Los tajamares en Córdoba: sus primeros diques

Santiago Maria Reyna, ORCID 0009-0007-8226-6652
Maria Teresa Reyna, ORCID: 0000-0003-2114-0806
Maria del Rosario Labaque, ORCID 0009-0003-9711-8979

Resumen

La Compañía de Jesús introdujo un singular sistema cultural-social en Córdoba que influyó notablemente en la provincia. Los jesuitas contribuyeron significativamente a ciencias, tecnología, artes e ingeniería, creando sistemas hidráulicos para el riego y potencia hidráulica. En las Estancias Jesuíticas (Caroya, Alta Gracia, Santa Catalina y La Candelaria), construyeron diques llamados "Tajamares", siendo los más antiguos embalses artificiales en la Provincia de Córdoba. Aunque algunos están en funcionamiento, otros cambiaron su propósito o están inactivos, pero se mantienen en pie. Estos diques necesitan estudios para evaluar su estado y garantizar su funcionamiento. Los jesuitas diseñaron estas obras para integrarse al entorno con mínimos impactos, quizás debido a una visión utópica de aplicar el principio de la armo-

The tajamares in Córdoba: its first dams

Abstract

The Society of Jesus introduced a unique cultural-social system in Córdoba that greatly influenced the province. The Jesuits contributed significantly to science, technology, arts and engineering, creating hydraulics systems for irrigation and waterpower. In the Jesuit Estancias (Caroya, Alta Gracia, Santa Catalina and La Candelaria), they built dams called "Tajamares", being the oldest artificial reservoirs in the Province of Córdoba. Although some of them are in operation, others have changed their purpose or are inactive, but are still standing. These dams need studies to evaluate their condition and guarantee their operation. The Jesuits designed these works to integrate them into the environment with minimal impacts, perhaps due to
nía en todo aspecto y razones prácticas relacionadas a la construcción de obras hidráulicas. Lo descrito es el punto de partida para planificar medidas para su preservación, recuperación y conservación, conforme a la recomendación de la UNESCO de proteger sistemas hidráulicos en zonas patrimoniales. Con este objetivo el grupo realizó estudios hidrológicos, batimétricos, topográficos y de estabilidad en Tajamares de cuatro estancias jesuíticas que buscan comprender su funcionamiento y proponer medidas para su resguardo y conservación desde aspectos hidráulicos, estructurales y patrimoniales.
Palabras claves: tajamares, hidráulica, patrimonio, jesuitas.
a utopian vision of applying the principle of harmony in all aspects and practical reasons related to the construction of hydraulics works. This is the starting point for planning measures for their preservation, recovery, and conservation, in accordance with UNESCO's recommendation to protect hydraulic systems in heritage areas. With this objective in mind, the group carried out hydrological, bathymetric, topographic and stability studies in the Tajamares of four Jesuit estancias in order to understand their functioning and propose measures for their protection and conservation from hydraulic, structural and patrimonial aspects.
Key words: dams, hydraulics, heritage, Jesuits.

Introducción

\mathscr{L}
Compañía de Jesús fue fundada por San Ignacio de Loyola en 1540, sus miembros son conocidos como jesuitas. Esta orden ocupó un lugar de importancia en la colonia española que hoy es Argentina. Se implantó en la Ciudad de Córdoba en 1599^{1}, estableciendo en 1609 la capital de la Provincia Jesuítica del Paraguay que abarcaba parte de la República Argentina, norte de Chile, Uruguay, Paraguay y Bolivia (Figura 1).

En 1767 fueron expulsados de los dominios españoles en América por el Rey de España, Carlos III. En este lapso, la Compañía de Jesús estableció un sistema cultural-social único en la América

[^0]

Figura 1: Parte del mapa colonial de Hiaillot del Siglo XVII. Biblioteca Nacional de Santiago de Chile.

Hispana que marcó el desarrollo de la actual provincia de Córdoba. El sistema se organizó alrededor de las empresas educativas y espirituales de la Compañía, dando origen al Colegio Máximo en 1610, a la Universidad (hoy, Universidad Nacional de Córdoba) en 1613, al Colegio Convictorio de Nuestra Señora de Monserrat en 1687 y al Noviciado, que se conocen hoy como "Manzana Jesuític"", declarada por la UNESCO Patrimonio de la Humanidad en el año 2000.

Con el objetivo de sostener su obra pastoral y pedagógica, los jesuitas necesitaron buscar independencia económica respecto a la población española. Con ese fin formaron Estancias entre el siglo XVII y principios del XVIII. En 1616 y 1618 surgieron las dos primeras: Caroya y Jesús María. Luego se incorporaron Santa Catalina (1622) y Nuestra Señora de Alta Gracia (1643). Más tarde, La Candelaria (1683). Así se formó lo que se conoce como "el arco Jesuítico", que
contaba con aproximadamente 900.000 ha , ocupando desde los primeros faldeos de las Sierras Chicas hasta un sector de la cumbre de las Sierras Grandes (Figura 2).

Las cinco estancias que perduran son tipológicamente similares y derivan de la del tipo convento europeo (Figura 3), adaptado para responder a los requerimientos de la producción agropecuaria. Den-

Figura 2: Territorio abarcado por las estancias jesuíticas, 1616-1767.

Figura 3: Tipología de las estancias. Estancia Santa Catalina.
tro de la similitud tipológica son diversas en la expresión arquitectónica. Cada una, dada la gran extensión, tenía un sistema de puestos, aunque las mujeres y niños permanecían en la ranchería.

Las estancias jesuíticas eran grandes establecimientos agro-ganaderos destinados a sostener económicamente la tarea que se desarrollaba en la Manzana Jesuítica. Se situaban la más distante, La Candelaria, a 130 km de Córdoba y la más cercana, Alta Gracia, a 30 kilómetros aproximadamente. Contaban con puestos, corrales y potreros, huertas, chacras para cultivo de trigo y maíz, tajamares y acequias para el riego de cultivos y funcionamiento de molinos de agua y atahonas, o molinos secos. También contaban con obrajes para trabajos de carpintería, herrería, curtiembre y tejidos, jabonerías y panaderías, hornos de cal y ladrillos. El sistema productivo estaba centrado en la mano de obra esclavizada y tenía el objetivo de producir todo lo necesario para el consumo vendiendo la producción sobrante. Los aborígenes, tenían categoría de súbditos reales, es decir, eran "conchabados" y parte de la remuneración era pagada con la "moneda de la tierra".

En el marco de su proyecto, los jesuitas produjeron importan-
tes aportes a las ciencias, la tecnología y las artes. El conjunto de estancias representó la primera organización agropecuaria a nivel regional. Fue dotada de elementos y recursos técnicos avanzados para su época (S. XVIII), y constituyó un modelo histórico de manejo de producción rural ${ }^{2}$. Además, construyeron novedosos sistemas hidráulicos para el riego de las tierras de cultivo y el aprovechamiento de la potencia hidráulica, así como también iniciaron el uso de la cal nativa en la construcción. En la ejecución de la infraestructura, los jesuitas supieron aprovechar al máximo las condiciones que ofrecía el territorio de Córdoba para establecer un aspecto primordial en su desarrollo: los sistemas hidráulicos. Los sistemas hidráulicos estaban compuestos por diversas estructuras entre las que se destacaba el Tajamar o presa de embalse.

Los Tajamares jesuíticos forman parte de los diques más antiguos de Latinoamérica y son los más antiguos de la Provincia de Córdoba, todos se conservan; algunos de ellos continúan hoy en funcionamiento conservado funciones para las que fueron creadas, otros cambiaron sus fines o se encuentran actualmente fuera de uso; pero todos se mantienen en pie y en condiciones de ser puestos nuevamente en funcionamiento con un mínimo de reparaciones.

Asombra la destreza de aquellos monjes que lograron crear una civilización en un medio inhóspito. Su empresa estuvo fundada en conocimientos y tecnologías que hicieron que estas obras, durante siglos abandonadas a su suerte, perdurarán hasta nuestros días. Obras que se proyectaron sin cálculos, sin conocimientos formales de geotecnia, estructuras o hidrología se mantienen erguidas frente a otras, más modernas, que aún con la aplicación de nuevas tecnologías solo dejaron algunos vestigios que terminarán por desaparecer en el tiempo. En este sentido constituyen "Bienes Culturales", los

[^1]cuales son objetos de conocimiento y válidos de ser conservados ya que son representativos en la historia y en la evolución social, cultural, tecnológica, urbana y arquitectónica de un grupo humano, por otra parte integran las manifestaciones y testimonios significativos de la actividad humana. ${ }^{3}$

Hay en la historia de estos monjes una lección de ingeniería. Esta lección puede ser aprendida si se busca la respuesta a la pregunta espontánea que surge cuando de pie frente a ellas se las observa: ¿cómo duraron tanto tiempo? Fue en esta búsqueda que se realizaron estudios a fin de relevar y determinar el estado actual de las obras para los Tajamares de las Estancias Santa Catalina, Alta Gracia, La Candelaria y de Caroya.

Caracterización General del Ambiente

La zona geográfica donde se asentaron las estancias jesuíticas corresponde a las Sierras Pampeanas. Son antiguas y de poca altura. La zona serrana está caracterizada por una gran abundancia de ríos, arroyos y vertientes. Estos cauces presentan en su mayoría recorridos en dirección oeste-este presentando máximos caudales durante el verano, con crecidas violentas e inesperadas tras las lluvias (eventos aluvionales).

Con respecto a las características climáticas en la zona, las lluvias son abundantes desde mediada la primavera hasta mediado el otoño; el semestre frío, en cambio, acusa escasas precipitaciones. Las precipitaciones medias anuales van desde los 600 a 900 milímetros. La evapotranspiración potencial en la región de la Provincia de Córdo-

[^2]ba fluctúa entre los 880 y los 1.080 milímetros anuales.
Este ambiente posibilitó a las estancias de los jesuitas proveerse de buenas maderas, piedras graníticas y calcáreas para la construcción; valles fértiles para el pastoreo y la siembra, siendo fundamental los arroyos y vertientes para el riego y generación de energía para los molinos y batanes. En el caso de la estancia Santa Catalina, el Tajamar está ubicado en una zona fitogeográfica de bosque serrano, con pastizales matorrales, y bosques secundarios. El uso del suelo al presente abarca asentamientos rurales dispersos y zonas productivas para la explotación agrícola-ganadera, predominando las actividades agrícolas de soja y trigo que favorecen la expansión del agro produciendo el desmonte del bosque nativo. En la zona serrana de pastizales naturales la ganadería de pastoreo también produce una degradación considerable, con lo que es necesario una política de mantenimiento y preservación de las zonas territoriales de los bosques en estado de naturaleza que tienen un valor geográfico, ecológico y paisajístico.

Los Sistemas Hidráulicos de las Estancias

Debido al déficit hídrico de la zona, las primeras obras de los jesuitas dentro de las estancias fueron de ingeniería hidráulica. Sus sistemas hidráulicos tenían por finalidad el suministro de agua para riego de sus campos y huertas y suministro de fuente de energía para el movimiento de sus molinos y batanes. Dentro de la estancia, el agua era utilizada para uso doméstico y cumplía otra novedosa función, desconocida por los habitantes de estas tierras: sistema de recolección de aguas servidas.

La propuesta de establecer embalses, no sobre los cauces, sino, en derivación, lejos de los ríos y realizar la alimentación de estos espejos de agua solo a través de obras de toma y canales de conducción,
resolvía el problema de las crecidas violentas e inesperadas que caracterizan los cauces de la zona; y muestra la astucia de estos hombres para adaptarse al medio en el que se asentaban, no desafiando, si no respetuosos del poder de la naturaleza. Esta elección les permitió a estas obras no sólo subsistir en sus días de producción sino perdurar hasta nuestros días.

Un resumen de los tajamares estudiados se presenta en la Tabla 1.
Tabla 1. Resumen de las principales características de los embalses.

	Ańo de construcción	Altura del cierre (m)	Volumen del embalse $\left(\mathrm{m}^{3}\right)$	Superficie del espejo (Ha)
Santa Catalina	1622	8,40	57000	6,71
Alta Gracia	1643	5,00	29500	2,53
Colonia Caroya	1616	2,20	4500	0,50
La Candelaria	1683	2,20	5500	0,50

En general se pueden dividir en dos grupos de acuerdo a la magnitud de las obras de cierre y el tamańo de sus embalses. Los Tajamares de Santa Catalina y Alta Gracia tienen magnitudes de los embalses y dimensiones de los cierres similares entre sí; lo mismo ocurre entre los Tajamares de Colonia Caroya y La Candelaria. Otra similitud se presenta en que las dos primeras se encuentran actualmente con sus espejos de agua y las últimas dos (quizás debido a sus escasas dimensiones) se encuentran vacías. Además, todos los cierres fueron construidos con mortero de cal y cantos.

El patrimonio de las estancias y la Manzana jesuíticas es mucho más vasto que la propia arquitectura, pues lo magnifica una vasta organización territorial que se manifiesta en otras edificaciones que incluyen trabajos de ingeniería civil, arquitectura rural y vernácula, los cuales observados de manera individual quedan aislados del conjunto perdiendo los altos valores que este representa ${ }^{4}$. El cuidado de es-

[^3]tas estructuras hidráulicas requiere de estudios para su valorización, por lo cual, establecer el estado actual y asegurar el funcionamiento de estos embalses es el punto de partida para planificar medidas que aseguren su recuperación y conservación. A continuación, se describe el estado actual de las Estancias y sus sistemas hidráulicos.

Estancia Santa Catalina (1622)

Santa Catalina integra la Red de Conjuntos Jesuíticos de Córdoba - Patrimonio del Mundo, que es coordinada por el Gobierno de la Provincia de Córdoba. Es una propiedad privada de uso residencial, pero gestionada con criterio museístico a los efectos de cumplir con las directrices del Estado Nacional, Provincial y de la UNESCO, fundamentalmente en cuanto a comunicación y conservación. Los recursos económicos provienen del consorcio de propietarios.

El Tajamar comenzó a construirse en 1656 en un paraje rural, cuya zona está caracterizada por ríos y arroyos que nacen en la vertiente oriental de la Sierra Chica. La estancia y su tajamar siguen rodeados de un paraje de tipo rural, con zonas de campos y casas de veraneo, pero su imagen se mantiene intacta. El sistema de toma, alimentación por canales y descarga sigue funcionando, aunque ha experimentado algunos problemas de derrumbes al igual que el muro que en a principios del ańo 2003 presentó problemas, encontrándose puntos con hundimientos. Durante el ańo 2006, se le realizaron tareas para su recuperación (Figura 4) luego de reiterados intentos por parte de UNESCO para promover la protección del patrimonio jesuita, pero la falta de financiamiento en las tareas de mantenimiento dificulta la puesta a punto de estos valiosos sistemas.

Más allá del significado como patrimonio histórico-cultural, el sistema hidráulico original del siglo XVII, es actualmente la infraestructura vital que abastece a la población de la región de agua para uso doméstico, posibilita la cría ganadera y la producción agropecuaria.

La estancia de Santa Catalina tenía como objetivo productivo
fundamental la cría de mulas que después de ser aclimatadas en La Candelaria, se vendían en la feria de Salta para ser posteriormente trasladadas a las minas de plata de Potosí.

El sistema hidráulico actual alimenta una planta potabilizadora para la población de Santa Catalina y suministra agua para el riego por medio de acequias. Algunos tramos de las acequias están colmatados con sedimentos de desechos que trasladan nutrientes hasta el tajamar, por tal motivo hay una proliferación de plantas acuáticas que han disminuido sensiblemente la superficie del espejo de agua del Tajamar.

En el espejo aguas abajo del Tajamar, en el Batán, una de las acequias hacía uso del aprovechamiento de las aguas para el lavado de los tejidos de lana que luego se desengrasaban y blanqueaban. Se conservan los restos de piedra del batán y del molino y la piedra molar, donde trabajaron arqueólogos e ingenieros como en una meta tentadora de recuperación del patrimonio construido.

Figura 4: Esquema de Distribución de la Estancia Santa Catalina

Estancia Alta Gracia (1643)

La estancia y su Tajamar dieron origen a la actual Ciudad de Alta Gracia. El sistema hidráulico de alimentación y el de descarga han desaparecido bajo la trama urbana, pero el Tajamar sigue con su espejo y le confiere a la Ciudad una imagen única con la que es reconocida en todo el país. El suministro de agua al embalse se realiza actualmente por un conducto de PVC de 110 mm de diámetro que toma agua del acueducto que alimenta la planta de potabilización de la Ciudad de Alta Gracia. Este embalse sufrió una serie de transformaciones en la primera mitad del siglo XX: se disminuyó su cota original y su perilago se parquizó con fines de recreación que aún hoy se mantiene. Además, en el año 1938, en el extremo sudeste del embalse se demolió una parte del muro de cierre original para construir una explanada y sobre este un "Reloj Público" como monumento a los 350 años de la ciudad. En la Figura 5 se observa la disposición de las estructuras y la ubicación del reloj.

Figura 5: Ubicación de las estructuras principales de la Estancia de Alta Gracia.

Sobre el coronamiento del cierre se encuentra construida una calle con tránsito vehicular y parcialmente peatonal; y su espaldón es un relleno de material suelto en terraplén. La calle se encuentra sostenida por una viga que corre paralela al muro de cierre en toda su extensión y puntales cada seis metros. En el terraplén se encuentra: una zona de gradas de hormigón, un edificio, tolvas de hormigón, los restos del Molino del Tajamar y viviendas privadas. La disposición en planta de estos elementos se observa en el esquema de la Figura 6.

La cara de aguas arriba del cierre original respondería a las siguientes características: muro de lajones planos bien acomodados unidos con mortero de cal de pequeñas juntas; es de un ancho de sección de aproximadamente 1 m ; sobre el mismo se observa un recrecimiento del muro con características muy diferentes a las anteriores: piedras de gran tamańo y juntas de mayores dimensiones que las anteriores y de un ancho de sección menor ($0,80 \mathrm{~m}$). En la zona del muro, aproximadamente entre el molino y la tolva de hormigón, este recrecimiento se encuentra destruido (Figura 7).

Figura 6: Ubicación de las estructuras en la zona del muro

Figura 7: Zona del muro principal con el recrecimiento destruido.
Según los registros de la Municipalidad de Alta Gracia, el muro original fue destruido en la zona próxima a la estancia (una parte del cierre perpendicular y un cierre lateral) y se construyó uno nuevo con el objeto de disminuir el área ocupada por el embalse (ver Figura 8).

El muro de cierre ha presentado problemas de filtraciones y desmoronamiento y es aún motivo de monitoreo y reparaciones menores. También se presentaron grietas sobre el pavimento de la calle. La dirección de estas es en sentido longitudinal y en la dirección de la calzada. Se realizaron estudios para determinar el grado de estabilidad a la que se encuentra actualmente.

Figura 8: Encuentro entre el muro nuevo y el original en la zona aledaña al reloj.

Estancia de Caroya (1616)

En las cercanías de la estancia se asienta actualmente la Ciudad de Colonia Caroya. La Estancia con el paso de los tiempos fue utilizada para diversos fines como el de fábrica de armas blancas (tiempo durante el cual se utilizaba el agua del Tajamar para la fragua) y hospedaje de inmigrantes. En la actualidad su tajamar se encuentra en buenas condiciones, pero vacío. Sus canales de ingreso y evacuación han desaparecido y no se conoce con exactitud cuál era el sitio de la obra de toma original. Algunos historiadores definieron sitios que, luego de los estudios topográficos y análisis hidrológicos se debieron descartar. Un esquema de distribución de la Estancia se observa en la Figura 9.

Figura 9: Esquema de distribución de la Estancia Caroya

Estancia de La Candelaria (1683)

Esta estancia está asentada en un paraje inhóspito de las sierras de Córdoba. Aún hoy el acceso a la misma es dificultoso. El casco principal fue localizado en una pequeña hondonada protegida de los vientos, haciéndola poco visible a la distancia. Su sistema hidráulico está desaparecido o destruido. No se conoce con exactitud el sitio de la obra de toma, pero aún se conserva una parte importante de los muros del tajamar. Un esquema de distribución de la Estancia se observa en la Figura 10.

Figura 10: Esquema de distribución de la Estancia de La Candelaria
Se describen, analizan y comparan en los puntos siguientes los distintos elementos que conformaban los sistemas hidráulicos para cada una de las estancias.

Obras de captación

Para la optimización y el aprovechamiento del recurso hídrico, los jesuitas construyeron muros para derivación sobre los cauces. Las ubicaciones elegidas eran secciones de control naturales en zonas de cotas dominantes, con lechos rocosos aflorantes (que le daban estabilidad e impermeabilidad al cierre) sobre los que se asentaban los muros. Esta ubicación daba la ventaja de tener una cota dominante, la estabilidad y la impermeabilidad del lecho, lo que les permitía trabajar sin necesidad de conocimientos geotécnicos.

Estos diques se levantaban con piedras asentadas con mortero de cal y daban origen a un sistema de represas que finalmente descargaban en un canal o acequia que llevaba agua hasta los tajamares. Estas obras constituían auténticas presas de derivación.

Para el caso de la obra de Santa Catalina, el Sistema Hidráulico está centrado en el espacio físico contenido al oeste desde la toma de agua sobre el Río Santa Catalina (antiguamente llamado Simpis), al noreste por el casco y el camino a que va a Pozo Correa, al oeste por el camino que va a La Pampa y al sur por el Tajamar Quebrado.

La obra de toma (Figura 11) se encuentra aproximadamente a 4 km del casco, aprovechando dos laderas con abundantes afloramientos rocosos que encierran el río. Allí se construyó un azud nivelador con dos cierres que aún hoy se conservan. Contiene en el margen derecho una compuerta de dos hojas y un desarenador que regulan la obra de toma. El dique forma un espejo de agua de aproximadamente $400 \mathrm{~m}^{2}$.

En la Estancia Alta Gracia, el sistema nacía en una toma ubicada sobre el río Los Paredones. Allí se construyó un dique de contención conocido como 1° Paredón que se conserva en buenas condiciones. Aguas arriba de este se ubica otro muro de proporciones importantes, con un ancho y doble muro de piedra; se cree que esta obra está inconclusa y se la conoce como 2° Paredón. Actualmente no quedan vestigios del canal derivador.

Figura 11: Obra de toma: Desarenador y compuerta de Santa Catalina.

Figura 12: Sistema hidráulico de Santa Catalina.

Figura 13: Muro sobre Arroyo Los Paredones. Salida actual del agua.

No se observan vestigios de las obras de captación de los Tajamares de las Estancias La Candelaria y de Caroya.

Sistemas de acequias

En lo referente a los canales y obras de conducción en general, con muy buen criterio los cambios de régimen hidráulico se realizaban en estructuras revestidas, se conducía el agua fundamentalmente en régimen subcrítico, y los tramos supercríticos, o rápidas, eran cortos y también revestidos. Los canales principales se llevaban con la mínima pendiente necesaria para garantizar dominancia para riego sobre la mayor superficie posible.

El sistema más importante estudiado correspondía al de la Estancia Santa Catalina. La compuerta da paso a una acequia que tiene un tramo de 150 m tallado en piedra (Figura 14) que consigue una diferencia de nivel significativa. En algunos tramos, cuando las laderas lo exigieron se hicieron cortes en la superficie y se levantó un murete de piedra tomada con mortero de cal. En algunos puntos se realizaron intervenciones con ladrillo y mortero cementicio.

Figura 14: Recorrido de la acequia de Santa Catalina.

Desde el azud, el agua es conducida por medio de la acequia que luego se divide en dos. Se sortean en su recorrido de 7 km accidentes de relieve por medio de conductos subterráneos de dimensiones importantes (verdaderas obras de arte) y alternan en todo su trayecto tramos a cielo abierto con otros subterráneos, con soleras revestidas con mampuestos de roca del lugar o ladrillos de fábrica, laterales y cierre superior de mampostería o mediante túneles excavados en roca (Figura 15). Están deteriorados solo en algunos tramos, pero en gran medida funcionando ${ }^{5}$.

En la Estancia de Alta Gracia, desde la obra de toma ubicada en Los Paredones, el agua era conducida por medio de una acequia no revestida, desde la cual se regaba también la huerta. En la actualidad esta acequia casi ha desaparecido debido al crecimiento de la ciudad, quedando sólo algunos vestigios de su paso.

Solo quedan algunos vestigios aislados de las obras de toma y conducción para los Tajamares de las Estancias La Candelaria y de Caroya.

Figura 15: Vista de un tramo de acequia abovedada y revestida

[^4]
Los Embalses

El principal aspecto que se destaca en estos Tajamares es que todas las obras son "laterales", es decir no embalsan sobre el cauce del río, sino que lo hacen en vasos alejados, alimentados a través de una derivación. Esta manera de embalsar les permitía resolver el problema de seguridad de la presa (garantizando la permanencia de la obra) que se presentaba con la ocurrencia de grandes avenidas, por lo que no necesitaban estructuras de descarga de importancia para dar seguridad a la obra contra el rebasamiento.

La elección de embalses laterales tenía también la ventaja de no actuar como barrera sobre el cauce, evitando generar deposición de sedimentos en el embalse con su consecuente disminución del volumen útil.

Respecto a la seguridad, las obras de almacenamiento de envergadura no están aguas arriba de las construcciones de valor y poblaciones, sino que están aguas abajo, lo que limitaría los daños en caso de falla.

En la Estancia Alta Gracia el Embalse artificial del Tajamar fue creado para optimizar el aprovechamiento del recurso hídrico como un depósito de agua para el funcionamiento de dos molinos y un batán y para el riego de las huertas. El Tajamar en la actualidad no cumple esas funciones, es un "paisaje cultural" que tiene un papel social activo como espacio de reservación urbana de valor escénico de excepcional belleza, y de significación por su importancia histórica, social, artística, arqueológica, constructiva y científica de gran relevancia urbana por encontrarse en el casco céntrico de la ciudad ${ }^{6}$.

Aguas abajo del Tajamar, se encuentra un Molino prácticamente

[^5]abandonado, al que se accede por una calle pavimentada.

Figura 16: Ubicación del embalse de la estancia Alta Gracia.

Los Muros de Cierre

Al igual que las presas derivadoras, los muros de los cierres se realizaron todos sobre la roca aflorante, solucionando el problema de filtraciones y subpresiones. Los conductos de descarga profunda de las presas (descargadores de fondo) estaban apoyados directamente sobre la roca de fundación, esto evitaba posibles roturas con daños a la presa.

De un estudio preliminar, fue posible distinguir en los muros de cierres de las estancias dos tipos de diseño:

1) Un muro de piedra con mortero de cal con terraplén de sostenimiento aguas abajo: este cierre se observaba en los Tajamares de Caroya, La Candelaria y Alta Gracia. Las dos primeras son presas de
pequeñas dimensiones.
2) Dos muros de piedra con mortero de cal y suelo compactado entre ellos que se observaba en el cierre de Santa Catalina. Estudios posteriores que se analizan en los puntos siguientes, mostraron también ser esta la tipología seguida para la presa de Alta Gracia.

Teniendo en cuenta las fechas de la construcción de los tajamares, se buscaron antecedentes, a fin de poder plantear análisis estructurales de los muros de cierre de la Estancias. De los antecedentes estudiados, se encuentra que las más representativas que pueden haber influido en el diseńo encontrado en los muros de las mencionadas estancias, son algunas presas de origen árabe y otras de origen español post medievales.

En lo constructivo, se destaca el cuidado seguido de las reglas del buen arte del oficio. Esto garantizaba que los diseńos sobre base empírica tuvieran respuesta similar a los ejemplos sobre los cuales se basaban.

Primer Grupo

El primer grupo está formado por los cierres de la Estancias de Caroya y La Candelaria (cierres más pequeños).

Los antecedentes más representativos son las del origen romano que consistían en un muro de retención con un espaldón de tierras aguas abajo (Figura 17). En algunos casos, a fin de evitar la rotura del muro, se le daba gran dimensión y era escalonado hacia aguas abajo, o en el caso de ser de escasa dimensión, se agregaban contrafuertes del lado de aguas arriba, para evitar la rotura bajo el empuje del terraplén cuando se encontraba con la condición de embalse vacío ${ }^{7}$

[^6](Schnitter, 2000). Ejemplos de cierres con características similares son los cierres de presa de Ternavaso (1600) y Granjilla 2 (1560).

Figura 17: Esquema de cierre perfil romano.
También se llevó a cabo un análisis de estabilidad de los muros de cierre de ambas Estancias considerando la geometría que presentan. Se determinaron posibles mecanismos de falla y establecieron características de los materiales. Para ello se determinaron los límites de plasticidad, granulometrías, consistencia, impermeabilidad, estabilidad en el tiempo ${ }^{8}$. Los resultados mostraron que las estructuras verifican la estabilidad, con y sin embalse.

El cierre del Tajamar de Alta Gracia no verificó estabilidad bajo estas condiciones, lo que implicaba que existían elementos estructurales no considerados.

[^7]
Segundo Grupo

En el segundo grupo se encuentran el cierre de las Estancia de Santa Catalina y también el cierre de Alta Gracia (se muestra en los próximos análisis), el primero de dimensiones más importantes, cuyos disénos de cierre responden al tipo de la presa de Thalba (Siglo VII), Arquis (1704) y Carom (1766) ${ }^{9}$. Son presas del tipo de gravedad, con dos muros exteriores de mampostería en seco y un núcleo de tierra entre ellas (Figura 18). En estos cierres la impermeabilidad estaba dada por el muro aguas arriba. La capacidad de oponerse al empuje hidrostático la realizaban en conjunto los dos muros y el material del relleno.

Figura 18: Esquema de cierre con muros de mampostería.

[^8]Este grupo sigue el diseńo empleado por las de origen árabe. La que más responde es la presa de Thalba construida cerca de La Meca en Arabia Saudí en el siglo VII.

El desconocimiento de la interacción de materiales con características estructurales y reológicas muy diferentes (como los suelos de relleno, enrocados y muros de cal y canto) llevó a problemas en el tiempo, con deformaciones distintas para los distintos materiales, lo que implicó sobrecargas sobre los más rígidos y oquedades sobre los materiales sueltos. Los problemas asociados al uso de materiales muy diferentes en la construcción interactuando inadecuadamente fueron en el pasado, como en el presente, de difícil predicción y prevención.

Un análisis de las características de los cierres de las Estancias Santa Catalina y Alta Gracia se presenta en los puntos siguientes.

Santa Catalina

El cierre es un dique de gravedad compuesto de dos paramentos verticales de mampostería de piedra de $8,40 \mathrm{~m}$ de altura máxima en la cara seca; de aproximadamente 60 cm de espesor cada uno y separados unos $5,4 \mathrm{~m}$, con contrafuertes sobre la cara seca. Entre ellos tiene un relleno de suelo del lugar compactado. La longitud del coronamiento es de $86,5 \mathrm{~m}$. La superficie es de 6,7 Ha y su volumen es de $57.000 \mathrm{~m}^{3}$.

A principios del año 2003 se presentaron problemas con el material suelto de relleno que existe entre los paramentos de aguas arriba y abajo. En particular, se encontraron dos puntos con hundimientos; uno ubicado en coincidencia con la obra de descarga, con material faltante que pudo ser debido a pérdidas de agua con su correspondiente lavado de material.

Se debió vaciar el Tajamar y excavar en forma manual, sin el empleo de maquinarias pesadas. Completada la reparación de la descarga, se rellenó la excavación en capas, utilizando una mezcla de suelo-ce-
mento de consistencia de barro blando para evitar los esfuerzos de tracción a que se hubieran visto sometidos los muros durante la compactación que hubiera sido necesaria en caso de utilizar otro material.

Alta Gracia

El muro de cierre es de 176 m de largo por 5 m de altura desde el fondo del embalse hasta el coronamiento. Su volumen actual es de $29.500 \mathrm{~m}^{3}$ (muy disminuido con respecto a su volumen original). Presenta como sección actual un muro de cierre aguas arriba y un terraplén de apoyo. Como ya se mencionó, en la actualidad, por encima de este relleno, entre los dos paramentos de mampostería de piedra, circula una calle pavimentada con tránsito vehicular ${ }^{10}$.

El Terraplén ha presentado desmoronamientos y es aún motivo de monitoreo y reparaciones menores por parte de las autoridades municipales. También se presentaron grietas sobre el pavimento de la calle que circunscribe al Tajamar. La dirección de las mismas es en sentido longitudinal y en la dirección de la calzada.

Se realizaron análisis de estabilidad al cierre con estas características, encontrándose que no era estable en las condiciones relevadas, lo que llevó a plantear la posibilidad de que la sección original no fuera la que se observa en la actualidad y que debía existir algún tipo de elemento no considerado que le confiriera estabilidad.

Del estudio de las referencias bibliográficas de presas de la época y análisis de estabilidad, se encontraron algunos antecedentes importantes que plantearon las hipótesis a considerar respecto de la forma de trabajar del tajamar estudiado. Las características del cierre

[^9]respondían bastante bien al diseńo adoptado en Santa Catalina. Si éste era el caso, debía existir un segundo muro bajo la actual calzada a una distancia aproximada de 6 metros del muro visible.

Esta suposición permitía explicar las distintas fisuras desarrolladas sobre la calzada y el desmoronamiento del terraplén. Se podría explicar que la primera parte de la calzada no se deforma ni está fisurada porque se encuentra asentando sobre dos muros, en tanto que la segunda parte está colgada sobre el muro enterrado y el terraplén, el cual al estar inestable ocasiona el asentamiento y las fisuras longitudinales sobre la calzada, pero no implican inestabilidad en el muro visible del tajamar.

Frente a tantos elementos que convalidaban la posible existencia de un segundo muro, se realizó una excavación exploratoria en la zona (Figura 19).

La distancia a la que se comenzó la excavación se fijó en 6 metros desde el muro de aguas arriba, que se corresponde con la distancia entre los muros del Tajamar de Santa Catalina y es coincidente con la deformación del pavimento. La excavación convalidó la hipótesis, encontrándose el muro que los análisis de estabilidad y bibliográficos predecían.

Figura 19: Esquema de ubicación en planta y corte de la zona de excavación Tajamar de Alta Gracia.

La obra de descarga

Las salidas del agua del embalse estaban reguladas por una compuerta ubicada agua arriba del paramento mojado. La descarga en todos los Tajamares se producía a través de un conducto abovedado de ladrillo que contenía una rápida con el fin de acelerar los caudales para ingresarlos al molino o al batán que se encontraban a la salida de la misma. Luego de pasar por estos aprovechamientos eran conducidos por canales abiertos sin revestimientos para el riego de campos y huertas.

En Santa Catalina, la salida está regulada por una compuerta ubicada aguas arriba del paramento mojado. La descarga se produce a través de un conducto abovedado de ladrillo de $0,60 \mathrm{~m}$ de altura. La misma comienza en una rápida, luego continua con un salto para luego terminar en un tramo horizontal. Se encuentra en buenas condiciones y funcionando.

Figura 20: Compuerta de Salida ubicada sobre el muro aguas arriba. Vista de la descarga por el conducto de salida.

La obra de descarga en Alta Gracia es de características similares a Santa Catalina. La descarga se produce a través de un conducto abovedado de ladrillo de 60 centímetros de altura. La misma comienza en una rápida, luego continúa con un salto para luego terminar en un tramo horizontal. Actualmente se encuentra en malas condiciones y sin funcionamiento.

En el Tajamar de Caroya la estructura se encuentra en buenas condiciones, pero sin funcionamiento. La descarga se produce a través de un conducto abovedado de ladrillo de 60 centímetros de altura. La misma comienza en una rápida, luego continúa con un salto para luego terminar en un tramo horizontal. Esta estructura era utilizada como descargador de fondo, que permitía la conducción del agua hacia el molino hidráulico, a través de un canal de sección rectangular cuyas dimensiones son $0,25 \mathrm{~m}$ de ancho por 0,30 metros de altura, revestidos con piedra. Este descargador de fondo era controlado por una compuerta. A pocos metros del orificio se encuentra una derivación, que alimentaba los Secaderos y el Batán, en un canal que tiene la misma sección.

En La Candelaria, debido a la ubicación en el predio de la descarga, el Tajamar sólo suministraba agua para el molino y el batán, no encontrándose espacio para huertos aguas abajo. El riego se debía realizar antes del ingreso al embalse. Sobre el muro de cierre se encuentran dos orificios, uno superior y otro inferior. Son orificios de sección rectangular que tienen una dimensión de $0,15 \times 0,20 \mathrm{~m}$. También se presenta una escotadura de sección trapecial de dimensiones $0,60 \times 0,75 \mathrm{~m}$. El orificio inferior desembocaría a un canal corto revestido de madera que es el que pondría en funcionamiento el molino hidráulico. Este orificio debía de estar controlado por algún tipo de compuerta.

Relevancia ambiental

El enfoque ambiental de los tajamares en Córdoba se basa en una serie de principios fundamentales para salvaguardar su valor ecológico y su importancia para la comunidad. Estos lineamientos son cruciales para asegurar la preservación y sostenibilidad del entorno promoviendo la responsabilidad en todos los niveles de su gestión.

Antes de llevar a cabo cualquier actividad de restauración o recuperación en los tajamares, se deberían realizar evaluaciones exhaustivas para anticipar las posibles repercusiones sobre el medio ambiente. Esto garantiza que las decisiones consideren el impacto a largo plazo. Además, se debe tener especial cuidado en las medidas concretas que se implementarán para prevenir la contaminación en las áreas clave, como el parque y el embalse. Esto asegura que el ecosistema acuático y terrestre se mantenga libre de agentes contaminantes perjudiciales.

Una de las mejores maneras de difundir la responsabilidad ambiental a la ciudadanía es llevando a cabo campańas de divulgación para educar sobre las formas adecuadas de uso y manejo de los tajamares. El cambio de visión hacia una consideración de los Tajamares como factor de desarrollo valorándolos como un recurso apreciable y el fomento de actividades solo si se prevén sus acciones en el medio ambiente promueve la participación ciudadana en la doble perspectiva de adopción de pautas de comportamiento adecuadas respecto a estos bienes patrimoniales y su obligación de conservar y exigir la conservación del patrimonio histórico y natural.

La adopción de estos lineamientos ambientales para los tajamares en Córdoba es esencial para mantener la riqueza natural y cultural de la región. Al cumplir con estos principios, se garantiza que las generaciones presentes y futuras puedan disfrutar de estos espacios en armonía con la naturaleza.

Conclusiones

Corresponde valorar estas obras de carácter ingenieril-arquitectónico en las que el esfuerzo de la intervención humana transformó el medio físico natural a través de los procesos de construcción del sistema hídrico. La protección, conservación y restauración que se han realizado tanto en la toma como en las acequias y el propio muro de cierre de los tajamares ha permitido que algunos de estos continúen cumpliendo casi con la totalidad de las funciones para las que fueron creados: suministro de agua para riego y consumo humano. Estas acciones fueron posibles debido a que no hubo en las zonas de emplazamiento una expansión urbana de importancia, sino aisladas, que no invadieron sus terrenos y zonas de desarrollo y mantuvieron las actividades originales del lugar: el cultivo y la ganadería.

Es de importancia destacar el diseńo amigable con el ambiente de las obras realizadas en las Estancias Jesuíticas en estas zonas de Córdoba. Las mismas se integran al ambiente natural generando los mínimos impactos posibles. Es probable que esto haya sido consecuencia de la conjunción de dos factores: la visión utópica de los emprendimientos de las Estancias (pertenecientes al proyecto jesuítico encarnado en las misiones) que llevaba a tener como principio la armonía en todo aspecto, y razones más prácticas emanadas de las experiencias previas en la construcción de obras hidráulicas, que llevaban a no actuar sobre el ambiente más de lo estrictamente necesario si se pretendía que la obra se mantuviera en el tiempo y fuera lo más económica posible.

En lo hidráulico, se destacan varios aspectos. En el diseño, todas las obras son "laterales", es decir no embalsan el río en su propio cauce, sino que lo hacen en vasos auxiliares a través de una derivación. Esta manera de embalsar tiene las ventajas de no retener sedimentos (los vasos no están embancados aún con el tiempo transcurrido) y de no tener que resolver el problema de las grandes avenidas, lo que
llevaría a la necesidad de obras de evacuación de importancia y de conocimientos hidrológicos no disponibles en la época. En lo referente a los canales y obras de conducción en general, con muy buen criterio, los cambios de régimen hidráulico se realizaban en estructuras revestidas, se conducía el agua fundamentalmente en régimen subcrítico, y los tramos supercríticos o rápidas eran cortos y también revestidos. Las obras de toma o azudes se hacían en secciones de control naturales, lo que daba la ventaja de la cota y la estabilidad del lecho. Los canales principales se llevaban con la mínima pendiente necesaria para garantizar dominancia para riego sobre la mayor superficie posible. En lo atinente a la seguridad, es interesante ver que las obras de almacenamiento de envergadura no están aguas arriba de las construcciones de valor y poblaciones, sino que están aguas abajo, lo que limitaría los daños en caso de falla.

En lo geotécnico, el aspecto más importante a resaltar es que las obras de magnitud se realizaron todas sobre la roca aflorante. Los conductos de descarga profunda de las presas (descargadores de fondo) estaban apoyados directamente sobre la roca de fundación, esto evitaba posibles roturas con daños a la presa. Por otro lado, el desconocimiento de la interacción de materiales con características estructurales y reológicas muy diferentes (como los suelos, enrocados y muros de cal y canto) llevó a problemas en el tiempo, con deformaciones distintas para los distintos materiales, lo que implicó sobrecargas sobre los más rígidos y oquedades en otros casos. Los problemas asociados al uso de materiales muy diferentes en la construcción, interactuando inadecuadamente, fueron en el pasado, como en el presente, de difícil predicción y prevención.

En lo constructivo, se destaca el seguir con cuidado las reglas del buen arte del oficio. Esto garantizaba que los diseños sobre base empírica tuvieran respuesta similar a los ejemplos sobre los cuales se basaban. La calidad de la construcción era excelente en las obras que sobrevivieron.

En resumen, diseños amigables con el ambiente, basados en el conocimiento empírico, que evitaran los imponderables más influyentes sobre la seguridad de las presas, crecidas (hidrología) y características de las fundaciones (geotecnia), y el seguimiento de diseños probados por la experiencia con muy buena calidad constructiva, son la respuesta a la pregunta que el visitante se hace al ver estos tajamares en pie: ¿cómo duraron tanto tiempo?

Finalmente, es necesario mencionar que las autoridades que administran en la actualidad los Tajamares Jesuíticos deben realizar la tutela hidráulica y ambiental, con la aplicación correcta de la normativa vigente. De la mejor manera posible y de forma continua deben planificar, coordinar y controlar las variables hidráulico - ambientales, permitiendo para ello las múltiples interacciones necesarias. Poner en funcionamiento y revalorizar los tajamares dará la posibilidad de valorizar estos bienes en su más amplia concepción lo cual traerá consigo beneficios adicionales.

Una síntesis valorativa y crítica producto del análisis e interpretación de los paisajes culturales podrá dar las orientaciones necesarias para una adecuada intervención en la restauración y conservación de estos diques que son los más antiguos de la Provincia.

Bibliografía

- DI STEFANO, Roberto, Historia de la iglesia argentina: desde la Conquista hasta fines del siglo XX, Buenos Aires, Editorial Sudamericana, 2009.
- GARCÍA MONTAŃO, Clara R., "Fundamentos de la interpretación integral y crítica del patrimonio cultural", en Congreso Internacional Patrimonio Cultural, Universidad Nacional de Córdoba y Centro Cultural Canadá Córdoba, 2004.
- GARCÍA MONTAÑO, Clara R.; REYNA, Santiago; REYNA,

Teresa; REYNA, Estela; LÁBAQUE, María; SANTUCHO, Pedro; MURIALDO, Raquel; PESCI, Hugo, "Tajamares jesuíticos de Alta Gracia y Santa Catalina: valorización, conservación y recuperación". Universidad Nacional de Córdoba, 2004.

- MEDINA, Rebeca, "Manzana y estancias jesuíticas de Córdoba", en Huellas e identidades: sitios de memoria y culturas vivas de los afrodescendientes en Argentina, Paraguay y Uruguay. Uruguay. UNESCO, 2011.
- PAGE, Carlos A., "La conservación del patrimonio jesuítico en Córdoba", en II Jornada de Técnicas de Reparación y Conservación del Patrimonio, Buenos Aires, 2003.
- REYNA, Santiago; REYNA, Teresa; REYNA, Estela; LÁBAQUE, María; SANTUCHO, Pedro; MURIALDO, Raquel; PESCI, Hugo, "Determinación de las Características Hidrológicas, Hidráulicas, Morfométricas y Ambientales de los Tajamares de las Estancias Jesuíticas de Alta Gracia y Santa Catalina - Patrimonio de la Humanidad", en Informe de Proyecto SECyT, Córdoba, 2005.
- REYNA, Santiago; REYNA, Teresa; REYNA, Estela; LÁBAQUE, María; SANTUCHO, Pedro; MURIALDO, Raquel; PESCI, Hugo, "Caracterización Del Muro De Cierre Del Tajamar De Alta Gracia, Patrimonio Mundial De La Humanidad", en VIII Congreso Internacional de Rehabilitación del Patrimonio Arquitectónico y Edificación. Buenos Aires, Buenos Aires, 2006.
- REYNA, Santiago; REYNA, Teresa; REYNA, Estela; LÁBAQUE, María; SANTUCHO, Pedro; MURIALDO, Raquel; PESCI, Hugo, "Plan de gestión ambiental de los tajamares jesuíticos de Córdoba - Argentina", en XXXI Congreso Interamericano AIDIS, Córdoba, 2008.
- SCHNITTER, Nicholas, "Historia de las Presas", en Colección de Ciencias, Humanidades e Ingeniería, num. 60, Madrid, Colegio de Ingenieros de Caminos, Canales y Puertos, 2000.
- SMITH, Norman A. F., "The Heritage of Spanish Dams", en Colección de Ciencias, Humanidades e Ingenieria, num. 45, Madrid, Colegio de Ingenieros de Caminos, Canales y Puertos, 1992.

[^0]: 1 Roberto DI STEFANO, Historia de la iglesia argentina: desde la Conquista hasta fines del siglo XX, Buenos Aires, Editorial Sudamericana, 2009.

[^1]: 2 Rebeca MEDINA, "Manzana y estancias jesuíticas de Córdoba", en Huellas e identidades: sitios de memoria y culturas vivas de los afrodescendientes en Argentina, Paraguay y Uruguay. Uruguay. UNESCO, 2011.

[^2]: 3 Clara GARCÍA MONTAÑO, 区Fundamentos de la interpretación integral y crítica del patrimonio cultural邓, en Congreso Internacional Patrimonio Cultural, Universidad Nacional de Córdoba y Centro Cultural Canadá Córdoba, 2004.

[^3]: 4 Carlos A. PAGE, "La conservación del patrimonio jesuítico en Córdoba", en II Jornada de Técnicas de Reparación y Conservación del Patrimonio, Buenos Aires, 2003.

[^4]: 5 Santiago REYNA, Teresa REYNA, Estela REYNA, María LÁBAQUE, Pedro SANTUCHO, Raquel MURIALDO, Hugo PESCI, "Determinación de las Características Hidrológicas, Hidráulicas, Morfométricas y Ambientales de los Tajamares de las Estancias Jesuíticas de Alta Gracia y Santa Catalina Patrimonio de la Humanidad", en Informe de Proyecto SECyT, Córdoba, 2005.

[^5]: 6 Clara R. GARCÍA MONTAÑO, Santiago REYNA, Teresa REYNA, Estela REYNA, María LÁBAQUE, Pedro SANTUCHO, Raquel MURIALDO, Hugo PESCI, "Tajamares jesuíticos de Alta Gracia y Santa Catalina: valorización, conservación y recuperación". Universidad Nacional de Córdoba, 2004.

[^6]: 7 Nicholas SCHNITTER, "Historia de las Presas", en Colección de Ciencias, Humanidades e Ingeniería, num. 60, Madrid, Colegio de Ingenieros de Caminos, Canales y Puertos, 2000.

[^7]: 8 Santiago REYNA, Teresa REYNA, Estela REYNA, María LÁBAQUE, Pedro SANTUCHO, Raquel MURIALDO, Hugo PESCI, 区Determinación de las Características Hidrológicas, Hidráulicas, Morfométricas y Ambientales de los Tajamares de las Estancias Jesuíticas de Alta Gracia y Santa Catalina - Patrimonio de la Humanidad】, en Informe de Proyecto SECyT, Córdoba, 2005.

[^8]: 9 Norman A. F. SMITH, "The Heritage of Spanish Dams", en Colección de Ciencias, Humanidades e Ingenieria, num. 45, Madrid, Colegio de Ingenieros de Caminos, Canales y Puertos, 1992.

[^9]: 10 Santiago REYNA, Teresa REYNA, Estela REYNA, María LÁBAQUE, Pedro SANTUCHO, Raquel MURIALDO, Hugo PESCI, 区Caracterización Del Muro De Cierre Del Tajamar De Alta Gracia, Patrimonio Mundial De La Humanidad】, en VIII Congreso Internacional de Rehabilitación del Patrimonio Arquitectónico y Edificación. Buenos Aires, Buenos Aires, 2006.

