Defectos Genéticos en la biosíntesis y transporte de la Creatina

Autores/as

  • Lidia Dora Martínez Universidad Nacional de Córdoba. Facultad de Odontología
  • R. Dodelson de Kremer Universidad Nacional de Córdoba. Facultad de Ciencias Médicas. Hospital de Niños. Centro de Estudio de las Metabolopatías Congénitas (CEMECO).

Palabras clave:

Guanidinoaceto Metiltransferasa, Arginina, glicina amidinotransferasa, Transportador de Creatina, Saliva, enfermedad neurometabólica.

Resumen

Los defectos genéticos de deficiencia de creatina (DGDC), constituyen un capítulo de la Genética Médica que refiere a un grupo de patologías genéticas del metabolismo en la biosíntesis y transporte de la creatina; comprende deficiencias en dos enzimas: arginino:glicino amidinotransferasa (d-AGAT), y guanidinoacetato metiltransferasa (d-GAMT) y la deficiencia en el transportador de la creatina (d-CRTR). Las d-AGAT y d-GAMT se heredan ambas en forma autosómica recesiva, mientras que la d-CRTR es de transmisión ligada al cromosoma X. Las manifestaciones clínicas más frecuentes incluyen, retardo mental, epilepsias, sugiriendo mayor compromiso de la sustancia gris cerebral, alteración del lenguaje, autismo e hipotonía. Un parámetro químico común de los DGDC es la deficiencia de creatina cerebral que se demuestra por espectroscopía de resonancia magnética protónica "in vivo" (ERM H1). El propósito de este trabajo es realizar una actualización de los estudios bioquímicos, enzimáticos y moleculares, que permitan la identificación y caracterización de estas severas enfermedades neurológicas, irreversiblemente evolutivas si no son diagnosticadas, además se pretende realizar un análisis de la saliva en el estudio de los DGDC en forma complementaria con el plasma y la orina. La metodología utilizada para la detección de los DGDC consta en esencia

I.seleccionar pacientes con compatibilidad fenotípica, II- analizar el perfil bioquímico, a través de la medición del guanidinoacetato, que permite diferenciar entre d-GAMT (alta concentración), la d-AGAT (baja concentración) y la d-CRTR (concentración normal), creatina y creatinina en plasma, orina y saliva, III- efectuar la ERM H1, IV- definición del probable defecto genético mediante el ensayo de la especifica actividad enzimática en saliva, V- realizar el análisis molecular del gen correspondiente. La importancia estimada de cumplimentar el algoritmo diagnóstico estriba en la disponibilidad de una terapia eficaz para las d-GAMT y d-AGAT, el circunscribir las familias involucradas y brindar el correcto asesoramiento genético. Resulta importante además, el desarrollo de un área genética no explorada con anterioridad en nuestro medio y de gran impacto asistencial y académico.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Andres AH, Ducray AD, Schlattner U, Walliman T. Functions and effects of creatine in the central nervous system. Brain Research Bulletin 2008; 76: 329- 343.

Verhoeven NM, Salomons GS, Jakobs C. Laboratory diagnosis of defects of creatine biosynthesis and transport. Clin Chim Acta 2005; 361: 1-9.

Nabuurs CI, Choe CU, Veltien A, Kan HE, van London LJC, Rodenburg RJT, Matschke J, Wieringa B, Kemp GJ, Isbrandt D, Heerschap A. Disturbed energy metabolism and muscular dystrophy cuased by pure creatine deficiency are reversibe by creatine intake. J Physiol 2013; 591: 571- 592.

Wyss M, Kaddurak-Daouk R. Creatine and Creatinine Metabolism. Physiol Rev 2000; 80(3):1107-1213.

Braissant O, Henry H. AGAT, GAMT and SLC6A8 distribution in the central nervous system, in relation to creatine deficiency syndromes: A review. J Inherit Metab Dis 2008; 31: 230-239.

Van de Kamp JM, Jacobs C, Gibson KM, Salomons GS. New insights into creatine transporter deficiency: the importance of recycling creatine in the brain. J Inherit Metab Dis. 2013; 155- 156.

Schulze A. Creatine deficiency syndromes. Mol Cell Biochem 2003; 244: 143- 150. 8. Stöckler S, Holzbach U, Hanefeld F, Marquardt I, Helms G, Requart M, Hänicke W, Frahm J. Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 1994; 36: 409-413.

Stockler S, Marescau B, De Deyn PP, Trijbels JMF, Hanefeld F. Guanidino compounds in guanidinoacetate methyltransferase deficiency, a new inborn error of creatine synthesis. Metabolism. 1997. 45 (10): 1189- 1193.

Von Figura K, Hanefeld F, Isbrandt D, Stockler-Ipsiroglu S. Guanidinoacetate methyltrasferase deficiency. In: Scriver: C. R. Scriver, A. Beaudet, W. S. Sly, D. Valle (eds). The Metabolic and Molecular Basis of Inherited Disease. Mac Graw Hill, New York, 2000; 1897- 1908.

Verhoeven N M, Guerand WS, Struys EA, Bouman AA, Van Der Knaap MS, Jakobs C. Plasma creatinine assessment in creatine deficiency: A diagnostic pitfall. J. Inherit Metab Dis, 2000; 23: 835- 840.

Schulze A, Hess T, Wevers R, Mayatepek E, Bachert P, Marescau B, Knopp MV, De Deyn PP, Bremer HJ, Rating D. Creatine deficiency syndrome caused by guanidinoacetate methyltrasferase deficiency: Diagnostic tools for a new inborn error of metabolism. J pediatr 1997; 131: 626- 631.

Schulze A, Bachert P, Schlemmer H, Harting I, Polster T, Salomons GS, Verhoeven NM, Jakobs C, Fowler B, Hoffmann G F, Mayatepek E. Lack of creatine in muscle and brain in an adult with GAMT deficiency. Ann Neurol 2003; 53: 248- 251.

Chae YJ, Chung CE, Kim BJ, Lee MH, Lee H. The gene encoding guanidianoacetate methyltransferase (GAMT) maps to human chromosome 19 at band p13.3 and to mouse chromosome 10. Genomics 1998; 49:162-164.

Salomons GS, Van Dooren SJM, Verhoeven NM, Cecil KM, Ball WS, Degrauw TJ, Jakobs C. X-linked creatine-transporter gene (SLC6A8) defect: a new creatine deficiency syndrome. Am J Hum Genet 2001b; 68: 1497- 1500.

Salomons GS, Van Dooren SJM, Verhoeven NM, Marsden D, Schwartz C, Cecil K. M, Degrauw TJ, Jakobs C. X-linked creatine transporter defect: An overview. J. Inherit Metab Dis 2003; 26: 309- 318.

Gregor P, Nash SR, Caron MG, Seldin MF, Warren ST. Assignment of the creatine transporter gene (SLC6A8) to human chromosome Xq28 telomeric to G6PD. Genomics. 1995; 25: 332- 333.

Stromberger C, Bodamer OA, Stockler- Ipsiroglu S. Clinical characteristics and diagnostic clues in inborn errors of creatine metabolism. J Inherit Metab Dis 2003; 26: 299- 308.

Bianchi MC, Tosetti M, Fornai F, Alessandri MG, Cipriani P, DeVito G, Canapicchi R. Reversible brain creatine deficiency in two sisters with normal blood creatine level. Ann. Neurol 2000; 47: 511- 513.

Item C, Stromberger C, Muhl A, Stockler-Ipsiroglu S. Mutation analysis in 5 patients with guanidinoacetate methyltransferase (GAMT) deficiency by a DGGEscreening method. J Inherit Metab Dis 2001a; 24 (Supplement 1): 120.

Item CB, Stockler-Ipsiroglu S, Stromberger C, Muhl A, Alessandri MG, Bianchi MC, Tosetti M, Fornai F, Cioni G. Arginine:Glycine amidinotransferase deficiency: The third inborn error of creatine metabolism in humans. Am J Hum Genet 2001b; 69: 1127- 1133.

Ensenauer R, Thiel T, Schwab KO, Tacke U, Stockler-Ipsiroglu S, Schulze A, Hennig J, Lehnert W. Guanidinoacetate metyltrasferase deficiency: differences of creatine uptake in human brain and muscle. Mol Genet Metab 2004; 82: 208- 213.

Battini R, Alessandri MG, Leuzzi V, Moro F, Toseti M, Bianchi MC, Cioni G. Arginine:glycine amidinotransferase (AGAT) deficiency in a newborn: early treatment can prevent phenotypic expresión of the disease. J Pediatric 2006; 148: 828-830.

Edvardson S, Korman SH, Livne A, Shaag A, Saada A, Nalbandian R, Allouche-Arnon, Gomori M, Katz-Brull R. L-arginine:glycine amidinotransferase (AGAT) deficiency: clinical presentation and response to treatment in two patients with a novel mutation. Mol Genet Metab 2010; 101: 228- 232.

Ashok V. Arginine:glycine amidinotransferase deficiency: a treatable metabolic encephalomyopathy. Neurology. 2010; 75: 186- 188.

Viau KS, Ernst SL, Pasquali M, Botto LD, Hedlund G, longo N. Evidence-based treatment of guanidinoacetate methyltransferase (GAMT) deficiency. Mol Genet. Metab. 2013; 110: 255- 262.

Trotier- Faurion A, Passirani C, Béjaud J, Dézard S, Valayannopoulos V, Taran F, de Lonlay P, Benoit JP, Mabondzo A. Dodecyl creatine ester and lipid nanocapsule: a double strategy for the treatment of creatine transporter deficiency. Nanomedice. 2015. 10 (2): 185- 191.

Valayannopoulos V, Boddaert N, Chabli A, Barbier V, desguerre I, Philippe A, Afenjar A, Mazzuca M, Cheillan D, Munnich A, de Keyzer Y, Jakobs C, Salomons GS, de Lonlay P. treatment by oral creatine, L-arginine and L-glycine in six severely affected patients with creatine transporte defect. J Inherit Metab Dis. 2012; 35: 151- 157.

Dunhar M, Jaggumantri S, Sargent M, Stockler-Ipsiroglu S, van Karnebeek CDM. Treatment of x-linked creatine transporter (SLC6A8 deficiency: systematic review of the literature and three new cases. Mol Genet Metab. 2014. 112 (4): 259- 274. 30. Stöckler S, Stromberger C, Item C, Muhl A. Disorders of creatine metabolism. En: Blau N, Duran M, Blaskovics ME, Gibson KM (Eds). Physician´s Guide to the Laboratory diagnosis of Metabolic Diseases. Springer- Verlag Berlin Heidelberg. Germany, 2003.

Carducci C, Santagata S, Leuzzi V, Carducci C, Artiola C, Giovanniello T, Battini R, Antonozzi I. Quantitave determination of guanidinoacetate and creatine in dried blood spot by flow injection analysis-electrospray tandem mass spectrometry. Clin Chim Acta. 2006; 364: 180- 187.

Carling RS, Hogg SL, Wood TC, Calvin J. Simultaneous determination of guanidinoacetate, creatine and creatinine in urine and plasma by un-derivatized liquid chromatography-tandem mass spectrometry. Ann. Clin. Biochem 2008; 45: 575-584.

Martínez LD, Bezard M, Brunotto M, R Dodelson de Kremer. Creatine metabolism: detection of creatine and guanidinoacetate in saliva of healthy subjects. Acta Odontol Latinoam 2016; 29: 53- 57.

Cecil KM, Salomons GS, Ball WS, Wong B, Chuck G, Verhoven N M, Jakobs C, DeGrauw TJ. Irreversible brain creatine deficiency with elevated serum and urine creatine: a creatine transporter defect ?. Ann Neurol; 2001; 49: 401-404.

Cecil KM, DeGrauw TJ, Salomons GS, Jakobs C, Egelhoff JC, Clark J F. Magnetic resonance spectroscopy in a 9-day-old heterozygous female child with creatine transporter deficiency. J Comput Assist Tomogr 2003; 27 (1): 44- 47.

Bianchi MC, Tosetti M, Battini R, Leuzzi V, Alessandri MG, Carducci C, Antonozzi I, Gioni G. Treatment monitoring of brain creatine deficiency symdromes: A 1H- and 31P-MR. Am J Neuroradiol 2007; 28: 548- 554.

Hunneman DH, Hanefeld F. GC-MS determination of guanidinoacetate in urine and plasma. J Inherit Metab Dis.1997; 20: 450- 452.

Prieto JA, Andrade F, Martín S, Sanjurjo P, Elorz J, Aldámiz-Echevarría L. Determination of creatine and guanidinoacetate by GC-MS study of their stability in urine at different temperature. Clin Chem 2009; 42: 125- 128.

Tsikas D, Wolf A, Mitschke A, Gutzki FM, will W, Bader M. GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring:inter-laboratory comparison in urine with Jaffé, HPLC and enzymatic assays. J Chromatogr. 2010; 2582- 2592.

Nasrallah F, Feki M, Briand G, Kaabachi N. GC/MS detrmination of guanidinoacetate and creatine in urine: A routine method for creatine deficiency syndrome diagnosis. Clin Biochem. 2010; 1356- 1361.

Haas D, Gan-Schreier H, Lanhans C, Anninos A, Haege G, Burgard P, Schulze A, Hoffmann GF, Okun JG. Diagnosis and therapeutic monitoring of inborn errors of cretine metabolism and transport using liquid chromatography-tandem mass spectrometry in urine, plasma and CSF. Gene. 2014; 538: 188- 194.

Carducci C, Birarelli M, Leuzzi V, Carducci C, Battini R, Cioni G, Antonozzi I. Guanidinoacetate and creatine pluscreatinine assessment in physiologic fluids: An effective diagnostic tool for the biochemical diagnosis of arginine:glycine amidinotransferase and guanidinoacetate methyltransferase deficiencies. Clin Chem; 2002; 48(10): 1772-1778.

Alessandri MG, Celati L, Battini R, Casarano M, Cioni G. Gas chromatography/mass spectrometry assay for arginine:glycine-amidinotransferase deficiency. Anal. Biochem 2005; 343: 356- 358.

Ilas J, Muhl A, Stockler-Ipsiroglu S. Guanidinoacetate methyltransferase (GAMT) deficiency: non-invasive enzymatic diagnosis of a newly recognized inborn error of metabolism. Clin Chim Acta 2000; 290: 179- 188.

Alessandri MG, Celati L, Battini R, Baldinotti F, Item C, Leuzzio V, Cioni G. HPLC assay for guanidinoacetate methyltranferase. Anal Biochem 2004; 331: 189- 191.

Salomons GS, Van Dooren SJM, Bunea D, Verhoeven NM, Degrauw TJ, Jakobs C. Creatine transporter deficiency: development of a new functional test for creatine uptake in cultured cells. J Inherit Metab Dis 2001a; 24 (Supplement 1):119.

Item CB, Mercimek-Mahmutoglu S, Battini R, Edlinger-Horvat C, Stromberger C, Bodamenr O, Muhl A, Vilaseca MA, Korall H, Stockler-Ipsiroglu S. Characterization of seven novel mutations in seven patients with GAMT deficiency. Hum Mutat 2004; 23(5): 524

Rosenberg EH, Almeida LS, Kleefstra T, deGrauw RS, Yntema HG, Bahi N, Moraine C, Ropers H, Fryns JP, deGrauw TJ, Jacobs C, Salomons GS. High prevalence of SLC6A8 deficiency in x-linked mental retardation. Am J Hum Genet 2004; 75: 97-105.

DesRoches C, Patel J, Wang P, Minassian B, Salomons GS, Marshall CR, Mercimek-Mahmutoglu S. Estimated carrier frecuency of creatine transporter deficiency in females in the general population using functional characterization of novel missese variants in the SLC6A8 gene. Gene. 2015; 187- 191.

Streckfus CF, Biger LR. Saliva Glands and Saliva. Saliva as a diagnostic fluid. Oral Dis. 2002; 8: 69- 76.

Lee YH, Wong DT. Saliva: An emerging biofluid for early detection of diseases. Am J Dent 2009; 22: 241-248.

Xie H, Rhodus N L, Griffin RJ, Carlis JV, Griffin TJ. A catalogue of human saliva proteins identified by free flow electrophoresis-based peptide separation and tandem mass spectrometry. Mol Cell Proteomics 2005; 4: 1826-1830.

Helmerhorst E. J. y Oppenheim FG. Saliva: a dynamic proteome. J. Dent. Res. 2007; 86: 680- 693.

Kohan R, Noher de Halac I, Tapia V, Cismondi A, Oller Ramírez A, Paschini-Capra A, Dodelson de Kremer R. Palmitoyl protein thioesterase1 (PPT1) and tripeptidyl peptidese-I (TPP-I) are expressed in the human saliva. A

reliable and non-invasive source for the diagnosis of infantile (CLN1) and Late infantile (CLN2) neuronal ceroid lipofuscinoses. Clin. Biochem. 2005; 38 (5): 492-494.

Noher de Halac I, Dodelson de Kremer R, Kohan R, Tapia Anzolini V. Guelbert N, Oller de Ramírez A, Ghio A, Cismondi IA, Depetris-Boldini C, Paschini-Capra A, Giner-Ayala A. Evaluación del tamizado de las enzimas lisosomales PPT1 y TPP-I en saliva en Lipofuscinosis Ceroideas Neuronales tipos Infantil (LCN-I) e Infantil Tardía (LCN-IT). En: Neuronal Ceroid Lipofuscinoses (Batten Disease) in Latin America – an update. Noher de Halac I, Dodelson de Kremer, R. Eds. Universidad Nacional de Córdoba, Córdoba; 2005: 194.

Descargas

Publicado

2019-03-30

Número

Sección

INVESTIGACIÓN