-analysis: melatonin for the treatment of primary sleep disorders. PloS One, 8(5). https://doi.org/10.1371/JOURNAL.PONE.0063773

Fulop, T., Larbi, A., Pawelec, G., Khalil, A., Cohen, A. A., Hirokawa, K., Witkowski, J. M. y Franceschi, C. (2021). Immunology of Aging: the Birth of Inflammaging. Clinical Reviews in Allergy & Immunology. https://doi.org/10.1007/S12016-021-08899-6

Galano, A., Tan, D. X. y Reiter, R. J. (2011). Melatonin as a natural ally against oxidative stress: A physicochemical examination. In Journal of Pineal Research (Vol. 51, Issue 1, pp. 1–16). Blackwell Publishing Ltd. https://doi.org/10.1111/j.1600-079X.2011.00916.x

Galley, H. F., Lowes, D. A., Allen, L., Cameron, G., Aucott, L. S. y Webster, N. R. (2014). Melatonin as a potential therapy for sepsis: A phase i dose escalation study and an ex vivo whole blood model under conditions of sepsis. Journal of Pineal Research, 56(4), 427–438. https://doi.org/10.1111/jpi.12134

García, S., Giménez, V. M. M., Marón, F. J. M., Reiter, R. J. y Manucha, W. (2020). Melatonin and cannabinoids: mitochondrial-targeted molecules that may reduce inflammaging in neurodegenerative diseases. Histology and Histopathology, 35(8), 789–800. https://doi.org/10.14670/HH-18-212

Geoffroy, P. A., Micoulaud Franchi, J. A., Lopez, R. y Schroder, C. M. (2019). The use of melatonin in adult psychiatric disorders: Expert recommendations by the French institute of medical research on sleep (SFRMS). Encephale, 45(5), 413–423. https://doi.org/10.1016/j.encep.2019.04.068

Hardeland, R. (2005). Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine, 27(2), 119–130. https://doi.org/10.1385/ENDO:27:2:119

Hardeland, R. (2009). Melatonin: Signaling mechanisms of a pleiotropic agent. BioFactors, 35(2), 183–192. https://doi.org/10.1002/biof.23

Hardeland, R. (2018a). Melatonin and inflammation—Story of a double-edged blade. In Journal of Pineal Research (Vol. 65, Issue 4). Blackwell Publishing Ltd. https://doi.org/10.1111/jpi.12525

Hardeland, R. (2018b). Recent Findings in Melatonin Research and Their Relevance to the CNS. Central Nervous System Agents in Medicinal Chemistry, 18(2), 102–114. https://doi.org/10.2174/1871524918666180531083944

Hardeland, R. y Pandi-Perumal, S. R. (2005). Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutrition & Metabolism, 2. https://doi.org/10.1186/1743-7075-2-22

Huang, Q. y Riviere, J. E. (2014). The application of allometric scaling principles to predict pharmacokinetic parameters across species. In Expert Opinion on Drug Metabolism and Toxicology (Vol. 10, Issue 9, pp. 1241–1253). Informa Healthcare. https://doi.org/10.1517/17425255.2014.934671

Khan, H. T. A. (2019). Population ageing in a globalized world: Risks and dilemmas? Journal of Evaluation in Clinical Practice, 25(5), 754–760. https://doi.org/10.1111/JEP.13071

Lewy, A. J. (2007). Melatonin and human chronobiology. Cold Spring Harbor Symposia on Quantitative Biology, 72, 623–636. https://doi.org/10.1101/sqb.2007.72.055

Li, T., Jiang, S., Han, M., Yang, Z., Lv, J., Deng, C., Reiter, R. J. y Yang, Y. (2019). Exogenous melatonin as a treatment for secondary sleep disorders: A systematic review and meta-analysis. Frontiers in Neuroendocrinology, 52, 22–28. https://doi.org/10.1016/J.YFRNE.2018.06.004

Lissoni, P., Rovelli, F., Messina, G., Monzon, A., Valentini, A., Sassola, A., Di Fede, G., Simoes-de-Silva, A. C., Merli, N., Bartsch, C., Vlaescu, V. G. y Cardinali, D. P. (2025). Psycho-Neuro-Endocrine-Immunology Therapy of Cancer, Autoimmunity, Geriatric Disorders, Covid-19, and Hypertension. Methods in Molecular Biology (Clifton, N.J.), 2868, 111–132. https://doi.org/10.1007/978-1-0716-4200-9_7

Lu, B., Huang, L., Cao, J., Li, L., Wu, W., Chen, X. y Ding, C. (2021). Adipose tissue macrophages in aging-associated adipose tissue function. The Journal of Physiological Sciences : JPS, 71(1). https://doi.org/10.1186/S12576-021-00820-2

Manchester, L. C., Coto-Montes, A., Boga, J. A., Andersen, L. P. H., Zhou, Z., Galano, A., Vriend, J., Tan, D. X. y Reiter, R. J. (2015). Melatonin: An ancient molecule that makes oxygen metabolically tolerable. In Journal of Pineal Research (Vol. 59, Issue 4, pp. 403–419). Blackwell Publishing Ltd. https://doi.org/10.1111/jpi.12267

Medzhitov, R. (2021). The spectrum of inflammatory responses. Science, 374(6571), 1070–1075. https://doi.org/10.1126/SCIENCE.ABI5200

Menczel Schrire, Z., Phillips, C. L., Chapman, J. L., Duffy, S. L., Wong, G., D’Rozario, A. L., Comas, M., Raisin, I., Saini, B., Gordon, C. J., McKinnon, A. C., Naismith, S. L., Marshall, N. S., Grunstein, R. R. y Hoyos, C. M. (2022). Safety of higher doses of melatonin in adults: A systematic review and meta-analysis. Journal of Pineal Research, 72(2). https://doi.org/10.1111/JPI.12782

Mińczuk, K., Baranowska‐kuczko, M., Krzyżewska, A., Schlicker, E. y Malinowska, B. (2022). Cross-Talk between the (Endo)Cannabinoid and Renin-Angiotensin Systems: Basic Evidence and Potential Therapeutic Significance. International Journal of Molecular Sciences, 23(11). https://doi.org/10.3390/IJMS23116350

Palagini, L., Manni, R., Aguglia, E., Amore, M., Brugnoli, R., Girardi, P., Grassi, L., Mencacci, C., Plazzi, G., Minervino, A., Nobili, L. y Biggio, G. (2020). Expert opinions and consensus recommendations for the evaluation and management of insomnia in clinical practice: joint statements of five Italian scientific societies. Frontiers in Psychiatry, 11. https://doi.org/10.3389/FPSYT.2020.00558

Raha, S. y Robinson, B. H. (2000). Mitochondria, oxygen free radicals, disease and ageing. Trends in Biochemical Sciences, 25(10), 502–508. https://doi.org/10.1016/S0968-0004(00)01674-1

Reiter, R. J., Sharma, R. y Rosales-Corral, S. (2021). Anti-warburg effect of melatonin: A proposed mechanism to explain its inhibition of multiple diseases. International Journal of Molecular Sciences, 22(2), 1–24. https://doi.org/10.3390/ijms22020764

Reiter, R. J., Tan, D. X., Rosales-Corral, S., Galano, A., Jou, M. J. y Acuna-Castroviejo, D. (2018). Melatonin mitigates mitochondrial meltdown: Interactions with SIRT3. International Journal of Molecular Sciences, 19(8). https://doi.org/10.3390/ijms19082439

Saha, M., Manna, K. y das Saha, K. (2022). Melatonin Suppresses NLRP3 Inflammasome Activation via TLR4/NF-κB and P2X7R Signaling in High-Fat Diet-Induced Murine NASH Model. Journal of Inflammation Research, 15, 3235–3258. https://doi.org/10.2147/JIR.S343236

Sugden, D. (1983). Psychopharmacological effects of melatonin in mouse and rat. Journal of Pharmacology and Experimental Therapeutics, 227(3).

Tan, S. H., Karri, V., Tay, N. W. R., Chang, K. H., Ah, H. Y., Ng, P. Q., Ho, H. S., Keh, H. W. y Candasamy, M. (2019). Emerging pathways to neurodegeneration: Dissecting the critical molecular mechanisms in Alzheimer’s disease, Parkinson’s disease. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 111, 765–777. https://doi.org/10.1016/J.BIOPHA.2018.12.101

Valiensi, S. M., Folgueiras, A. L., Vera, V. A., González Cardoso, A. y Cardinali, D. P. (2024). A cross-sectional report on the use of high doses of melatonin in humans. Melatonin Research, 7(3), 234–241. https://doi.org/10.32794/mr112500177

Vecchierini, M. F., Kilic-Huck, U. y Quera-Salva, M. A. (2020). Melatonin (MEL) and its use in neurological diseases and insomnia: Recommendations of the French Medical and Research Sleep Society (SFRMS). Revue Neurologique. https://doi.org/10.1016/j.neurol.2020.06.009

Venegas, C., García, J. A., Doerrier, C., Volt, H., Escames, G., Lõpez, L. C., Reiter, R. J. y Acuña-Castroviejo, D. (2013). Analysis of the daily changes of melatonin receptors in the rat liver. Journal of Pineal Research, 54(3), 313–321. https://doi.org/10.1111/jpi.12019

Welz, P. S. y Benitah, S. A. (2020). Molecular Connections Between Circadian Clocks and Aging. Journal of Molecular Biology, 432(12), 3661–3679. https://doi.org/10.1016/J.JMB.2019.12.036

Wilson, S. J., Nutt, D. J., Alford, C., Argyropoulos, S. v., Baldwin, D. S., Bateson, A. N., Britton, T. C., Crowe, C., Dijk, D. J., Espie, C. A., Gringras, P., Hajak, G., Idzikowski, C., Krystal, A. D., Nash, J. R., Selsick, H., Sharpley, A. L. y Wade, A. G. (2010). British Association for Psychopharmacology consensus statement on evidence-based treatment of insomnia, parasomnias and circadian rhythm disorders. Journal of Psychopharmacology, 24(11), 1577–1600. https://doi.org/10.1177/0269881110379307

Xia, S., Zhang, X., Zheng, S., Khanabdali, R., Kalionis, B., Wu, J., Wan, W. y Tai, X. (2016). An Update on Inflamm-Aging: Mechanisms, Prevention, and Treatment. Journal of Immunology Research, 2016. https://doi.org/10.1155/2016/8426874

Yildirim, F. B., Ozsoy, O., Tanriover, G., Kaya, Y., Ogut, E., Gemici, B., Dilmac, S., Ozkan, A., Agar, A. y Aslan, M. (2014). Mechanism of the beneficial effect of melatonin in experimental Parkinson’s disease. Neurochemistry International, 79, 1–11. https://doi.org/10.1016/j.neuint.2014.09.005

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2025 Pinelatinoamericana

Downloads

Download data is not yet available.