Coronavirus disease (COVID-19) and sirtuins

Authors

DOI:

https://doi.org/10.31053/1853.0605.v77.n2.28196

Keywords:

Coronavirus infections, Neoplasms, Histone deacetylases, NAD, Sirtuins

Abstract

The NAD+dependent proteins deacetylases are called Sirtuins (SIRT).

Objectives: this review is to study the sirtuins involved in cancer, as well as SIRT1 inhibition studies in patients with coronavirus disease COVID-19.

Data source and selection: For this, a search was made in Medline, Scopus and WOS, where descriptive studies of each of the functions of sirtuins were included, adjusted to recent scientific research. SIRT1 inhibition reduces CD8 T cell cytotoxicity in patients with systemic erythematosus lupus, being susceptible to SARS Cov-2 infections. SIRT2 is regulated by the secretion of IL-4 by eosinophils and the increase in SIRT2 increases hyperplasia, in contrast, SIRT3 promotes angiogenesis, inducing cardiac remodeling. SIRT4 is a tumor suppressor, in contrastto SIRT5 that promotes cell proliferation causing colorectal cancer; SIRT6 attenuates herpes virus associated with Kaposi's Sarcoma (KSHV) in immune compromised patients. Suppression of SIRT7 inhibits the growth of endometrial cancer cells.

Conclusions: It is concluded that SIRT1, SIRT2 and SIRT4 are involved in the development of cancer, the suppression of SIRT5 and SIRT7 promotes the apoptosis of cancer cells and SIRT6 attenuates the replication of KSHV, in addition to the molecular pathology pathway of COVID-19 is associated with the inhibition of SIRT1 activity that may be related to inflammatory processes.

Downloads

Download data is not yet available.

Author Biographies

  • Ronald Eleazar Huarachi Olivera, Laboratorio de Biotecnologia Celular y Molecular Avanzada, Universidad Nacional de San Agustìn

    Autor principal del articulo de revision, Magister en Biotecnologia y estudiante del Doctorado en Ciencias Biologicas mencion Biologìa Celular y Molecular de la Facultad de Ciencias Biològicas de la Universidad de Antofagasta de Chile

  • Antonio Lazarte Rivera, Laboratorio de Biotecnología Celular y Molecular Avanzada (LAB-BIOTCEMA), Universidad Nacional de San Agustìn, Arequipa Perù

    Profesor de la Facultad de Ciencias Biologicas de la Universidad Nacional de San Agustin de Arequipa, Responsable de LAB-BIOTCEMA

References

Al-Khaldi A, Sultan S. The expression of sirtuins, superoxide dismutase, and lipid peroxidation status in peripheral blood from patients with diabetes and hypothyroidism. BMC endocrine disorders. 2019; 19(1), 19. Doi: https://doi.org/10.1186/s12902-019-0350-y

Amano H, Chaudhury A, Rodriguez-Aguayo C, Lu L, Akhanov V, Catic A,.. Sinclair DA. Telomere Dysfunction Induces Sirtuin Repression that Drives Telomere-Dependent Disease. Cell metabolism. 2019;. Doi: https://doi.org/10.1016/j.cmet.2019.03.001

Amano H, Sahin E. Telomeres and sirtuins: at the end we meet again. Molecular & cellular oncology. 2019; 6(5), e1632613. DOI: https://doi.org/10.1080/23723556.2019.1632613

Antonucci S, Mulvey JF, Burger N, Di Sante M, Hall AR, Hinchy EC....& Kaludercic N. Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis. Free Radical Biology and Medicine. 2019; 134: 678-687 DOI: https://doi.org/10.1016/j.freeradbiomed.2019.01.034

Bartolomucci A. Social stress, immunefunctions and disease in rodents. Front. Neuroendocrinol. 2007; 28, 28–49. DOI: https://doi.org/10.1016/j.yfrne.2007.02.001

Baig, A.M., Khaleeq, A., Ali, U., Syeda, H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS chemical neuroscience. 2020; 11, 7, 995-998. Doi: https://doi.org/10.1021/acschemneuro.0c00122

Bayne S, Liu JP. Hormones and growth factors regulate telomerase activity in ageing and cancer. Molecular and cellular endocrinology, 2005; 240(1-2), 11-22. DOI: https://doi.org/10.1016/j.mce.2005.05.009

Beckman KB, Ames BN. Oxidative decay of DNA. Journal of Biological Chemistry, 1997; 272(32), 19633-19636. DOI: https://doi.org/10.1074/jbc.272.32.19633

Belser, J.A., Rota, P. A., Tumpey, T.M. Ocular tropism of respiratory viruses. Microbiol. Mol. Biol. Rev., 2013; 77(1), 144-156. doi: 10.1128/MMBR.00058-12

Bohus, B., Koolhaas, J.M., De Ruiter, A.J., Heijnen, C.J., Stress and differential alterations in immune system functions: conclusions from social stress studies in animals. Neth. J. Med. 1991; 39, 306–315.

Dai, Q., Zheng, Z., Xia, F., Liu, P., & Li, M. A one-step specific assay for continuous detection of sirtuin 2 activity. Acta Pharmaceutica Sinica. B. 2019; 9(6), 1183. Doi: https://doi.org/10.1016/j.apsb.2019.05.007

de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003; 370:737-749. Doi: https://doi.org/10.1042/BJ20021321

Deng, Z., Li, Y., Liu, H., Xiao, S., Li, L., Tian, J., ... & Zhang, F. The role of sirtuin 1 and its activator, resveratrol in osteoarthritis. Bioscience reports. 2019; 39(5), BSR20190189. Doi: https://doi.org/10.1042/BSR20190189

Dizdaroglu, M., Jaruga, P., Birincioglu, M., & Rodriguez, H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radical Biology and Medicine. 2002; 32(11), 1102-1115. Doi: https://doi.org/10.1016/S0891-5849(02)00826-2

Farghali, H., Kemelo, M.K., & Canová, N.K. SIRT1 Modulators in Experimentally Induced Liver Injury. Oxidative Medicine and Cellular Longevity. 2019. Doi: https://doi.org/10.1155/2019/8765954

Feldman, J.L., & Peterson, C.L. Yeast Sirtuin Family Members Maintain Transcription Homeostasis to Ensure Genome Stability. Cell reports. 2019; 27(10), 2978-2989. Doi: https://doi.org/10.1016/j.celrep.2019.05.009

Gok, O., Karaali, Z., Ergen, A., Ekmekci, S. S., & Abaci, N. Serum sirtuin 1 protein as a potential biomarker for type 2 diabetes: Increased expression of sirtuin 1 and the correlation with microRNAs. Journal of Research in Medical Sciences. 2019; 24(1), 56. DOI: 10.4103/jrms.JRMS_921_18

Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes & development. 2000; 14(9), 1021-1026. Doi: 10.1101/gad.14.9.1021

Guedouari, H., Daigle, T., Scorrano, L., & Hebert-Chatelain, E. Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2017; 1864(1), 169-176. DOI: 10.1016/j.bbamcr.2016.10.015

Heydari AR, Unnikrishnan A, Lucente LV, Richardson A. Caloric restriction and genomic stability. Nucleic Acids Res. 2007; 35: 7485-7496. Doi: https://doi.org/10.1093/nar/gkm860

Hu, M., Armstrong, N., Seto, E., Li, W., Zhu, F., Wang, P. C., & Tang, Q. Sirtuin 6 Attenuates Kaposi’s Sarcoma–associated herpesvirus (KSHV) Reactivation via Suppressing the Ori-Lyt Activity and Expression of RTA. Journal of virology, 2019; JVI-02200. Doi: 10.1128/JVI.02200-18

Huang, G., & Zhu, G. Sirtuin-4 (SIRT4), a therapeutic target with oncogenic and tumor-suppressive activity in cancer. OncoTargets and therapy, 2018; 11, 3395. Doi: https://doi.org/10.2147/ott.s157724

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC monographs on the evaluation of carcinogenic risks to humans. 2004; 85, 1.

Igci, M., Kalender, M. E., Borazan, E., Bozgeyik, I., Bayraktar, R., Bozgeyik, E., ... & Arslan, A. High-throughput screening of Sirtuin family of genes in breast cancer. Gene. 2016; 586(1), 123-128. doi: 10.1016/j.gene.2016.04.023

Islam, S., Abiko, Y., Uehara, O., & Chiba, I. Sirtuin 1 and oral cancer. Oncology letters, 2019; 17(1), 729-738. DOI: https://doi.org/10.3892/ol.2018.9722

Johnson T.E., Lithgow G.J., Murakami S. Hypothesis: Interventions that increase the response to stress offer the potential for effective life prolongation and increased health. J Gerontol Biol Sci; 1996; 51A:B392-B395. DOI: https://doi.org/10.1093/gerona/51a.6.b392

Kitada, M., Ogura, Y., Monno, I., & Koya, D. Sirtuins and Type 2 diabetes: role in inflammation, oxidative stress, and mitochondrial function. Frontiers in Endocrinology, 2019; 10. DOI: 10.3389/fendo.2019.00187

Klein, M.A., Liu, C., Kuznetsov, V. I., Feltenberger, J.B., Tang, W., & Denu, J. M. Mechanism of activation for the sirtuin 6 protein deacylase. Journal of Biological Chemistry, 2019; jbc-RA119. DOI: 10.1074/jbc.RA119.011285

Koentges, C., Pfeil, K., Schnick, T., Wiese, S., Dahlbock, R., Cimolai, M. C., ... & Odening, K.E. SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic research in cardiology, 2015; 110(4), 36. DOI: 10.1007/s00395015-0493-6.

Koolhaas, J. M., Bartolomucci, A., Buwalda, B. D., De Boer, S. F., Flügge, G., Korte, S. M., ... & Richter-Levin, G. Stress revisited: a critical evaluation of the stress concept. Neuroscience & Biobehavioral Reviews 2011; 35(5), 1291 - 1301. DOI: 10.1016/j.neubiorev.2011.02.003

Kouhpayeh, S., Shariati, L., Boshtam, M., Rahimmanesh, I., Mirian, M., Zeinalian, M., ... & Khanahmad, H. The Molecular Story of COVID-19; NAD+ Depletion Addresses All Questions in this Infection. (2020). doi:10.20944/preprints202003.0346.v1

Kume, S., Haneda, M., Kanasaki, K., Sugimoto, T., Araki, S. I., Isshiki, K., ... & Koya, D. SIRT1 inhibits transforming growth factor β-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. Journal of Biological Chemistry. 2007; 282(1), 151-158. Doi: 10.1074/jbc.M605904200

Kurylowicz, A. Role of Sirtuins in Adipose Tissue Development and Metabolism. In Adipose Tissue-An Update. IntechOpen. 2019; Doi: 10.5772/intechopen.88467

Lee, S.H., Lee, J.H., Lee, H.Y., & Min, K.J. Sirtuin signaling in cellular senescence and aging. BMB reports. 2019a; 52(1)24. Doi: https://doi.org/10.5483/BMBRep.2019.52.1.290

Lee, Y.G., Reader, B.F., Herman, D., Streicher, A., Englert, J.A., Ziegler, M., ... & Ballinger, M.N. Sirtuin 2 enhances allergic asthmatic inflammation. JCI insight. 2019; 4(4). Doi: https://doi.org/10.1172/jci.insight.124710

Li, G., Fan, Y., Lai, Y., Han, T., Li, Z., Zhou, P., ... & Zhang, Q. Coronavirus infections and immune responses. Journal of medical virology, 2020; 92(4), 424-432. Doi: https://doi.org/10.1002/jmv.25685

Lithgowl, G.J. Hormesis—a new hope for ageing studies or a poor second to genetics?. Human & experimental toxicology, 2001; 20(6), 301-303. Doi: https://doi.org/10.1191/096032701701548098

Liu, J., Godlewski, G., Jourdan, T., Liu, Z., Cinar, R., Xiong, K., & Kunos, G. Cannabinoid‐1 Receptor Antagonism Improves Glycemic Control and Increases Energy Expenditure Through Sirtuin‐1/Mechanistic Target of Rapamycin Complex 2 and 5′ Adenosine Monophosphate–Activated Protein Kinase Signaling. Hepatology. 2019; 69(4), 1535-1548. Doi: https://doi.org/10.1002/hep.30364

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., ... & Bi, Y. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 2020a; 395(10224), 565-574. Doi: https://doi.org/10.1016/S0140-6736(20)30251-8

Lu, C. W., Liu, X.F., & Jia, Z. F. 2019-nCoV transmission through the ocular surface must not be ignored. The Lancet, 2020b; 395(10224), e39. Doi: https://doi.org/10.1016/S0140-6736(20)30313-5

Mao, S., Ma, J., Yu, H. Sirtuin‑7 knockdown inhibits the growth of endometrial cancer cells by inducing apoptosis via the NF‑κB signaling pathway. Oncology letters. 2019; 17(1), 937-943. Doi: 10.3892/ol.2018.9698

McEwen B, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Int Med. 1993; 153:2093–2101. Doi:10.1001/archinte.1993.00410180039004

Murray, C.J. Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilator-days and deaths by US state in the next 4 months. medRxiv. 2020; Doi: https://doi.org/10.1101/2020.03.27.20043752

Nakagawa, T., & Guarente, L. Sirtuins at a glance. J Cell Sci, 2011; 124(6), 833-838. Doi: 10.1242/jcs.081067

Netland, J., Meyerholz, D. K., Moore, S., Cassell, M., & Perlman, S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. Journal of virology, 2008; 82(15), 7264-7275.

Doi: https://doi.org/10.1128/JVI.00737-08

Palacios JA, Herranz D, De Bonis ML, Velasco S, Serrano M, Blasco MA. SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol.; 2010; 191 (1299-1313). Doi:10.1083/jcb.201005160

Park, H. K., Hong, J. H., Oh, Y. T., Kim, S. S., Yin, J., Lee, A. J., ... & Park, M. J. Interplay between TRAP1 and sirtuin-3 modulates mitochondrial respiration and oxidative stress to maintain stemness of glioma stem cells. Cancer research. 2019; 79(7), 1369-1382. Doi: 10.1158/0008-5472.CAN-18-2558

Perrod S., Gasser S.M. Long-range silencing and position effects at telomeres and centromeres: parallels and differences. Cell Mol Life Sci. 2003; 60(2303–2318). Doi:10.1007/s00018-003-3246-x.

Poli, G., Leonarduzzi, G., Biasi, F., Chiarpotto, E. Oxidative stress and cell signalling. Current medicinal chemistry. 2004; 11(9), 1163-1182. Doi: 10.2174/0929867043365323

Rahnasto-Rilla, M., Tyni, J., Huovinen, M., Jarho, E., Kulikowicz, T., Ravichandran, S., ... & Moaddel, R. Natural polyphenols as sirtuin 6 modulators. Scientific reports. 2018; 8(1), 4163. Doi: https://doi.org/10.1038/s41598-018-22388-5

Sapolsky, R.M., Social subordinance as a marker of hypercortisolism. Some unexpected subtleties. Ann. N.Y. Acad. Sci. 1995; 771, 626–639. Doi: 10.1111/j.1749-6632.1995.tb44715.x

Seto E., Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014; 6:a018713 Doi: 10.1101/cshperspect.a018713

Shi, Q., Liu, T., Zhang, X., Geng, J., He, X., Nu, M., Pang, D. Decreased sirtuin 4 expression is associated with poor prognosis in patients with invasive breast cancer. Oncology letters. 2016; 12(4), 2606-2612. Doi: https://doi.org/10.3892/ol.2016.5021

Shimabukuro-Vornhagen, A., Gödel, P., Subklewe, M., Stemmler, H.J., Schlößer, H.A., Schlaak, M., ... & von Bergwelt-Baildon, M.S. Cytokine release syndrome. Journal for immunotherapy of cancer, 2018;. 6(1), 56. Doi: https://doi.org/10.1186/s40425-018-0343-9

Smith, J.M. Prolongation of the life of Drosophila subobscura by a brief exposure of adults to a high temperature. Nature, 1958; 181(4607), 496. Doi: 10.3892/ol.2016.5021

Sundaresan N.R., Gupta M., Kim G., Rajamohan S.B., Isbatan A., Gupta M.P. SIRT3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009;119:2758–2771. Doi: 10.1172/JCI39162.

Tennen R.I., Chua K.F. Chromatin regulation and genome maintenance by mammalian SIRT6. Trends Biochem Sci. 2011; 36 (39–46). Doi:10.1016/j.tibs.2010.07.009.

Vargas-Ortiz, K., Pérez-Vázquez, V., & Macías-Cervantes, M.H. Exercise and Sirtuins: A Way to Mitochondrial Health in Skeletal Muscle. International journal of molecular sciences, 2019; 20(11), 2717. Doi: https://doi.org/10.3390/ijms20112717

Wang, Y.Q., Wang, H.L., Xu, J., Tan, J., Fu, L. N., Wang, J.L., ... & Fang, J.Y. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nature communications, 2018; 9(1), 545. Doi: https://doi.org/10.1038/s41467-018-02951-4

Warren, J.L., & MacIver, N.J. Regulation of adaptive immune cells by sirtuins. Frontiers in endocrinology, 2019; 10,466. Doi: https://doi.org/10.3389/fendo.2019.00466

Wei, T., Huang, G., Gao, J., Huang, C., Sun, M., Wu, J., ... & Shen, W. (2017). Sirtuin 3 deficiency accelerates hypertensive cardiac remodeling by impairing angiogenesis. Journal of the American Heart Association, 2019; 6(8), e006114. Doi: https://doi.org/10.1161/JAHA.117.006114

Yu, J., Qin, B., Wu, F., Qin, S., Nowsheen, S., Shan, S., ... & Wang, L. Regulation of serine-threonine kinase Akt activation by NAD+-dependent deacetylase SIRT7. Cell reports, 2017; 18(5), 1229-1240. Doi: 10.1016/j.celrep.2017.01.009

Published

2020-06-16

Issue

Section

Literature Reviews

How to Cite

1.
Huarachi Olivera RE, Lazarte Rivera A. Coronavirus disease (COVID-19) and sirtuins. Rev Fac Cien Med Univ Nac Cordoba [Internet]. 2020 Jun. 16 [cited 2024 Nov. 23];77(2):117-25. Available from: https://revistas.unc.edu.ar/index.php/med/article/view/28196

Similar Articles

81-90 of 340

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)