• Don F Du Toit Clinical Anatomy, Durbanville, South Africa
  • Willem A, Liebenberg Neurosurgery, Melomed Private Hospital, Bellville, Western Cape


Palabras clave:

Somatic cell nuclear transfer, spinal-cord injury, stem cell transplantation, quadriplegia, Transferencia nuclear de células somáticas, lesión de médula espinal, transplante de células madre, quadriplegía


La literatura científica informa que anualmente se producen alrededor de 180.000 casos de lesiones de la médula espinal en el mundo. Publicaciones recientes han mostrado beneficios neurológicos en casos seleccionados de personas con cuadriplejía sometidas a trasplante intralesional de células madre autólogas cultivadas de médula ósea. Objetivos: Este estudio de caso presenta evidencia de nivel III de recuperación clínica neurológica parcial en un paciente de sexo masculino de 32 años, con cuadriplejia completa crónica que fue sometido a transferencia de núcleos de células somáticas (SCNT, por sus siglas en inglés) y a terapia de células embrionarias por presentar lesión traumática de la médula espinal sufrida 6 años atrás. La pregunta de investigación fue: “¿Puede la terapia celular autóloga de SCNT mejorar la discapacidad motora y sensitiva de las extremidades en la cuadriplejia crónica?" Hipótesis probada: “La terapia celular de SCNT es incapaz de mejorar la discapacidad motora y sensitiva en casos seleccionados de personas con cuadriplejia completa crónica y no puede mejorar el resultado funcional o la independencia”. Materiales y métodos: El trasplante celular se llevó a cabo mediante implantación quirúrgica en el área con daño medular cervical 6 años después de la lesión que dejó al paciente con cuadriplejía completa confirmada mediante examen neurológico y resonancia magnética. Después del procedimiento, se llevó a cabo la evaluación neurológica y fue evaluada la restauración de dermatomas y miotomas durante 12 meses, junto con la realización de resonancia magnética y clasificación de la American Spinal Injury Association (ASIA). Resultados: La mejoría neurológica se presentó en forma asimétrica en la cintura escapular y sin cambios dramáticos bilateralmente en extremidades superiores y en tronco con respecto a las funciones de las piernas evaluadas a los 12 meses. Las puntuaciones en la escala ASIA aumentaron de 29/112 a 64/112 a los 6 meses después del tratamiento y se ganó al menos un nivel de la escala ASIA. Conclusión: En comparación con los hallazgos iniciales, se documentó mejoría neurológica cuantificada en la cintura escapular y las extremidades superiores, entre 6 y 12 meses después del trasplante celular autólogo intralesional con SCNT en un caso de cuadriplejia crónica.


The scientific literature reports that about 180,000 cases of spinal-cord injuries (SCI) occur yearly in the world. Recent publications show neurological benefit in selected quadriplegics undergoing intra-lesion transplantation of autologous cultured bone-marrow mesenchymal stem cells. Objectives: This case-study reports level–III objective evidence and partial neurological clinical recovery in a 32-year old-male with chronic complete quadriplegia that underwent somatic nuclear cell transfer (SCNT) and embryonic cell therapy for traumatic spinal-cord injury (SCI) sustained 6-years previously. The research question was: “Can autologous SCNT cell-therapy improve extremity motor and sensory impairment in chronic quadriplegia?” The hypothesis tested: “SCNT cell-therapy is unable to improve severe motor and sensory impairment in selected persons with chronic complete quadriplegia and unable to improve functional outcome or independence”. Material and methods: Cell-transplantation was by neuro-surgical implantation into the damaged cervical cord 6-years after SCI that rendered the patient a complete quadriplegic confirmed on neurological examination and magnetic resonance imaging (MRI). Neurologic assessment, restoration of dermatomes and myotomes were evaluated post-procedurally for 12-months together with MRI, and American Spinal Injury Association grading (ASIA). Results: Neurological improvement was asymmetrically improved in the shoulder girdle, upper extremity bilaterally and trunk without dramatic change in leg-function at 12-months. ASIA-scales increased from 29/112 to 64/112 at 6-months after treatment and at least one ASIA-level was gained. Conclusion: Compared to baseline findings, measured neurological improvement was documented in the shoulder-girdle and upper-extremities, 6-12 months after intra-lesion autologous SCNT cell transplantation in a chronic-quadriplegic. 


Barnabé-Heider F and Frisén J. 2008. Stem cells for spinal-cord repair. Cell Stem Cell 3: 16-24.

Behrman AL, Harkema SJ. 2000. Locomotor training after human spinal-cord injury: a series of case-studies. Phys Ther 80: 688-700.

Buehner JJ, Forest JF, Schmidt-Read M, White S, Tansey K, Basso DM. 2012. Relationship between ASIA examination and functional outcomes in the neuro-recovery network locomotor training program. Arch Phys Med Rehabil 93: 1530-40.

Burns L. 2009. “You are our only hope”: trading metaphorical “magic bullets” for stem cell “superheroes”. Theor Med Bioeth 30: 427-42.

Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D. 2011. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476: 224-7.

Chesne P, Adenot PG, Viglietta C, Baratte M, Boulanger L, Renard JP. 2002. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Bio-technol 20: 366-369.

Dai G, Liu X, Zhang Z, Yang Z, Dai Y, and Xu R. 2013. Transplantation of autologous bone marrow mesenchymal stem cells in the treatment of complete and chronic cervical spinal cord injury. Brain Res [Epub ahead of print].

Dietz V and Curt A. 2006. Neurological aspects of spinal-cord repair: promises and challenges. Lancet Neurol 5: 688-94.

Dorland’s Illustrated Medical Dictionary. 2003. 30 th Edition, Saunders. Philadelphia.

Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, Bartlett PF. 2007. Guidelines for the conduct of clinical-trials for spinal-cord injury as developed by the ICCP panel: spontaneous recovery after spinal-cord injury and statistical power needed for therapeutic clinical-trials. Spinal Cord 45: 190-205.

French AJ, Adams CA, Anderson LS, Kitchen JR, Hughes MR, Wood SH. 2008. Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells 26: 485-93.

Fulka J, Langerove A, Loi P, Ptak G, Albertini D, Fulka H. 2013. The up’s and down’s of somatic cell nucleus transfer (SCNT) in humans. J Assist Reprod Genet [Epub ahead of print].

Garbossa D, Fontanella M, Fronda C, Benevello C, Muraca G, Ducati A, Vercelli A. 2006. New strategies for repairing the injured spinal-cord: the role of stem cells. Neurol Res 28: 500-4.

Goldman S. 2005: Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 23: 862-871.

Hagg T, Oudega M. 2006. Degenerative and spontaneous regenerative processes after spinal-cord injury. J Neurotrauma 23:264-80.

Hwang WS, Roh SI, Lee BC, Kang SK, Kwon DK, Kim Sl. 2005. Patient-specific embryonic stem cells derived from human SCNT blastocysts. Science 308: 1777-83.

Jiang PC, Xiong W, Wang G, Ma C, Yao W, Kendall SF, Mehling BM, Yuan X, Wu D. 2013. A clinical trial report of autologous bone marrow-derived mesenchymal stem cell transplantation in patients with spinal-cord injury. Experimental and Therapeutic Medicine 6: 140-146.

Keirstead HS, Nistor G, Bernal G, Totoiu U, Cloutier F, Sharp K and Steward O. 2013. Human embryonic stem cell-derived oligodendrocyte progenitor-cell transplants remyelinate and restore locomotion after spinal-cord injury. The Journal of Neuroscience 25: 4684-4705.

Kidson SH. 2013. Stem cell transplantation-a collegial conservation. SAMJ 103:18-20.

Kurd S, Zarei MA, Fathi F, Ghadimi T, Hakhamaneshi MS, Jalili A. 2013. Production of cloned mice by nuclear transfer of cumulus cells. Avicenna J Med Biotechnol 5:186-192.

Liang P, Jin LH, Liang T, Liu EZ, Zhao SG, 2006. Human neural stem cells promote cortico-spinal axons regeneration and synapse-reformation in injured spinal-cord of rats. Chinese Med J (Engl) 119: 1331-8.

Lim JH, Piedrahita JA, Jackson L, Ghashghaei T, Olby NJ. 2010. Development of a model of sacrocaudal spinal cord injury in cloned Yucatan minipigs for cellular transplantation research. Cell Reprogram 12: 689-97.

Medical Research Council. 1981. Aids to the examination of the peripheral nervous system. Memorandum No 45. Her Majesty’s Stationery Office, London.

Moodley K. 2011. Medical Ethics, Law and Human Rights. A South-African Perspective. Van Schaik Publishers, Pretoria.

Moore KL. 1992. Clinically-Oriented Anatomy, 3rd edition, Williams & Wilkins, Baltimore.

Mosby’s Medical Dictionary. 1990. CV Mosby, 3rd Edition, St Louis.

Novikova LN, Brohlin M, Kingham PJ, Novikov LN, and Wiberg M. 2011. Neuroprotective and growth-promoting effects of bone-marrow stromal cells after cervical spinal-cord injury in adult-rats. Cytotherapy 13: 873-887.

Okano H, Ogawa Y, Nakamura M, Kaneko S, Iwanami A and Toyama Y. 2003. Transplantation of neural stem cells into the spinal-cord after injury. Semin Cell Dev Biol 14: 191-8.

Ono Y, Shimozawa N, Ito M, Kono T. 2001. Cloned mice from fetal fibroblast cells arrested at metaphase by a serial nuclear transfer. Biol Reprod 64: 44-50.

Ota M, Ito. 2003. Induction of neurogenin-1 expression by sonic hedgehog: Its role in development of trigeminal sensory neurons. Dev Dyn 227: 544-51.

Pang ZP, Yang N, Ostermeier A, Fuentes DR, Yang TQ, Citri A. 2011. Induction of human neuronal cells by defined transcription factors. Nature 476: 220-223.

Park WB, Kim SY, Lee SH, Kim HW, Park JS, and Hyun JK l. 2010. The effect of mesenchymal stem cell transplantation on the recovery of bladder and hind-limb function after spinal-cord contusion in rats. BMC Neurosci 11: 119.

Ruff CA, Wilcox JT, Fehlings MG. 2012. Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp Neurol 235: 78-90.

Sledge J, Andrew GW, Westmoreland S, Sejdic E, Miller A, Hoggatt A, Nesathurai. 2003. Spinal-cord injury models in non-human primates: are lesions created by sharp instruments relevant to human injuries? Med Hypotheses 81: 747-8.

Steeves JD, Kramer JK, Fawcett JW, Cragg J, Lammertse DP, Blight AR. 2011. Extent of spontaneous motor recovery after traumatic cervical sensorimotor complete spinal cord injury. Spinal Cord 49: 257-65.

Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H. 2013. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153: 1228-38.

Vierbuchen T, Ostermeier A, Pang ZP, Kokuba Y, Sudhof TC, Wernig M. 2010. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463: 1035-41.

Wakayama T, Yanagimachi R. 1999. Cloning of male mice from adult tail-tip cells. Nat Genet 22: 127-128.

Walter JB, and Israel MS. 1972. General Pathology, 3rd Edition, Churchill Livingstone, Edinburgh.

Willadsen SM. Nuclear transplantation in sheep embryos 1986. Nature 320: 63-65.

Wilmut I, Scniecke AE, Mc Whir J, Kind AJ, Campbell KH. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810-813.




Cómo citar

Du Toit, D. F., & Liebenberg, W. A. (2016). SOMATIC-CELL NUCLEAR TRANSFER: AUTOLOGOUS EMBRYONIC INTRA-SPINAL STEM CELL TRANSPLANT IN A CHRONIC COMPLETE QUADRIPLEGIC PATIENT. NEURO-ANATOMICAL OUTCOME AFTER ONE YEAR. Transferencia de núcleos de células madre: Transplante embriónico autólogo intraesp. Revista Argentina De Anatomía Clínica, 6(1), 35–42.



Presentación de Casos