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ABSTRACT  

 
Applications of Multicriteria Decision Aiding are normally dependent on 

the preferences concerning alternatives for each criterion. They also depend on 
the measurements of the importance of criteria. Over the last decade, as a 
response to the fact that such preferences or measurements are often either not 
available or highly uncertain, Finnish researchers have developed a family of 
analytical methods called SMAA. Methods belonging to this family include 
SMAA-1, SMAA-D, SMAA-O, SMAA-2, SMAA-3, SMAA-A, SMAA-TRI, Ref-
SMAA and SMAA-P. They consist, in essence, of formulating inverse problems 
in the weight space. These problems allow for the solving of multidimensional 
integrals and can be approached by the Monte Carlo simulation. In this article, 
the principal concepts of SMAA methods are presented. An example application 
to real data of one of the most important among these methods, the SMAA-2 
method, is developed to demonstrate the main features of this approach. The 
article closes by addressing the appropriateness of using SMAA methods when 
the above-mentioned limitations prevail.  
 
 
KEYWORDS: Multicriteria decision aid - Stochastic preferences - Modelling of 
uncertainty - Monte Carlo simulation 
 
 
1. INTRODUCTION 

 
Decision-making in the corporate world faces ever more complex 

challenges, influenced by diverse factors, such as the availability of financial and 
human resources; internal and external policies; and technical and strategic 
variables, among others. The speed at which decisions can be made and 
implemented can result in gains of the competitive advantage at some moments, 
as well as significant losses at others. This aspect is also affected by the lack of 
a priori knowledge of future scenarios, generating doubt regarding the results 
from decision-making in complex situations and an increasing need to facilitate 
the decision-making process in areas of risk and uncertainty.  
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Although the advent, in the second half of the last century, of a field of 
knowledge called Multicriteria Decision Aiding has considerably enriched the 
process of decision analysis in complex environments, decisions are always 
made in the midst of risk and uncertainty (BELTON & STEWART, 2002; 
GOMES & GOMES, 2012; SANT’ANNA, 2010). 

 
On the other hand, although there is a significant array of analytical 

methods to aid multicriteria decision-making, almost all of these methods 
traditionally start from the premise that the preferences of the agents are 
revealed in a precise way or, alternatively, that these preferences can be treated 
by techniques for modelling imprecision and uncertainty, such as fuzzy sets, 
rough sets, interval methods or even the evidence theory of Dempster-Shafer 
(FIGUEIRA, GRECO & EHRGOTT, 2005; SALICONE, 2007). In this way, in an 
attempt to analyze and solve decision-making problems in the presence of 
multiple criteria, as well as of lacking information, imprecision and uncertainty, 
Finnish researchers have recently developed a new family of methods. This 
family is called Stochastic Multicriteria Acceptability Analysis (SMAA). The 
methods belonging to this family have been developed to deal with multicriteria 
selection problems (Pα), ordering or ranking (Pγ), and classification (Pβ).  

 
Accepting the lack of knowledge of the parameters of the problem, the 

SMAA methods are based on an inverse analysis in the space of feasible values 
for these parameters. Thus, taking a ranking problem as an example, what a 
corresponding SMAA method (in this case SMAA-O) does, in essence, is 
calculate the probabilities for the prevailing values for the parameters, assigning 
to the alternatives determined positions in the desired ranking.   

 
This article presents the central ideas of the SMAA methods, as well as 

an example of their application to real data for one of the most important of 
these methods, SMAA-2.  

 
 
2. METHODS OF THE SMAA FAMILY  

 
The underlying vision of the SMAA methods consists of approaching the 

decision-making problem in an inverse way. Instead of preliminarily seeking the 
values of the parameters and, through a calculation using a multicriteria method, 
obtaining a solution for the problem, they identify the values of the parameters of 
the problem that result in different solutions (TERVONEN & LAHDELMA, 2007; 
TERVONEN & FIGUEIRA, 2008).  

 
The SMAA methods have their roots in the articles of Charnetski (1973) 

and Charnetski & Soland (1978) in that these authors seek to calculate, for each 
alternative, the volume (in a generalized sense) of the multidimensional space of 
weights that make each alternative the most preferred.  
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This aim is also related to the proposal of Rietveld (1980), which was 
afterwards expanded upon in Rietveld & Ouwersloot (1992). These authors 
present formulations similar to those of the first two authors, although for 
problems with ordinal criteria and ordinal information from the preferences. 
Finally, it can also be said that the work of Bana e Costa (1986) on the overall 
compromise criterion is another precursor of the SMAA methods, to the extent 
that this author proposes, although only for three criteria, a calculation of the 
quantity of conflict between the preferences of different decision-makers in order 
to define a joint probability density function for the weight space.  

 
The SMAA family methods are, in addition to SMAA-1 (LAHDELMA, 

HOKKANEN & SALMINEN, 1998), SMAA-D (LAHDELMA, SALMINEN & 
HOKKANEN, 1999; 2002), SMAA-O (LAHDELMA, MIETTINEN & SALMINEN, 
2003), SMAA-2 (LAHDELMA; SALMINEN, 2001), SMAA-3 (LAHDELMA & 
SALMINEN, 2002), SMAA-A (LAHDELMA, MIETTINEN & SALMINEN, 2002), 
Ref-SMAA (LAHDELMA, MIETTINEN & SALMINEN, 2005), SMAA-TRI 
(TERVONEN et al., 2007), and SMAA-P (LAHDELMA & SALMINEN, 2009).   

 
Let there be m alternatives X = {x1,..., xi, ..., xm} and n criteria 

{g1,...,gj,...,gn}. The character value gj (xi) designates the evaluation of the 
alternative xi according to the criterion gj. The family of SMAA methods is based 
on the premise that the preference structure of the decision-maker can be 
represented by a utility function (KEENEY & RAIFFA, 1976) of real value u(x i,w) 
that is associated with the different alternatives and dependent upon the values 

of the components of the weights vector w W. This family also considers that 
there may be multiple decision makers and that each one of these decision 
makers has a preference structure represented by an individual weights vector w 
and a utility function of real value u(xi,w), with a consensually accepted form. 
The linear utility function, shown in (1), is the most commonly used as follows: 
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With the abovementioned criteria weights having non-negative and 
normalized values, the feasible weight space W is given by (2). 
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The total utility function shown in (1) is a convex function of the partial 

utility functions )( ijj xu , reading the values of the weights of the criteria on a 

scale from 0 to 1. If the values of the weights of the criteria were precisely known 
and a single vector of weights, determined, the problem would be solved easily 
by the calculation of the value of the utility function for each alternative, followed 
by the selection of the alternative with the greatest utility.  
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Nevertheless, as SMAA methods were developed precisely for situations 
in which the values of the weights are not generally known, these values are 

here considered as stochastic variables ij corresponding to the deterministic 
evaluations gj (xi) with an assumed or estimated joint probability distribution and 

joint density function fχ( ) in the space χ  R
mxn

. Thus, the unknown or partially 
known preferences of the decision-makers can be represented by means of a 
distribution with joint density function fW (w) in the feasible space of weights W.  

 
The uniform distribution of the weights in W is used when there is no 

information on the weights. In this case, the density in the space of weights is 
given according to (3): 
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where vol refers to the volume of a set in a multidimensional space. 
 
Most frequently, the values of the criteria can be treated as independent 

stochastic variables with the joint density function f being represented by a 

product of density functions ijf , as in (4): 
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The utility function is then employed to map the stochastic criteria, as 

well as the weight distributions, into utility distributions u( i,w). The SMAA 
methods thus permit the set of favorable weights to be determined, for any 

alternative xi, by Wi( ), defined by (5): 
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Any weight w  Wi( ) makes the general utility of xi greater than or equal 
to the utility of any other alternative. All of the later analyses are based on the 
properties of these sets of weights. By means of Monte Carlo simulation, a set of 
indices (in other words, of indirect measurements of preference for the 
alternatives compared) of the SMAA methods is determined. When the number 
of replications in the simulation is sufficiently large, the margins of error are 
negligible. Among the possible indices, the acceptability index describes the 
contribution of different parameters’ evaluations in making a given alternative the 
most preferred. The acceptability index ai is computed for an alternative as the 
expected multidimensional volume of the set of favorable weights. This 
computation is a multidimensional integral over the criteria distributions and over 
the favorable weight space, as shown in (6): 
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The acceptability index can be used to classify the alternatives as 

stochastically efficient (ai » 0) or inefficient (ai equal to 0 or close to 0 – a ceiling 
of, for instance, 0.05 may be set). An acceptability index equal to 0 points that 
the alternative could never be considered the best with the preference model 
adopted, i. e., with the assumed utility function. On the other hand, for 
stochastically efficient alternatives, the acceptability index evaluates the 
efficiency, considering the lack of knowledge and the uncertainty about the 
measurements of the criteria and of the preferences of the decision makers.  

 
In addition, the central weight vector w

c
i is defined as the expected center 

of gravity of the favorable weight space. Thus, the central weight vector is 
computed as a multidimensional integral on the distributions of the weights for 
the criteria, according to (7): 
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For the presumed distribution of the weights, the central weight vector 
represents the preferences of a typical decision maker, supporting the 
alternative xi with the adopted preference model. The central weights can be 
presented to the decision-maker to improve his understanding of how different 
weights can lead to different choices. The central weights vector is naturally 
undefined for inefficient alternatives; for these, it is stipulated w

c
i = 0. 

 
Other useful measurements are the confidence factors, which express 

the probability that each given alternative reaches the first position when its 
central weight vector is chosen.  Confidence factors can be calculated for any 
given central weight vectors. What is in fact measured by these factors is the 
accuracy of the measurements of the criteria by which the efficient alternatives 
are identified (TERVONEN, LAHDELMA & SALMINEN, 2004). The confidence 

factor 
c

ip is the probability of an alternative obtaining the first rank when its 

central weight vector is chosen and its evaluations are taken as the reference 
point. The confidence factor is computed as a multidimensional integral over the 
criteria, and the distribution of preferences, using (8): 
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In (8), the Dirac function  is used to restrict the distribution of weights of 
the criteria to the central weight vector and the distribution of the points of 
reference to the central reference point.  
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The Dirac function may also be used to deal with deterministic criteria. In 
the formulations presented above, if the j-th criterion is to be treated as 

determined, with exact evaluations xij, the ij can enter as a special case of 

independent stochastic variables with density functions, as shown in (9):  
 

)()( ijijijij xf        (9) 

 
For the computation of the acceptability indices and central weight 

vectors, (6) and (7) are reduced to (10) and (11): 
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In practice, the multidimensional integrals of Equations (6) and (7) are 

calculated through the Monte Carlo simulation, where sampling problems are 
randomly generated by criteria matrices and weight distribution vectors.  

 
 
3. PECULIARITIES OF THE SMAA-2 METHOD 

 
The SMAA-2 method (LAHDELMA & SALMINEN, 2001) was developed 

for decision problems which involve, in most cases, evaluations of alternatives 
and estimates of criteria weights that are represented by stochastic variables 
and involve multiple decision makers. This method is especially recommended 
for situations where neither all of the criteria nor the weights are precisely 
known. SMAA-2 can be considered an emblematic method of the SMAA family 
because while most of the methods of the family developed later were designed 
to address specific problems, it generalizes SMAA-1 by considering the possible 
interest on secondary ranks. This method contains the great majority of indices 
used in the other methods of this family. JSMAA (TERVONEN, 2010; 2012), the 
most recent software for the SMAA approach, implements two methods: SMAA-
TRI for ELECTRE-TRI (Roy, 1996) and SMAA-2 for models based on the multi-
attribute value theories. 

 
The SMAA-2 method uses, similar to the other SMAA methods, an 

inverse analysis of the weight space to describe, for each alternative, the type of 
preference that makes it the most preferred or places it in a determined position 
in a pre-defined ranking. The decision problem is represented by a set of m 
alternatives that will be evaluated by n criteria. The preference structure of the 
decision-makers is represented by a value function u(xi,w).  
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This value function maps the different alternatives xi and weight vectors 
w to a value that quantifies the individual preferences of each of the decision 
makers. Uncertain or imprecise criteria are represented by stochastic variables 

ij together with the density function fX( ), where X  R
mxn

. The unknown or 
partially known preferences are represented by a weight distribution function 
with a joint density function fw(w) where W represents the space of allowed 
weights. If there is a total lack of information regarding preference, the function 
is represented by a uniform distribution for the weights in W, fw(w)={1/(vol(W)}. 
The weight space is defined according to the nature of the problem, even 
though, as a rule, the weights are positive and normalized. W, therefore, will be 
described by the restrictions in (2) above. 

 
The utility function is used to transform the stochastic criteria and weight 

distributions into utility distributions u(ξi,w). Based on the utility distribution, the 
classification of each alternative is defined as an integer that varies from 1, for 
the best classification, to m, for the worst classification. This value is determined 
by means of the classification function presented in (12): 

 

)),(),((1),,(
1

wuwuwirank k

m

k

k    (12) 

 

in which ρ (true) = 1 and ρ (false) = 0. Based on the analysis of the sets 
of stochastic weights, the chance of classification as r-th is measured by the 

volume of the favorable set of weights 
r

iW , given in (13): 
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Any vector of weights w belonging to 
r

iW ( ) assigns utilities for the 

alternatives, such that the i-th generic alternative xi has the position or rank ri.  
 
The most important descriptive measurement of SMAA-2 is the 

acceptability index, computed as shown in the previous section. In SMAA-2, this 
index is accompanied by indices that measure the multiplicity of different 
preferences for weights that grant alternative xi each different rank. The 
computation along all the evaluated weights makes the acceptable option 

feasible for each determined classification. The acceptability index 
r

ib is 

calculated, extending (6) by means of the multidimensional integral in (14): 
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The most highly indicated alternatives are those with high values for the 

acceptance index of reaching the best classifications.  
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The acceptance indices vary inside the interval [0, 1]. The value 0 
indicates that the alternative will never obtain the considered classification in the 
ranking, while 1 indicates that the alternative will always obtain that 
classification, independent of the choice of weights.  
 

 
4. AN APPLICATION OF THE SMAA-2 METHOD 

 
SMAA-2 allows for two levels of statistical modeling, including not only a 

statistical model for the space of the weights for the criteria, but also a statistical 
distribution for the evaluation of each alternative according to each criterion. This 
makes the exact computation of the integrals that produce the acceptability 
indices, central weights vectors and confidence factors for each alternative 
extremely cumbersome. Difficulty notwithstanding, employing the simulation 
techniques of the jmaf software makes it possible to solve even considerably 
large problems. 

 
We consider now a problem with 23 alternatives. The data set, formed by 

evaluations under four criteria, includes 23 stores of a clothing retail sales 
network. The four criteria are, by one side, two production factors: area of the 
store and the dimension of the staff of salespeople, and by the other side, two 
indices of results of the production: sales value and number of sale operations.  

 
This problem has been studied before by Ribeiro et al. (2010), who 

applied Data Envelopment Analysis to compare the stores from a productivity 
point of view, taking as DEA inputs the area and staff and, as DEA outputs, the 
value of sales and number of sales. The measurements of staff dimensions, 
sales value and number of sales vary with time and are given in the data set 
collected by Ribeiro et al. (2010) shown in Table 1 as monthly averages over a 
12-month period. Then, while the area’s values are considered exact, the values 
of these averages are treated as the means of normal distributions for the other 
variables. A common standard deviation is assumed for the distributions of the 
measurements of each of the 4 criteria and estimated by the sample standard 
deviation of the set of 23 measurement averages for the criterion. 

 
Summarizing the analysis of Ribeiro et al. (2010), we were able to obtain 

the best productivity scores for Store 3, regardless of whether we considered the 
measurements as exact or applied a stochastic DEA (KAO & LIU, 2009). 

 
SMAA-2 is applied using the software JSMAA on the data set of 23 

alternatives, evaluated according to 4 criteria. For the 1
st
 criterion, with a 

negative orientation, the alternatives are evaluated by the values of the area 
column in Table 1, identified as exact values. For the second, also with a 
negative orientation, the entries are normal distributions with means at the 
values of the sales people column of Table 1 and standard deviation 4, the 
sample standard deviation of that column vector.  
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The entries for the third and fourth criterion, with positive orientation, are 
normal distributions with means at the observed values in the respective 
columns of value of sales and number of sales and standard deviations of 
85,000 and 14,000, respectively, analogously estimated by the sample standard 
deviations. 

 
With 23 alternatives, the data set is too large for the graphical display 

resources of JSMAA, but precise numerical results were obtained. Table 2 
presents the four main results for the 23 alternatives: the two main acceptability 
indices, i. e., the probabilities of being ranked first and second, the confidence 
factors and the center vectors of weights. 

 
As expected, the acceptability indices added approximately to 1. Store 3 

presents, clearly, the highest probability of being ranked first, followed by Stores 
12 and 11. Store 12 presents the highest probability of being ranked second, 
followed, closely, by Store 3 and, at a larger distance, by Store 11. 

 
Store 3 also presents the highest confirmation factor for the analysis 

based on its central vector of weights. The central vectors of weights for Store 3 
were as follows: 0.54 for the area, 0.24 for the number of salespeople, 0.15 for 
the value of sales and 0.07 for the number of transactions. These data are very 
similar to those of Stores 11 and 12; this makes it easier to conclude the 
analysis by choosing Store 3 as that one of highest productivity.  

 
In fact, all 11 stores with a probability of at least 0.01 of being ranked first 

or second by SMAA-2 presented similar patterns of central weights. Their larger 
weights were for area, followed by salespeople and then by much smaller 
weights for the value and number of sales, in that order. The information 
provided by the method leads us to conclude that our decision regarding 
productivity is determined mainly by the efforts to limit the use of resources and 
less by the efforts to raise the output generated by the stores. 

 
This suggests the development of a complementary analysis to the 

productivity analysis that is centered only on the production of outputs. This 
implies evaluating the performance of the stores only in terms of their ability to 
generate sales, independent of the volume of resources employed. This may be 
done by withdrawing from the data set the two first criteria and considering only 
the output evaluations. The results provided by SMAA-2 for this analysis are 
shown in Table 3. This table shows that, according to this new point of view, 
Store 20 presents the best performance, followed by Stores 16 and 15, and 
Store 3 appears only in the fourth place. The analysis of the influence of the 
criteria shows a larger influence of value than of number of sales, which is a 
reasonable result, as the value of sales hints more precisely at the volume of 
output rather than the number of transactions. 
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5. CONCLUSION  
 
This article shows how SMAA methods can be used precisely to solve 

the inverse problem of traditional multicriteria analysis. Here, we try to identify 
the preferences of decision makers, which serve as input variables for the use of 
multicriteria methods. When these preferences are ignored, the SMAA methods 
estimate the likelihood associated with determined results by using a small set of 
measurements of a probabilistic nature. Thus, for example, in a problem of type 
Pβ, the SMAA-TRI method is used to estimate the likelihood that each 
alternative would be inserted into one of the pre-defined classes. In the example 
of the application presented in this article, using the SMAA-2 method and the 
measurements presented above, the likelihood of associating each of the 
alternatives with distinct positions in the ranking was estimated. In this way, it is 
possible to attain the best solution for the problem.  

 
An interesting research development related to the SMAA family arose 

when decision-making agents were shown to behave consistently with Prospect 
Theory (TVERSKY & KAHNEMAN, 1991). The TODIM multicriteria method 
(GOMES & LIMA, 1992; GOMES & RANGEL, 2009) is one of the rare attempts 
that tried to make this theory operational. The path to this development was 
designated by the outlining of the SMAA-P method undertaken by LAHDELMA & 
SALMINEN (2009). Although both authors used linear difference functions in the 
formulation of SMAA-P, these functions are not linear in the TODIM method. In 
addition, in the context of a multicriteria decision problem with multiple decision-
makers, the reference points should be expected to be affected by the lack of 
knowledge just as much as by the preferences of those decision-makers. 
Therefore, combining the SMAA family methodology and the TODIM method by 
making SMAA-P operational would constitute a worthwhile research objective to 
pursue.   

 

Store Area Salespeople Value of Sales Number of Sales 

1 61.6 15.08 278920.51 4630.5 

2 48.8 13.42 157397.06 2907.83 

3 42.2 16.67 312420.66 5536.58 

4 68 11.33 129946.52 1722.75 

5 63 11.83 109870.04 1925.92 

6 79.7 11.08 126053.24 2139 

7 54.3 12.92 139646.78 2443.5 

8 82.3 13.25 132935.65 1788.67 

9 54.1 10.71 102051.63 3040.71 

10 78.7 12.67 173438.43 3121.67 

11 46.3 11.5 116873.48 2580.42 
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12 43.8 12.83 162551.56 2844 

13 84.2 15 151945.61 3014.5 

14 125.2 21.75 258993.74 4851.58 

15 58.9 12.83 105833.06 1502.17 

16 82.2 19.5 328325.62 5807.5 

17 65.9 20.42 345457.84 4998.75 

18 58.2 12.58 199445.9 3163.08 

19 72.5 12.92 142990.16 2526.42 

20 100 25.17 395181.4 6973.17 

21 70 13.42 228666.05 3659.83 

22 80 18.83 210533.31 3360.83 

23 60 14.5 215599.13 2551.58 

 
Table 1 - Data of 23 Stores 

 

Acceptability Indices Central weights and Confirmation factor 

Store Rank 1 Rank 2 CF Area People Value Transactions 

1 0.01 0.02 0.02 0.39 0.32 0.21 0.08 

2 0.06 0.11 0.08 0.47 0.30 0.16 0.07 

3 0.44 0.22 0.5 0.54 0.24 0.15 0.07 

4 0.00 0.00 0.00 0.4 0.34 0.19 0.08 

5 0.00 0.01 0.01 0.41 0.35 0.15 0.08 

6 0.00 0.00 1.00 - - - - 

7 0.02 0.04 0.03 0.44 0.34 0.16 0.06 

8 0.00 0.00 1.00 - - - - 

9 0.04 0.05 0.06 0.45 0.34 0.15 0.07 

10 0.00 0.00 0.00 0.35 0.34 0.29 0.02 

11 0.15 0.19 0.19 0.51 0.30 0.14 0.06 

12 0.25 0.29 0.29 0.53 0.27 0.13 0.06 

13 0.00 0.00 1.00 - - - - 

14 0.00 0.00 1.00 - - - - 

15 0.00 0.01 0.01 0.43 0.36 0.15 0.07 

16 0.00 0.00 1.00 - - - - 

17 0.00 0.00 0.00 0.36 0.29 0.24 0.12 

18 0.02 0.03 0.03 0.41 0.32 0.19 0.08 

19 0.00 0.00 0.00 0.34 0.30 0.24 0.11 
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20 0.00 0.00 1.00 - - - - 

21 0.00 0.00 0.00 0.39 0.33 0.22 0.07 

22 0.00 0.00 1.00 - - - - 

23 0.01 0.02 0.02 0.40 0.30 0.20 0.101 

 
Table 2 - Results of SMAA for Productivity Model 

 
 

Acceptability Indices Central weights and Confirmation factor 

Store Rank 1 Rank 2 CF Value Transactions 

1 0.04 0.08 0.1 0.04 0.78 

2 0.00 0.00 0.00 0.00 0.00 

3 0.09 0.17 0.17 0.10 0.77 

4 0.00 0.00 0.00 0.00 0.90 

5 0.00 0.00 0.00 1.00 0.00 

6 0.00 0.00 0.00 0.00 0.93 

7 0.00 0.00 0.00 0.00 0.93 

8 0.00 0.00 0.00 0.00 0.96 

9 0.00 0.00 0.00 1.00 0.00 

10 0.00 0.00 0.01 0.00 0.85 

11 0.00 0.00 0.00 0.00 0.57 

12 0.00 0.00 0.01 0.00 0.74 

13 0.00 0.00 0.01 0.00 0.80 

14 0.02 0.06 0.09 0.03 0.78 

15 0.00 0.00 0.00 1.00 0.00 

16 0.14 0.21 0.18 0.14 0.75 

17 0.15 0.21 0.19 0.15 0.78 

18 0.00 0.01 0.02 0.00 0.84 

19 0.00 0.00 0.00 0.00 0.87 

20 0.53 0.21 0.11 0.54 0.73 

21 0.01 0.02 0.04 0.01 0.81 

22 0.00 0.01 0.03 0.00 0.82 

23 0.00 0.01 0.02 0.01 0.85 

 
Table 3 - Results of SMAA for Production Model 
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