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Abstract: 
 

Introduction: Proteasome regulates proteostasis, and can be compromised in neurodegenerative diseases. 
Thus, our aim was to correlate the activity of proteasome to the level of polyphenols in telencephalon during 
murine adulthood. Methods: Proteasome activity, polyphenols and other variables (glucose and 
hydroperoxides) were analysed in Balb/c female telencephala (n = 20, age = 4-12 months), using multivariate 
methods. Results: The following values were found: proteasome activity = 3.1 ± 0.6 FI/µg of tissue proteins, 
glucose = 0.1 ± 0.0 µg/µg, hydroperoxides = 363.4 ± 96.6 OD/µg, and polyphenols = 0.1 ± 0.0 ng/µg. 
Polyphenols reduced during aging showed a direct correlation with proteasome (Pearson’s coefficient = 0.43, 
p = 0.0590, and a multivariate linear regressive coefficient = 17.85, p = 0.0216), with glucose and 
hydroperoxides being not involved (p>0.1). This correlation was confirmed by partial least square regression 
(beta = 0.67). Conclusion: Proteasome activity can be affected during ageing, and promoted by telencephalic 
polyphenol levels. Thus, these diet compounds might exert benefits in adult brain. 
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Resumen: 
 

Introducción: El proteasoma regula la proteostasis y puede verse comprometido en enfermedades 
neurodegenerativas. Por lo tanto, nuestro objetivo fue correlacionar la actividad del proteasoma con el nivel 
de polifenoles en el telencéfalo durante la edad adulta de ratones. Métodos: Se analizaron la actividad del 
proteasoma, polifenoles y otras variables (glucosa e hidroperóxidos) en telencéfalos de ratones hembras 
Balb/c (n = 20, edad = 4-12 meses), utilizando métodos multivariados. Resultados: Se encontraron los 
siguientes valores: actividad proteasomal = 3,1 ± 0,6 FI/μg de proteínas tisulares, glucosa = 0,1 ± 0,0 μg/μg, 
hidroperóxidos = 363,4 ± 96,6 OD/μg y polifenoles = 0,1±0,0 ng/μg. Los polifenoles reducidos durante el 
envejecimiento mostraron una correlación directa con el proteasoma (coeficiente de Pearson = 0,43, 
p=0,0590 y un coeficiente de regresión lineal multivariante = 17,85, p=0,0216). Glucosa e hidroperóxidos no 
estuvieron implicados (p>0,1). Esta correlación fue confirmada por regresión parcial de mínimos cuadrados 
(beta = 0,67). Conclusión: La actividad proteasomal puede afectarse durante el envejecimiento y ser 
promovida por el nivel telencefálico de polifenoles. Así, estos compuestos dietéticos podrían ser 
beneficiosos para el cerebro adulto. 
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Introduction 

 
Proteasome is crucial for cellular proteostasis, by removing abnormal and unnecessary proteins1, such as 

those involved in cell cycle, apoptosis, transcription, DNA repair, protein quality control, antigenic 

presentation, and differentiation2. Proteasome is a 26S multicatalytic protease with a 20S proteolytic core 

and two 19S regulatory caps3. Different agents compromise this structure and functions, leading to 

pathological development4. Concerning this, deficient proteostasis is associated with mitochondrial 

dysfunction, oxidative stress, and apoptosis5, which is implicated in neurodegenerative diseases and other 

age-related pathologies6. Senescence impairs therefore proteasome activity by different mechanisms with 

the consequent brain damage7.  

Dietary plant compounds, such as glucose and polyphenols, arrive at brain and modify its age-dependent 

metabolism and redox state, which might affect the activity of proteasome8. Given the relation of oxidative 

metabolism and proteostasis7,9, their markers should be analysed together. Furthermore, polyphenols are 

antioxidant and chemopreventive phytochemicals10, with multitarget neuroactivity in the central nervous 

system11. In consequence, the aim of the present study was to correlate proteasome activity and polyphenols 

in murine female telencephalon using multivariate methods to integrate different concerns. 

 

Methods 

 

Conditions 

Healthy adult female Balb/c mice (n = 20, age range = 4-12 months, body weight range = 18-26 g) were 

maintained under physiological conditions supported by ad libitum access to standard diet (200±13 g/Kg/d; 

Cargill SACI, Argentina) and potable water (150±10 mL/Kg/d; Aguas Cordobesas SA, Argentina), a light-

dark cycle, avoiding overcrowding in cages. They were sacrificed by isoflurane inhalation, with all procedures 

being in accordance with ethical concerns and good laboratory practices (86/609/CEE). 

Proteasome activity (response), glucose, polyphenols (dietary plant compounds), and hydroperoxides 

(oxidative markers) were in telencephala (weight = 150.9 ± 5.6 mg, protein content determined by the Biuret’s 

reaction = 13.2 ± 1.2 µg/mg of tissue), using a GloMax® Multi Microplate Multimode Reader (Promega Corp., 

Madison, WI, USA), and chemicals from Sigma-Aldrich Co. (St. Louis, MO, USA).  

Telencephalic samples were homogenised at 4 °C in a solution of 50 mM Tris and 5 mM MgCl2 (pH 7.5 by 

HCl addition), to determine proteasome and glucose. Another aliquot (400 µL) was incubated for 30 minutes 

at 37°C in darkness with methanol (600 µL) and 50% trichloroacetic acid (50 µL), to obtain the supernatant 

by centrifugation (5 minutes at 10000 rpm) and determine polyphenols and hydroperoxides. 

 

Proteasome activity 

A mixture of 8 µL of homogenate and 2 µL of glycerol was incubated for 2 hours at 37 °C in darkness with 

100 µL of substrate (0.3 mM Z-Leu-Leu-7-amido-4-methylcoumarin, 50 mM Tris, 10 mM MgCl2, 1 mM 1,4-

dithiothreitol). Reaction was stopped with 200 µL of 4°C ethanol, to measure the methylcoumarin-amide 

product as fluorescence intensity (FI, spectrofluorometry: Ex 380 nm/Em 440 nm)12. 

 

Polyphenols 

Supernatants (100 μL) were mixed with 0.1% Fast Blue BB (10 μL) and 20% sodium bicarbonate (10 μL) for 

30 min in darkness at 37ºC. Polyphenols were measured at 450 nm and calculated according to a standard 

gallic acid curve13. 

 

Hydroperoxides 

These oxidative markers were analyzed in 10 µL of supernatant mixed with 100 µL of chromogen (100 mM 

sorbitol and 0.125 mM xylenol orange) and 1 µL of catalyser (25 mM ferrous ammonium sulphate in 2.5 M 

sulphuric acid). After 30 minutes at room temperature, optical density (OD) was measured at 540 nm14. 

 

Glucose 

The Trinder’s method was used using a commercial kit according to a previous work14. Results at 540 nm 

were calculated according to a standard glucose curve. 
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Statistical analysis 

Proteasome data were analyzed with different statistical methods using the Infostat v.2012 software as 

previously done15. Variables were correlated by the Pearson´s coefficient followed by the path analysis to 

discriminate interactions of these correlations. Also, age was categorised according to the mean < or ≥ 7.6 

± 0.5 months as younger and older mice, respectively, for T test. Multivariate linear regression was used to 

confirm results, and partial least squares regression to obtained betas in case of covariate predictors16. 

 

Results 

 

The following values were found per µg of tissue proteins: proteasome activity = 3.1 ± 0.6 FI (40.6 ± 5.4 

FI/mg of tissue), glucose = 0.1 ± 0.0 µg (0.8 ± 0.1 µg/mg), polyphenols = 0.1 ± 0.0 ng (1.4 ± 0.2 ng/mg), and 

hydroperoxides = 363.4 ± 96.6 OD (3361.7 ± 436.6 OD/mg). No significant differences in proteasome activity 

were found according to age (p=0.2473, Table 1).  

Table 1. Neurochemical variables found in telencephala of female Balb/c mice (n = 20) 

 Younger mice* Older mice** 

Proteasome activity 
3.5 ± 0.9 FI/µg of proteins 2.9 ± 0.7 FI/µg of proteins 

(33.9 ± 7.4 FI/mg of tissue) (44.9 ± 7.4 FI/mg of tissue) 

Glucose 
0.1 ± 0.0 µg/µg of proteins 0.1 ± 0.0 µg/µg of proteins 

(0.7 ± 0.1 µg/mg of tissue) (0.9 ± 0.1 µg/mg of tissue) 

Polyphenols 
0.2 ± 0.0 ng/µg of proteins 0.1 ± 0.0 ng/µg of proteins 

(1.6 ± 0.2 ng/mg of tissue) (1.2 ± 0.2 ng/mg of tissue) 

Hydroperoxides 
327.0  ± 87.7 OD/µg of proteins 383.0  ± 143.4 OD/µg of proteins 

(3235.0 ± 659.3 OD/mg of tissue) (3430.0 ± 588.4 OD/mg of tissue) 

* age = 5.4 ± 0.6 months, weight = 21.7  ± 0.9 g. ** age = 8.8 ± 0.4 months, weight = 22.0 ± 0.6 g (mean ± error). 

 

Pearson’s coefficient of proteasome activity and age was -0.14 (p=0.5464). This weak inverse correlation 

was indirect and mainly depended on aging-related reduction of polyphenols (-0.10 of -0.14). Moreover, the 

proteasome-polyphenol coefficient was direct and equal to 0.43 (p=0.0590). Although hydroperoxides and 

glucose were reciprocally correlated (coefficient=0.92, p<0.0001), they were not associated with proteasome 

(p>0.7) and age (p>0.8) (Table 2).  
 

Table 2: Path analysis of proteasome activity (FI/μg of proteins, n=20) 
 

Effect Path Coefficient p-value 

Polyphenols (ng/μg) Direct 0.65  

Polyphenols (ng/μg) Body weight (g) -0.15  

Polyphenols (ng/μg) Age (months) 0.01  

Polyphenols (ng/μg) Glucose (μg/μg) -0.19  

Polyphenols (ng/μg) Hydroperoxides (OD/μg) 0.11  

Total correlation  0.43 0.059 

Body weight (g) Direct 0.43  

Body weight (g) Polyphenols (ng/μg) -0.24  

Body weight (g) Age (months) -0,02  

Body weight (g) Glucose (μg/μg) 0.12  

Body weight (g) Hydroperoxides (OD/μg) -0.13  

Total correlation  0.15 0.523 

Age (months) Direct -0.06  

Age (months) Polyphenols (ng/μg) -0.13  

Age (months) Body weight (g) 0.13  

Age (months) Glucose (μg/μg) -0.06  

Age (months) Hydroperoxides (OD/μg) -0.02  

Total correlation  -0.14 0.546 

Glucose (μg/μg) Direct -0.62  

Glucose (μg/μg) Polyphenols (ng/μg) 0.21  

Glucose (μg/μg) Body weight (g) -0,08  

Glucose (μg/μg) Age (months) -0.00  

Glucose (μg/μg) Hydroperoxides (OD/μg) 0.41  

Total correlation  -0.08 0.724 

Hydroperoxides (OD/μg) Direct 0.45  
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Hydroperoxides (OD/μg) Polyphenols (ng/μg) 0.17  

Hydroperoxides (OD/μg) Body weight (g) -0.13  

Hydroperoxides (OD/μg) Age (months) 0.00  

Hydroperoxides (OD/μg) Glucose (μg/μg) -0.57  

Total correlation  -0.07 0.758 

 

Multivariate linear regression of proteasome activity modelled age (months), body weight (g), polyphenols 

(ng/µg) and glucose (µg/µg) as independent variables, which respectively showed these regressive 

coefficients: -0.13 (p=0.6216), 0.42 (p=0.1319), 17.85 (p=0.0216) and -10.98 (p=0.4064). Regression was 

repeated using hydroperoxides instead of glucose, given their covariation, with similar results and a nule 

regressive coefficient for these oxidative markers (p=0.6189) (Figure 1).  

 

 
Figure 1. : Linear regression of proteasome activity (FI/?g of proteins, n=20) according to different variables. 

 

PLS allowed modelling age categories, glucose, hydroperoxides, body weight, polyphenols (predictors), 

telencephalic weight and proteasome activity, to confirm that this activity correlated to polyphenols 

(beta=0.67), which decreased in telencephalon during aging (Figure 2). 

 

 

 
Figure 2. Partial least square regression of proteasome activity (FI/?g of proteins, n=20) and telencephalic weight (mg) 

according to different variables. 
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Discussion 

 

Although the synthesis of proteasome can be reduced during aging, this is compensated in brain by 

proteasome plasticity17. Activity is therefore conserved, as demonstrated here. Proteasome deficiency has 

been also reported, but it is described by univariate methodology under pathological conditions, which disturb 

proteostasis by different mechanisms18. Moreover, healthy conditions were supported by the no involvement 

of glucose and hydroperoxide, which are dysmetabolic markers19. Contradictory data about age-related 

proteasome compromise are revised by Dantuma and Bott in accordance with different experimental 

conditions20. 

The neuroprotective activity of polyphenols depends on their capacity to stabilise degradation machinery and 

promote quality control of proteins with subsequent increase of lifespan21. Accordingly, polyphenols are 

neurotropic compounds11, which showed a positive relation with proteasome in the current work. 

Telencephalic decrease of these compounds during aging can respond to changes on their organic 

absorption and distribution. A diet supply might be therefore suggested to prevent brain-affecting non-

communicable diseases11. Summing up, healthy female mice do not exhibit proteasome modifications during 

the first year of life, which supports the concept of normal ageing at molecular level, when appropriate diet 

compound supply is given. 
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