Cut-off points of anthropometric markers for hypertension and hyperglycemia in Argentine adults
a cross-sectional study from the 4th ENFR
DOI:
https://doi.org/10.31053/1853.0605.v79.n3.37313Keywords:
anthropometry, blood glucose, arterial pressure, ArgentinaAbstract
Introduction: High waist circumference (WC), waist-to-height ratio (WHtR), and body mass index (BMI) are associated with increased cardiometabolic risk. The objective was to identify anthropometric cut-off points that allow discriminating subjects at increased risk of presenting high blood pressure and glycemia in Argentine adults. Methods: The results of the 4th Argentine ENFR were used. Subjects aged 18 to 65 years who had blood pressure, blood glucose, and anthropometry directly measured were included (n=4254 and 1683 subjects of both sexes for high blood pressure and blood glucose, respectively). The area under the ROC curve was calculated. The optimal cut-off point was the one with the smallest difference between sensitivity and specificity. Adjusted odds ratios (aOR) were calculated for each point. Results: In men, the cut-off points for high blood pressure were WC=91.5 cm (aOR= 3.55; 95% CI=2.97-4.24), WHtR=0.541 (aOR=3.12; 95% CI =2.61-3.73) and BMI=27.0 kg/m2 (aOR=3.04; CI95%=2.55-3.63); and for high blood glucose WC=94.5 cm (aOR=2.46; 95% CI=1.64-3.70), WHtR =0.559 (aOR=2.35; 95% CI=1.55-3.55) and BMI=28.6 kg/m2 (aOR= 3.23; CI95%=2.14-4.88). In women, for high blood pressure, WC=88.5 cm (aOR=3.57; 95% CI=2.84-4.41), WHtR=0.542 (aOR=3.45; 95% CI=2.79- 4.27) and BMI=26.7 kg/m2 (aOR=3.25; CI95%=2.64-4.02); and for high blood glucose WC=93.5 cm (aOR=4.28; 95% CI=2.72-6.75), WHtR =0.573 (aOR=3.61; 95% CI=2.31-5.66) and BMI=27.8 kg/m2 (aOR= 3.14; CI95%=2.03-4.87). Conclusion: Argentine adults who have WC measured on the skin and are above the cut-off points identified here, have a significantly higher risk of presenting high blood pressure and hiperglycemia.
Downloads
References
1. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser. 1995;854:1-452
2. Piqueras P, Ballester A, Durá-Gil JV, Martinez-Hervas S, Redón J, Real JT. Anthropometric Indicators as a Tool for Diagnosis of Obesity and Other Health Risk Factors: A Literature Review. Front Psychol. 2021 Jul 9;12:631179. doi: 10.3389/fpsyg.2021.631179.
3. Głuszek S, Ciesla E, Głuszek-Osuch M, Kozieł D, Kiebzak W, Wypchło Ł, Suliga E. Anthropometric indices and cut-off points in the diagnosis of metabolic disorders. PLoS One. 2020 Jun 22;15(6):e0235121. doi: 10.1371/journal.pone.0235121.
4. Diabetes Canada Clinical Practice Guidelines Expert Committee, Punthakee Z, Goldenberg R, Katz P. Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome. Can J Diabetes. 2018 Apr;42 Suppl 1:S10-S15. doi: 10.1016/j.jcjd.2017.10.003.
5. Rosas Guzmán J, González Chávez A, Aschner P, Bastarrachea R. Consenso Latinoamericano de la Asociación Latinoamericana de Diabetes (ALAD). Epidemiología, diagnóstico, control, prevención y tratamiento del síndrome metabólico en adultos. Revista de la ALAD, Asociación Latinoamericana de Diabetes. 2010;18(1):25-44.
6. Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev. 2012 Mar;13(3):275-86. doi: 10.1111/j.1467-789X.2011.00952.x.
7. Corbatón Anchuelo A, Martínez-Larrad MT, Serrano-García I, Fernández Pérez C, Serrano-Ríos M. Body fat anthropometric indexes: Which of those identify better high cardiovascular risk subjects? A comparative study in Spanish population. PLoS One. 2019 May 23;14(5):e0216877. doi: 10.1371/journal.pone.0216877.
8. Schneider HJ, Glaesmer H, Klotsche J, Böhler S, Lehnert H, Zeiher AM, März W, Pittrow D, Stalla GK, Wittchen HU; DETECT Study Group. Accuracy of anthropometric indicators of obesity to predict cardiovascular risk. J Clin Endocrinol Metab. 2007 Feb;92(2):589-94. doi: 10.1210/jc.2006-0254.
9. Farinola MG, Rodríguez Papini H. Utilización de la circunferencia de cintura como indicador del riesgo de padecer enfermedades asociadas al exceso de grasa intraabdominal. Rev. Soc. Argent. Diabetes. 2004;38(4):226–31.
10. World Health Organization. Waist circumference and waist–hip ratio: report of a WHO expert consultation, 8–11 December 2008. Geneva: World Health Organization; 2011 Disponible en: https://www.who.int/publications/i/item/9789241501491.
11. Lear SA, James PT, Ko GT, Kumanyika S. Appropriateness of waist circumference and waist-to-hip ratio cutoffs for different ethnic groups. Eur J Clin Nutr. 2010 Jan;64(1):42-61. doi: 10.1038/ejcn.2009.70.
12. Ross R, Neeland IJ, Yamashita S, Shai I, Seidell J, Magni P, Santos RD, Arsenault B, Cuevas A, Hu FB, Griffin BA, Zambon A, Barter P, Fruchart JC, Eckel RH, Matsuzawa Y, Després JP. Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat Rev Endocrinol. 2020 Mar;16(3):177-189. doi: 10.1038/s41574-019-0310-7.
13. Aschner P, Buendía R, Brajkovich I, Gonzalez A, Figueredo R, Juarez XE, Uriza F, Gomez AM, Ponte CI. Determination of the cutoff point for waist circumference that establishes the presence of abdominal obesity in Latin American men and women. Diabetes Res Clin Pract. 2011 Aug;93(2):243-247. doi: 10.1016/j.diabres.2011.05.002.
14. Sánchez-Castillo CP, Velázquez-Monroy O, Berber A, Lara-Esqueda A, Tapia-Conyer R, James WP; Encuesta Nacional de Salud (ENSA) 2000 Working Group. Anthropometric cutoff points for predicting chronic diseases in the Mexican National Health Survey 2000. Obes Res. 2003 Mar;11(3):442-51. doi: 10.1038/oby.2003.60.
15. Souza APA, Rodrigues PRM, Muraro AP, Moreira NF, Sichieri R, Pereira RA, Ferreira MG. Cut-off points of anthropometric markers associated with hypertension in the Brazilian population: National Health Survey, 2013. Public Health Nutr. 2019 Aug;22(12):2147-2154. doi: 10.1017/S1368980019000533.
16. Hernández-Vásquez A, Azañedo D, Vargas-Fernández R, Aparco JP, Chaparro RM, Santero M. Cut-off points of anthropometric markers associated with hypertension and diabetes in Peru: Demographic and Health Survey 2018. Public Health Nutr. 2020 Oct 16:1-11. doi: 10.1017/S1368980020004036.
17. Petermann-Rocha F, Martínez-Sanguinetti MA, Ho FK, Celis-Morales C, Pizarro A; ELHOC Research Group. Optimal cut-off points for waist circumference in the definition of metabolic syndrome in Chile. Public Health Nutr. 2020 Nov;23(16):2898-2903. doi: 10.1017/S1368980020001469.
18. González-Rivas JP, Mechanick JI, Iglesias-Fortes R, De-Oliveira-Gomes D, Silva J, Valencia J, Figueroa E, Duran M, Ugel E, Infante-García MM, Marulanda MI, Nieto-Martínez R. Optimal waist circumference cutoff values to predict cardiometabolic alterations in a Venezuela national representative sample. The EVESCAM study. Arch Cardiol Mex. 2020 Dec 23;91(3):272–80. doi: 10.24875/ACM.20000165.
19. Han TS, van Leer EM, Seidell JC, Lean ME. Waist circumference action levels in the identification of cardiovascular risk factors: prevalence study in a random sample. BMJ. 1995 Nov 25;311(7017):1401-5. doi: 10.1136/bmj.311.7017.1401.
20. Han TS, van Leer EM, Seidell JC, Lean ME. Waist circumference as a screening tool for cardiovascular risk factors: evaluation of receiver operating characteristics (ROC). Obes Res. 1996 Nov;4(6):533-47. doi: 10.1002/j.1550-8528.1996.tb00267.x.
21. Ministerio de Salud (Argentina). Guía de práctica clínica nacional sobre diagnóstico y tratamiento de la obesidad. Ministerio de Salud (Argentina); 2017 Disponible en: https://bancos.salud.gob.ar/recurso/guia-de-practica-clinica-nacional-sobre-diagnostico-y-tratamiento-de-la-obesidad
22. Instituto Nacional de Estadística y Censos de la República Argentina. [Internet]. Bases de datos. Encuestas de salud Sin fecha [cited 2021 Dec 10]. Disponible en: https://www.indec.gob.ar/indec/web/Institucional-Indec-BasesDeDatos-2
23. Instituto Nacional de Estadística y Censos. 4° Encuesta Nacional de Factores de Riesgo. Resultados definitivos. Ciudad Autónoma de Buenos Aires: INDEC; Presidencia de la Nación. Ministerio de Hacienda. Ministerio de Salud y Desarrollo social; 2019. Disponible en: https://www.indec.gob.ar/ftp/cuadros/publicaciones/enfr_2018_resultados_definitivos.pdf
24. Instituto Nacional de Estadística y Censos. 4° Encuesta Nacional de Factores de Riesgo. Manual de uso de la base de datos usuario. Ciudad Autónoma de Buenos Aires: INDEC; Presidencia de la Nación. Ministerio de Hacienda; 2019. Disponible en: https://www.indec.gob.ar/ftp/cuadros/menusuperior/enfr/manual_base_usuario_enfr2018.pdf
25. Resolución 1480 / 2011. Guía para investigaciones con seres humanos – Aprobación. Buenos Aires. Ministerio de Salud (Argentina). Fecha de sanción 2011. Disponible en: https://www.argentina.gob.ar/normativa/nacional/resoluci%C3%B3n-1480-2011-187206.
26. Melo F. Area under the ROC Curve. In: Dubitzky W, Wolkenhauer O, Cho KH, Yokota H. (eds). Encyclopedia of Systems Biology. 2013. Springer, New York. doi: 10.1007/978-1-4419-9863-7_209
27. Darbandi M, Pasdar Y, Moradi S, Mohamed HJJ, Hamzeh B, Salimi Y. Discriminatory Capacity of Anthropometric Indices for Cardiovascular Disease in Adults: A Systematic Review and Meta-Analysis. Prev Chronic Dis. 2020 Oct 22;17:E131. doi: 10.5888/pcd17.200112.
28. National Health and Nutrition Examination Survey (NHANES). Anthropometry procedures manual. Centers for Disease Control and Prevention; 2017. Disponible en: https://www.cdc.gov/nchs/data/nhanes/nhanes_07_08/manual_an.pdf
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Universidad Nacional de Córdoba
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The generation of derivative works is allowed as long as it is not done for commercial purposes. The original work may not be used for commercial purposes.