

ARTÍCULOS

Cambios en la diferenciación de la población del Gran Córdoba entre 1992 y 2000 según el género y su nivel de escolaridad

Héctor R. Gertel, Roberto F. Giuliodori y Alejandro Rodríguez

Revista de Economía y Estadística, Cuarta Época, Vol. 42, No. 1 (2004), pp. 115-139.

http://revistas.unc.edu.ar/index.php/REyE/article/view/3801

La Revista de Economía y Estadística, se edita desde el año 1939. Es una publicación semestral del Instituto de Economía y Finanzas (IEF), Facultad de Ciencias Económicas, Universidad Nacional de Córdoba, Av. Valparaíso s/n, Ciudad Universitaria. X5000HRV, Córdoba, Argentina.

Teléfono: 00 - 54 - 351 - 4437300 interno 253.

Contacto: rev_eco_estad@eco.unc.edu.ar

Dirección web http://revistas.unc.edu.ar/index.php/REyE/index

Cómo citar este documento:

Gertel, H., Giuliodori R. y Rodríguez A. (2004). Cambios en la diferenciación de la población del Gran Córdoba entre 1992 y 2000 según el género y su nivel de escolaridad. *Revista de Economía y Estadística*, Cuarta Época, Vol. 42, No. 1, pp. 115-139.

Disponible en: http://revistas.unc.edu.ar/index.php/REyE/article/view/3801

El Portal de Revistas de la Universidad Nacional de Córdoba es un espacio destinado a la difusión de las investigaciones realizadas por los miembros de la Universidad y a los contenidos académicos y culturales desarrollados en las revistas electrónicas de la Universidad Nacional de Córdoba. Considerando que la Ciencia es un recurso público, es que la Universidad ofrece a toda la comunidad, el acceso libre de su producción científica, académica y cultural.

http://revistas.unc.edu.ar/index.php/index

Cambios en la diferenciación de los ingresos de la población del Gran Córdoba entre 1992 y 2000 según el género y nivel de escolaridad

HÉCTOR R. GERTEL

Instituto de Economía y Finanzas- Universidad Nacional de Córdoba, hgertel@eco.unc.edu.ar

ROBERTO F. GIULIODORI

Departamento de Estadística y Matemática - Universidad Nacional de Córdoba, rgiuliodori@eco.unc.edu.ar

ALEJANDRO RODRÍGUEZ*

Instituto de Economía y Finanzas- Universidad Nacional de Córdoba, alefrod@eco.unc.edu.ar

I. Introducción

Una diferenciación de los ingresos de la población, agrupada por el nivel de escolaridad alcanzado y por género, que persista o aumente en el tiempo, puede determinar una polarización entre diferentes grupos de perceptores de ingresos. El trabajo apunta a explorar la contribución de la diferenciación de la población por años de educación y por género a la determinación de la diferenciación entre sub poblaciones en la distribución personal

* Alejandro Rodríguez es becario del programa de Doctorado, Universidad Carlos III, España. El trabajo fue parcialmente financiado por la Agencia Córdoba Ciencia (Proyecto ACSE-034002304). Los autores agradecen a Paula Auerbach quién colaboró en las etapas iniciales del proyecto de investigación.

del ingreso del Gran Córdoba, aplicando con este propósito un indicador de distancia económica y trazando la evolución del mismo entre 1992 y 2000. La medida de la distancia económica ha sido definida en Dagum (2001) como el grado relativo de afluencia de un grupo de individuos con relación a otros en la población, cuando ésta se clasifica según algún atributo relevante al empleo y los ingresos, tal como el género o los años de escolaridad promedio alcanzados. El trabajo se complementa con un análisis empírico de la evolución reciente en dicha distancia para la población de personas ocupadas del Gran Córdoba de manera de determinar si la misma se ha mantenido, ha disminuido o se ha incrementado, durante el decenio de 1990. Con este propósito, y de manera ilustrativa, se consideró, en cuanto al nivel de educación alcanzado, dos sub poblaciones, a saber: una primera, que incluye las personas ocupadas cuyo nivel de escolaridad se encuentra por debajo del diploma de secundaria y otra, que agrupa las personas ocupadas con diploma de secundaria y más, considerando, en especial, el impacto diferenciado en varones y mujeres, potencialmente vinculado con la expansión diferencial por género observada durante los últimos años en el acceso a las distintas carreras de la Educación Superior.

Trabajos anteriores sobre la materia encontraron que la concentración del ingreso personal, al considerar la población de ocupados de un país en su conjunto, resulta ser típicamente más alta que la concentración de la escolaridad en la misma población, medidas típicamente mediante la aplicación de un coeficiente de concentración de Gini (Londoño, 1996, Ram, 1984), este tipo de resultados parece confirmar la existencia de un efecto democratizador asociado con el aumento en la escolaridad (promedio) de la población (Carnoy, et.al, 1974). Paradójicamente, el incremento en la escolaridad promedio parece estar dando paso, también, a una creciente diferenciación entre sub poblaciones. Aparece, entonces, un interés por encontrar respuestas para el fenómeno de la creciente polarización entre sub poblaciones que es hoy percibida en el plano de las relaciones entre educación, género e ingresos (Esteban y Ray, 1994, Gradín, 2000, Dagum, 2001). El trabajo intenta, precisamente, cuantificar esta "distancia económica" entre sub poblaciones que se van diferenciando entre sí por algún atributo relevante para el mercado laboral. ¿Conforman las mujeres universitarias un sub grupo diferenciado de otros en la población respecto de su posición relativa en la distribución del ingreso? ¿Conforman los individuos en el primer decil en la distribución de los años de escolaridad una sub población específica, quizá estigmatizada, dentro del mercado laboral? Si tomamos la tradición

iniciada por Mincer (1974), por ejemplo, se asume que el comportamiento optimizador de individuos y familias determinan las decisiones de inversión en capital humano, en base a la información disponible, donde la señal que proviene de las tasas de retorno (promedio) percibida por cada individuo resulta crítica. Como efecto de estas decisiones se logra el nivel de inversión deseado en capital humano (años de escolaridad), que, una vez incorporado el individuo al mercado laboral, determina la posición que detenta dentro de la distribución del ingreso personal de la población ocupada. Este análisis no toma en cuenta las circunstancias personales y del mercado laboral que determinan una distribución de tasas de retorno alrededor del promedio, y que estas circunstancias, una vez controladas estadísticamente, podrían mostrar la existencia de diferencias sistemáticas en los retornos, asociadas, precisamente con la presencia de determinadas circunstancias. De tal manera que la posibilidad de que de estas decisiones personales de inversión se desprendan diferencias sistemáticas de ingresos y, que estas diferencias entre grupos de individuos, -resulten éstas "grandes" o "pequeñas", persistan en el tiempo, genera un tipo de preocupación distinta: ¿ hasta que punto no debería analizarse el riesgo de que el tiraje de la chimenea que representa la educación en la percepción moderna de toda sociedad, no se atasque debido a la persistencia de determinadas circunstancias? y ¿hasta que punto podría la política en el campo educativo y laboral ayudar a remover los factores que atascan el buen tiraje de esa chimenea?. Para intentar una respuesta a este tipo de interrogantes se hace necesario introducir un nuevo enfoque donde se contemple que los individuos, antes de pertenecer a una población general, forman parte de sub poblaciones, identificables en base a ciertos atributos. De esta manera, resulta posible la determinación del grado de cercanía/separación del ingreso entre sub poblaciones de individuos, definidas de acuerdo a algún atributo estadístico. En esencia, si la escolaridad de los varones y de las mujeres ocupados se elevara de doce a catorce años promedio, el enfoque tradicional estaría sugiriendo que esta circunstancia contribuye positivamente a mejorar el coeficiente de Gini de la distribución del ingreso, pero no permite responder si, como resultado de esta mejora promedio se obtendrían distribuciones de ingreso por género más próximas o más distanciadas entre sí.

El interés por el análisis de la distancia entre grupos se remonta a los trabajos pioneros de Rao (1952), que en general fueron difundidos por medio de aplicaciones como las de Battacharya y Mahalanobis (1967), quienes aplicaron métodos de distancia euclidiana al estudio de distancia económica entre regiones geográficas, y por Dagum (1985, 1997, 2001), quien introduce sistemas de medición ponderada para analizar más específicamente la distan-

cia económica entre conjuntos de individuos agrupados según alguna característica. Tal como fue señalado, este último enfoque es el adoptado en el presente trabajo.

La presentación está organizada así: en la sección próxima se analizan los problemas que deben enfrentarse para dotar de un significado económico a la medida con que se expresa el grado de separación, en términos de diferencias de ingreso, entre dos subgrupos de la población, definidos por el género y distintos niveles de educación. En la sección III se explica el modelo de distancia económica entre dos subgrupos de la población, mientras que la sección 4 presenta los datos y resultados obtenidos al aplicar el modelo con el que se mide el grado de diferenciación en los ingresos, atribuible a la educación y al género, para la población de los asalariados del aglomerado Córdoba, durante el período 1992-2000, y relaciona los mismos con los resultados obtenidos de aplicar el coeficiente de desigualdad de Gini a cada subgrupo. La última sección resume los principales resultados y conclusiones del trabajo.

II. Años de Escolaridad, Género y Desigualdad Económica de Ingresos

La hipótesis que habla de la educación como una herramienta para lograr reducir la desigualdad en la distribución del ingreso personal abunda en la literatura económica. El presente trabajo no pretende ahondar sobre todas las causas que afectan a la educación y a la distribución del ingreso. EL objetivo es mucho más modesto, y pretende hacer uso del concepto de "distancia económica" discutido en Dagum (1985, 1997) para explorar cómo las decisiones de escolarización pueden afectar la distribución del ingreso y la estructura del ingreso personal por género incidiendo en la determinación de la distancia económica entre sub poblaciones y cómo estas distancias han ido evolucionando a lo largo de la década pasada en Argentina.

2.1. Naturaleza del problema

Hay al menos dos enfoques para analizar las vinculaciones entre escolaridad y desigualdad económica. El primero, utiliza medidas escalares del grado relativo de desigualdad en la distribución del ingreso entre individuos pertenecientes a una misma población. Un claro ejemplo de este enfoque es el tradicional coeficiente de Gini. Se ha observado que el valor

del Gini de años de escolarización es inferior que el Gini de los ingresos salariales obtenidos de la misma población (Ram, 1984, 1990). El segundo, provee una descripción acerca de cómo difieren las distribuciones del ingreso entre subpoblaciones determinadas según características socio-económicas y personales de los agentes que las conforman. La descomposición del valor del Gini que separa las variaciones "dentro" y "entre" grupos, las medidas de entropía y la varianza del logaritmo del ingreso pertenecen a este segundo tipo de enfoque.

Dentro del segundo enfoque, se reconocen técnicas alternativas de descomposición de las medidas para aislar la contribución relativa de la educación al aumento o disminución de la desigualdad en la distribución del ingreso. Mincer (1974) estimuló una primera oleada de trabajos de investigación sobre distribución del ingreso, educación, experiencia y género cuyos resultados han llevado a sostener que la educación conlleva un efecto ecualizador neto sobre la distribución personal del ingreso (Carnoy, et. al., 1974, Gertel, De Santis y Pereyra, 1987 y Delfino J. y C. Ponce, 1998). Estos resultados tienden a explicar que la expansión de la matrícula se hava convertido en la fuerza conductora de los esfuerzos de la política que apuntan a las metas de desarrollo social y a la movilidad económica en Latinoamérica. Pero, también es necesario observar, que el aumento en los años promedio de escolarización hoy no necesariamente impactará sobre el aumento de los ingresos y del empleo de mañana, porque más años promedio de escolarización significan también una mayor diversificación de oportunidades y una segmentación, o polarización en aumento dentro de la población. Así, el optimismo de la visión de la educación como solución a los problemas de desigualdad que se infiere del análisis de varianza de la ecuación de Mincer se diluye al balancear esos resultados con la hipótesis de Arrow, en la cual la educación contribuye - quizá por medio de los mecanismos de "autoselección"- a profundizar las distancias económicas entre sub poblaciones en una sociedad.

La segunda oleada de trabajos de investigación sobre educación y distribución del ingreso estuvo centrada más en los asuntos asociados a la identificación de los mecanismos de auto-selección en los procesos de adquirir más educación, encontrando algunas dudas acerca del poder de la expansión de la matrícula para tender a la igualdad económica. De hecho, se encontró que un aumento en la escolarización media de una población se encuentra asociado también con una mayor varianza en el ingreso y en el empleo de los individuos, debido, en parte, a los efectos asociados a la educación predichos por Arrow (1974) reforzando la idea de que la educación no puede tener efectos ecualizadores por sí sola (Levin y Kelley, 1994, Patrinos, 1995).

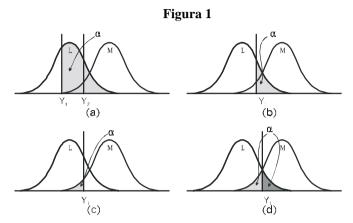
Evidentemente, el principal tema en este debate es si incrementar el nivel de educación de la población, es decir si la política educativa -y seguramente como un subproducto no deseado- ha contribuido a la formación de "clubs" de asalariados con distintas credenciales educativas. De esta manera, si la educación ha contribuido a la creación de una distancia entre grupos de agentes económicos aparecen nuevos cuestionamientos: ¿Cómo puede medirse esta distancia? Y ¿Cómo ha evolucionado esa distancia en el tiempo?

II.2. El problema de medir la distancia entre distribuciones

Una de las afirmaciones más frecuentes es la de atribuir mayor ingreso a quien tiene mayor educación adquirida. Consecuentemente, quien accede a niveles superiores de conocimiento debería obtener mayores ingresos que cualquier otra persona con un menor nivel de escolaridad. Si ello fuera así. al considerar una población existirían dos distribuciones de ingreso totalmente separadas: una, conformada por los individuos con mayor cantidad promedio de años de educación, y otra, conteniendo a los individuos con menor cantidad de años promedio de educación. La realidad muestra, en cambio, que generalmente existe algún grado de solapamiento entre esas curvas, tal como lo muestra la Figura 1, señalando que hay individuos que, a pesar de haber invertido más en educación (curva M), tienen ingresos iguales o menores que otros que no lo han hecho (curva L). La noción de distancia aparece entonces relacionada con la determinación de la importancia relativa de la superficie común de las distribuciones, ya que si dicha área es nula significa que no hay ningún individuo con más educación (perteneciente a M) que tenga un ingreso que pueda ser superado por algún individuo con menos educación (perteneciente a L). Por otro lado, la situación completamente opuesta se presenta cuando ambas curvas se confunden, es decir, están totalmente superpuestas, en cuyo caso el hecho de tener más educación no determina en modo alguno que se pueda acceder a un mayor nivel de ingreso. A partir de esta idea surgen dos posibilidades para medir la distancia entre las dos curvas, una de ellas consiste en considerar simplemente el área común como indicador del grado de separación de las mismas y la otra, en ponderar dicha área por alguna magnitud con sentido económico, como puede ser el mismo ingreso. A las primeras se las denomina medidas no ponderadas, en tanto que las segundas son medidas ponderadas.

2.2.1. Medidas generalizadas no ponderadas

Teniendo en cuenta que, desde el punto de vista estadístico, el área común de las curvas L y M anteriormente mencionadas constituye una


probabilidad, la clase de medidas no ponderadas responden al criterio de calcular el valor de dicha probabilidad.

Se trata de una idea intuitiva asociada con el desarrollo de la geometría, introducida por Rao (1952) en su tratamiento de clusters y agrupamientos, de manera de comparar la distancia entre dos pares cualesquiera de grupos de datos pertenecientes a una población, tal como fueron aplicadas por otros autores para analizar un sinnúmero de problemas. En Battacharya y Mahalanobis (1967) se analizan las disparidades en el consumo de las familias de la India mediante del desarrollo de una descomposición del índice de Gini para la dispersión dentro de cada región y entre las regiones¹. Theil (1967) propuso un indicador de concentración con similares propósitos. Sin embargo, a menos que no exista superposición alguna entre el área de cada subgrupo, que es una situación extrema, se obtiene una subestimación del valor correspondiente a la medida de la contribución relativa del componente "entre grupos". Este problema fue abordado en Ebert (1984) y Shorrocks (1984) y luego Chakravarty y Dutta (1987) quienes, no obstante fracasaron en asignar un significado económico a la medida generalizada de distancia propuesta por Mahalanobis.

La misma Figura 1 ayuda a precisar el caso general de distancia de Mahalanobis con distribuciones normales de igual varianza. Se tiene que en (a), a la izquierda del nivel de ingreso Y_1 , no hay posibilidad de error al asignar un individuo: todo individuo con ingreso de nivel $Y < Y_1$ pertenece a la población "L", con menos educación. Pero, a la derecha de Y_1 existe la posibilidad de cometer un error de asignación: personas con un ingreso mayor que Y_1 pueden pertenecer tanto al subgrupo L o M. El área α representa la probabilidad de asignar a la población M una persona que en realidad pertenece a la población L .Una disminución en el área α implicaría una disminución en la probabilidad de incurrir en error de asignación. De hecho, también significaría que la distancia entre distribuciones ha aumentado. Consecuentemente, α posee un carácter doble. Por un lado es una

¹ Una revisión amplia de anteriores y recientes enfoques a la descomposición de la desigualdad del ingreso en distintos componentes, a partir del Coeficiente de Gini, se encuentra en Dagum (1997). Una contribución influyente en este campo es Bourguignon (1979), quién demostró que una clase de descomposición aditiva del Coeficiente de Gini puede obtenerse aplicando ponderaciones de ingreso o ponderaciones de población como en los trabajos de Theil (1967), y Bhattarcharya y Mahalanobis (1967), respectivamente, "aunque, *señala Dagum*, ponderando coeficientes que no necesariamente suman uno" (p 902). La clase de medidas no ponderadas de descomposición es discutida en Shorrocks (1984) y Yitzhaki (1994). Una discusión sumaria de las medidas de distancia se puede ver en Sharma (1996), capítulo 3.

probabilidad (adopta valores en el intervalo 0,1), y, al mismo tiempo, es una medida de la distancia entre distribuciones. Y la expresión $1-\alpha$ posee un significado claro: cuando asume valor 0, indica que la superposición entre distribuciones es total, mientras que el valor 1 revela una perfecta separación de las distribuciones.

Es fácil observar que α asume un valor diferente cuando la probabilidad de error es calculada con la distribución "L", como se muestra en la Figura 1(b), o con la distribución "M", según se indica en la Figura 1(c). Claramente, estamos frente a un caso similar al de tener que calcular la tasa de utilidad de una operación comercial, que se puede realizar con respecto al precio de venta o con respecto al costo, surgiendo diferentes resultados para un mismo fenómeno. Este problema se evita cuando Y_1 se localiza en el punto de intersección de dos distribuciones normales y de igual varianza, que es el caso en la Figura $1(d)^2$ lo cual equivale, según se puede demostrar, a calcular la distancia euclidiana. Este enfoque, que es muy útil para analizar una gran cantidad de fenómenos de distribución normal, no es aplicable al estudio de la distribución del ingreso por sus bien conocidas características de fuerte asimetría. Para abordar este último caso es necesario recurrir a alguna medida que esté referida a la totalidad de los elementos de los

²Puede demostrarse que bajo las condiciones representadas en la Figura 1 (d), el valor de α calculado para el nivel de ingreso y₁ correspondiente al punto de intersección de las curvas es invariante, y es equivalente al concepto de distancia de Mahalanobis en espacios no ortogonales y al de distancia Euclidiana para el caso de espacios ortogonales.

individuos de ambas poblaciones y no sólo a aquellos que se ubican en la zona común de las curvas.

2.2.2. La medida de distancia económica no ponderada d_0

La medida de distancia económica no ponderada d₀ fue desarrollada por Dagum (1985) a partir del concepto de distribución conjunta, para corregir la comentada distorsión que se produce cuando los datos agrupados no están normalmente distribuidos y poseen varianza diferente. Tal el caso de la distribución del ingreso de las personas, donde la afluencia relativa entre dos grupos de individuos parcialmente diferenciados entre sí, no puede medirse de manera univoca recurriendo a la clase de medidas lineales ilustradas en el punto anterior. La nueva medida d₀, es también una medida lineal que en el caso más sencillo, donde se comparan sólo dos subgrupos de la población, se calcula mediante la fórmula siguiente:

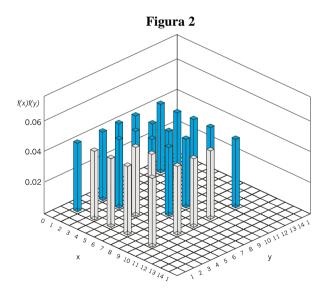
$$d_0 = \frac{1}{nm} \sum_{i=1}^{n} \sum_{i=1}^{m} I(y_i - x_i)$$
 (1)

donde y_i y x_j son los valores del ingreso de todos los pares posibles de individuos. Por su parte, i y j representan a los individuos de los subgrupos de la población con mayor y menor ingreso medio, respectivamente, en tanto que n y m son los tamaños de los referidos subgrupos.

La ecuación (1) para dos distribuciones de distribuciones continuas puede escribirse como:

$$d_{0} = P[y > x / E_{2}(y) > E_{1}(x)] = \int_{0}^{\infty} \int_{0}^{y} f_{1}(x) dx \, dx \, dy \, dy \, dy$$
 (2)

donde $f_i(x)$ es la función de probabilidad que tiene una función de probabilidad acumulada $F_i(x)$ y $E_i(y)$ es la esperanza del ingreso de la población "i", con i = 1, 2.


Una estimación paramétrica de $F_i(x)$ se obtiene, como se explica en Gertel, Giuliodori, Auerbach y Rodríguez (2001), de la distribución acumulada de tres parámetros de Dagum,

$$F(x) = \frac{1}{\left(1 + \lambda x^{-\delta}\right)^{\beta}} \tag{3}$$

donde δ y β son los parámetros de equidad y λ es un parámetro de escala.

En la ecuación (1) la expresión $I(y_i - x_i)$ simboliza una función denominada Indicatriz³ que toma valor 1 cuando el ingreso "y" del individuo i es mayor que el ingreso "x" del individuo j, valor 0 cuando es menor, y valor 0,5 en caso de ser iguales.

Esta definición para d_0 expresa la probabilidad conjunta que, cualquier individuo perteneciente a la distribución con mayor ingreso medio, posea un ingreso mayor que cualquier otro individuo que pertenece a la distribución de menor ingreso medio. El indicador d_0 puede representarse gráficamente; ello se hace en la Figura 2, donde se utilizan dos de los ejes para representar x e y, mientras que la distancia vertical correspondiente a cada par (x, y) indica la frecuencia relativa, o sea el, número de veces que se repite cada situación dividido por el total de comparaciones posibles. El valor de d_0 está reflejado en las barras resaltadas.

El ejemplo de la Figura 2 contempla 5 observaciones para "y" y 5 observaciones para "x", esto permite un total de 25 pares de comparaciones posibles entre los ingresos de los individuos, donde cada par de individuos (i, j) tiene una probabilidad conjunta de presentación igual a 0,04 (una vez en veinticinco), como se observa sobre el eje vertical. La suma de las alturas

³ De ahora en más $I(y_i - x_i) = I_{y_i,x_i}$

de todas las barras de la figura es igual a la unidad, pues representa la suma de todas las probabilidades correspondientes a los resultados posibles de las comparaciones entre x y y. Las barras sombreadas se ligan, en cambio, a los casos en que y > x donde la función indicatriz asume valor uno $(I_{y:x} = 1)$. En el ejemplo, el valor de d_0 es menor que 1 ya que entre las 25 comparaciones hay sólo una parte, indicada por los 16 pares coloreados, para los que y > x. Al mismo tiempo, los 9 pares restantes, visibles en la parte anterior de la figura, reflejan los casos en los que y es menor o igual que x.

En definitiva, se ha sustituido el método de Mahalanobis para medir distancias, acotado a distribuciones normales y de igual varianza introduciendo un procedimiento más general, basado en el análisis de distribuciones conjuntas sin forma predeterminada. Este enfoque permite resolver el problema del sesgo de superposición, presente en la obtención de un valor para la distancia métrica. Como ahora el máximo recorrido, o total separación, se expresa por d₀=1, cualquier valor inferior a la unidad indica, en forma de probabilidad, la existencia de superposición de puntos. El próximo paso consiste en asignar a la distancia métrica un significado en la dimensión del ingreso, de manera de obtener una medida de afluencia económica relativa asociada con cada distribución.

$\mathbf{III.}$ El coeficiente $\mathbf{d}_{_1}$ de distancia ponderada en base al ingreso

Una nueva medida de distancia, d₁ es introducida en Dagum (1985) para asignar un significado económico a la distancia métrica anterior, y se expresa como la esperanza matemática de la diferencia de ingresos entre todos los pares de individuos posibles, pertenecientes, uno a la distribución de mayor ingreso medio y el otro a la distribución de menor ingreso medio. De modo que esta medida, al igual que la anterior, compara la posición relativa entre individuos, pero ahora la comparación se expresa en unidades monetarias, por lo que en este caso la diferencia obtenida expresa el grado de afluencia económica de la población de individuos con mayor ingreso medio, con respecto a la población de individuos con menor ingreso medio. El ingreso medio en cada distribución es siempre el criterio para indicar la dirección de la distancia. En lo que sigue, se desarrolla el modelo conceptual y se incluye un ejemplo numérico.

Consideramos primeramente la medida de afluencia relativa, de la población 2 con respecto a la población 1, propuesta en Dagum (1985) y

ampliada en Dagum (2001). La medida d₁ (medida de la desigualdad entre distribuciones del ingreso) es:

$$d_{1} = \int_{0}^{\infty} dF_{2}(y) \int_{0}^{y} (y - x) dF_{1}(x)$$
(4)

donde $F_i(y)$, que se corresponde con (3), es la función de probabilidad acumulada de la población "i", con i = 1, 2.

Para distribuciones discretas, el valor de d₁ se obtiene como:

$$d_0 = \frac{1}{nm} \sum_{i=1}^n \sum_{j=1}^m (y_i - x_i) I(y_i - x_i) = E[(y - x)I(y - x)/E_2(y) > E_1(x)]$$
 (5)

donde d_1 es la suma ponderada de las diferencias en los ingresos (y - x) para todo y > x, dado que $E_2(y) > E_1(x)$, y donde el ponderador es la densidad conjunta $f_1(x)$ $f_2(y)$.

Una solución de (4) es,

$$d_{1} = E_{2}[yF_{1}(y)] + E_{1}[F_{2}(y)] - E_{1}(y)$$
(6)

Como d₁ tiene la misma dimensión de ingreso, Dagum ha propuesto un índice de manera de transformar a esta medida en un indicador normalizado y adimensional D₁:

$$D_1 = \frac{d_1 - d_1^*}{\Delta_1 - d_1^*} \tag{7}$$

donde d_1^* y Δ_1 son los valores mínimo y máximo, respectivamente, que d_1 puede asumir.

La formas de cálculo de d_1^* y de Δ_1^- para el caso de distribuciones continuas son:

$$d_1^* = \int_0^\infty dF_1(y) \int_0^y (y - x) dF_1(x) = 2E_1 \left[dF_1(y) \right] - E_1(y) (8)$$

y
$$\Delta_{1} = E(y - x|) = \int_{0}^{\infty} dF_{2}(y) \int_{0}^{\infty} (y - x|) dF_{1}(x)$$

$$= 2d_{1} + E_{1}(y) - E_{2}(y)$$
(9)

y para distribuciones discretas son:

$$d_1^* = \frac{1}{nm} \sum_{i=1}^n \sum_{j=1}^m (x_i - x_j) I(x_i - x_j)$$
(10)

$$\Delta_{1} = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \left| y_{i} - x_{j} \right| \tag{11}$$

En suma, el ratio D_1 es una medida del grado de proximidad entre dos distribuciones, con un sentido económico claro, porque en su construcción interviene d_1 , el valor esperado de la diferencia neta que separa las masas de ingreso de las dos distribuciones. Por lo tanto, D_1 indica el grado de afluencia de un grupo de individuos respecto de otro, en términos relativos a la máxima distancia posible entre ambas distribuciones, valor que surge de aplicar (3). Así, D_1 es un ratio definido en el intervalo [0,1], no posee dimensión, toma valor cero cuando las dos distribuciones son idénticas y valor uno cuando las dos distribuciones están completamente separadas.

La Tabla 1 contiene un ejemplo que considera 3 situaciones hipotéticas: la primera plantea un escenario en el cual ambas distribuciones son idénticas, el escenario II muestra una población M más afluente que otra población L, y un tercer escenario supone que ambas distribuciones están completamente separadas. La información relevante es el ingreso de los individuos en ambas poblaciones, tal como aparece ordenado en las columnas, cuya parte inferior indica también el ingreso medio en cada caso y el valor resultante para D₁.

Tabla 1

Escenario I		Escenario II		Escenario III	
Ingreso (\$)		Ingreso (\$)		Ingreso (\$)	
Población L	Población M	Población L	Población M	Población L	Población M
1	1	1	4	1	11
3	3	3	8	3	15
5	5	5	10	5	19
7	7	7	15	7	25
10	10	10	20	10	30
Ingreso Medio		Ingreso Medio		Ingreso Medio	
5.2	5.2	5.2	11.4	5.2	20
D1 = 0		D1 = 0.91		D1 = 1	

Número de casos: M=5, L=5

Para la estimación directa del ratio D_1 es necesario previamente calcular el valor de d_1 , y sus valores máximo posible, representado por d_1^* , y mínimo posible, simbolizado por Δ_1^4 : El resultado que se obtiene para el escenario I es, D_1 =0 y para el escenario III es D_1 =1. En cuanto al escenario II, D_1 asume valor entre cero y uno como se ilustra a continuación:

$$\begin{aligned} d_t &= \frac{1}{5 \times 5} \Big[(4-1) + (4-3) + + (20-1) + (20-3) + (20-5) + (20-7) + (20-10) \Big] \\ \\ d_t^* &= \frac{1}{5 \times 5} \Big[(3-1) + (5-1) + (5-3) + (7-1) + (7-3) + (7-5) + (10-1) + (10-3) + (10-5) + (10-7) \Big] = 1.76 \\ \\ \Delta_t &= \frac{1}{5 \times 5} \Big[|4-1| + |4-3| + |4-5| + |4-7| + |4-10| + ... + |20-1| + |20-3| + |20-5| + |20-7| + |20-10| \Big] = 7.16 \end{aligned}$$

$$\mathbf{y}$$

$$\mathbf{D}_t &= \frac{6.68 - 1.76}{7.16 - 1.76} = 0.9111$$

Teniendo en cuenta el significado económico de d_1 y el rango de variación para D_1 ($\leq \leq$); el valor de 0,91 obtenido en el escenario II refleja que la separación es casi total entre los individuos que pertenecen al club de los más educados con respecto al de los menos educados.

Esta medida nada dice acerca de la desigualdad al interior de cada grupo, fenómeno que es capturado por el coeficiente de Gini. El análisis combinado de D₁ y el coeficiente de Gini ayuda a comprender dos fenómenos de la desigualdad de la distribución del ingreso: la separación entre los grupos, por un lado, y el desigual reparto hacia el interior de cada grupo, por el otro⁵.

⁴ La forma de cálculo para d₁* y Delta aparece en Dagum (1985 y 2001).

⁵Puede probarse (Dagum, 1997: 524-526) que un elemento clave en una nueva clase de descomposición del coeficiente de Gini resulta de: (i) la desigualdad de Gini dentro de las subpoblaciones, más (ii) la desigualdad bruta de Gini entre poblaciones. En definitiva esta segunda parte (ii) tiene dos componentes: una parte que mide la diferencia ponderada del ingreso solapado de las distribuciones (D₁), y otra parte que refleja la contribución neta al Gini total, de la desigualdad de Gini entre las subpoblaciones. Sin embargo, este tipo de aplicaciones de D₁ está fuera del alcance de esta presentación.

IV. DISTRIBUCIÓN DEL INGRESO POR SEXO Y NIVEL DE EDUCACIÓN EN CÓRDOBA

IV.1. Datos y Metodología

La distribución del ingreso de los trabajadores del aglomerado de la ciudad de Córdoba en el periodo 1992-2000 plantea un caso interesante para estudiar el efecto de la educación y el género sobre la equidad en la Argentina. Por una parte, se trata del segundo aglomerado urbano en importancia del país, y, al mismo tiempo, la educación superior se viene expandiendo fuertemente en los últimos tiempos por la presencia de importantes centros de enseñanza.

El estudio que aquí se realiza se apoya en los datos, por sexo y educación, proporcionados por la Encuesta Permanente de Hogares (EPH), que releva el Instituto Nacional de Estadística y Censos (INDEC). Dicha encuesta es compilada dos veces al año, en Mayo y Octubre. A los fines de este trabajo se utilizó sólo la onda de Mayo de cada año, sin embargo no se encontraron diferencias significativas al realizar las aplicaciones sobre la encuesta del mes de Octubre. Debe señalarse también que, durante el periodo considerado, la moneda nacional fue el peso, el cual estuvo ligado al dólar estadounidense por la relación uno a uno, de acuerdo a la Ley de Convertibilidad de 1991. La estabilidad del peso y la baja inflación, esta última con un promedio anual inferior al uno por ciento, facilita la comparabilidad intertemporal de los resultados.

Las unidades económicas consideradas fueron los individuos con ingreso proveniente de su trabajo, clasificados por sexo y educación. Para esta última variable se utilizaron las siguientes categorías:

- educación elemental, simbolizada por "ES" (0 a 11 años de escolaridad)
- educación secundaria completa o más, simbolizada por "SPS" (12 años de escolaridad y más)

Si bien un análisis más desagregado es siempre posible, se considera que el que aquí se realiza resulta suficiente para ilustrar el comportamiento general y la tendencia a través del tiempo, en la desigualdad de la distribución del ingreso de la población bajo estudio.

Para medir el impacto de la educación y el género sobre la distribución del ingreso se calcularon el coeficiente D_1 según la fórmula (3) y el coeficiente de Gini conforme al procedimiento convencional.

Las estimaciones se realizaron para (i) la población total por sexo, (ii) la población total por nivel de educación (la distribución de los individuos con educación elemental y con educación secundaria y más, respectivamente), y (iii) la población total por sexo y educación.

Conviene destacar que la influencia de la educación y el género sobre la distribución del ingreso se refleja provocando una separación de la población en dos subpoblaciones cuya distancia, expresada a través de D_1 , indica la magnitud del efecto diferenciador. El impacto dentro de cada subpoblación es captado, a su vez, por el coeficiente de Gini. Estos aspectos son los que se tratan de analizar para la población ocupada de Córdoba.

IV.2. El Coeficiente D₁ de Afluencia Económica Relativa y los coeficientes de Gini por Sexo y Nivel de Educación

Las Tablas 2 y 3 presentan el Coeficiente de Distancia Económica Relativa, o medida D_1 de desigualdad entre distribuciones del ingreso, y los Coeficientes de Gini, para las subpoblaciones de asalariados, teniendo en cuenta separaciones por sexo y por nivel de educación, respectivamente. La Tabla 4 muestra los Coeficientes de Distancia Económica Relativa y de Gini, para subpoblaciones con menos (ES) y con más educación (SPS), discriminadas por sexo.

4.2.1. Población Total de Asalariados por Sexo

Los valores que asume D₁, según la Tabla 2, indican que las distribuciones del ingreso de varones y de mujeres están localizadas en un punto intermedio entre la total separación y la completa superposición. La distancia económica D₁, a pesar de experimentar un salto en el año 1996, decreció de 0.66 en 1992 a 0.58 en 2000, indicando que las masas de las distribuciones del ingreso, al final del periodo, están más próximas de lo que estuvieron al comienzo.

Por su parte, el Coeficiente de Gini para el subgrupo total de varones registró una ligera tendencia decreciente en el periodo considerado, que puede descomponerse en dos etapas: fuerte disminución de 0.45 a 0.37 entre los años 1992 y 1998 y aumento hacia el final de periodo. En cuanto al coeficiente obtenido para el subgrupo total de mujeres, el mismo muestra un pronunciado deterioro (aumento de valor) durante el periodo analizado, lo que podría estar explicado por las relativamente mejores oportunidades de

trabajo que han existido en la rama femenina, respecto de la masculina, creando situaciones de mayor desigualdad en los ingresos de las mujeres.

Año	Coeficiente de Gini		D ₁	
	Mujeres	Varones		
1992	0.3736	0.4515	0.6633	
1993	0.3635	0.4315	0.6313	
1994	0.3959	0.4385	0.6052	
1995	0.3707	0.4002	0.5436	
1996	0.3530	0.4067	0.6274	
1997	0.4031	0.3811	0.4546	
1998	0.3802	0.3717	0.4686	
1999	0.3946	0.4015	0.4296	
2000	0.4309	0.4464	0.5804	

Los χ^2 de los índices D_1 son significativos a un nivel de 0.01.

Fuente: EPH, INDEC

4.2.2. Total de Asalariados. Población con Educación Secundaria y Más vs Población con Educación Elemental

En la Tabla 3 se presentan ahora los valores de D_1 para los grupos de población constituidos por los asalariados con estudios de nivel secundario o más, por un lado, y con estudios elementales, por el otro. Según se puede apreciar, ambas distribuciones estuvieron muy cerca de tener una separación completa a lo largo del periodo, excepto en el año 1998, ya que los valores de D_1 fueron relativamente estables y en un nivel que osciló en torno a 0.81.

En cuanto al coeficiente de Gini para el grupo de población con estudios Secundarios y más, se observa que evidenció una tendencia relativamente estable durante todo el periodo, con valores ubicados dentro del intervalo 0.41 (1998) a 0.47 (2000). Algo similar ocurrió con el coeficiente del grupo que posee estudios Elementales, pero en este caso en torno a un valor próximo a 0.33. Esto significa que el grado de desigualdad del ingreso es mayor en la población con estudios más altos.

Tabla 3 Coeficiente de Gini e Índice de Distancia D₁ Entre SPS-ES Población Total

Año	Coeficiente de Gini ES SPS		D ₁	
1992	0.3231	0.4628	0.8455	
1993	0.3351	0.4475	0.8248	
1994	0.3306	0.4516	0.7885	
1995	0.3241	0.4563	0.8115	
1996	0.3168	0.4623	0.8233	
1997	0.3222	0.4225	0.7830	
1998	0.3447	0.4139	0.6902	
1999	0.3331	0.4412	0.8214	
2000	0.3533	0.4742	0.8517	

Los χ^2 de los índices D, son significativos a un nivel de 0.01.

Fuente: EPH, INDEC

4.2.3. Asalariados Varones y Mujeres con Educación Elemental

La distancia económica que se establece entre varones y mujeres para el grupo con Educación Elemental es relativamente alta a un nivel alrededor de 0.75, y estable durante el periodo 1992-1995, seguida por fuertes fluctuaciones hasta el año 2000, como se muestra en la Tabla 4. La gran discrepancia entre varones y mujeres en el grupo que acredita menor nivel de educación, puede estar revelando que la discriminación económica por sexo, en el mercado del trabajo no calificado y semi-calificado, fue importante en Córdoba durante el periodo bajo estudio. Las severas fluctuaciones observadas en la parte final del periodo pueden ser el resultado de los efectos de la reestructuración pos-tequila en los más grandes empleadores industriales de la rama metal-mecánica, donde el empleo masculino predomina y estuvo afectado de fuertes cambios, frente a la relativa estabilidad del empleo en las dos categorías ocupacionales en que prevalecen las mujeres: oficinistas y servicio.

Se puede ver también que los coeficientes de Gini para varones y mujeres muestran características contrastantes. En 1992, el coeficiente para el grupo de varones con educación elemental fue 13.2% más alto que el coeficiente para el grupo de mujeres con la misma educación; el signo de la diferencia se revirtió hacia el final del periodo, con un coeficiente de Gini para el grupo de mujeres con educación elemental situado un 6.8% por arriba

del coeficiente del grupo de varones con igual educación, debido principalmente a la tendencia creciente del coeficiente de este último grupo.

Tabla 4 Índice de Distancia (D₁) Entre Mujeres y Varones y Coeficiente de Gini de Mujeres y Varones Dividido por Educación

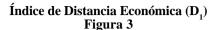
Año	ES			SPS		
	Coeficient	Coeficiente de Gini		Coeficiente de Gini		D ₁
	Mujeres	Varones		Mujeres	Varones	
1992	0.2870	0.3247	0.7754	0.4120	0.4388	0.5867
1993	0.2686	0.3334	0.7582	0.3788	0.4559	0.6504
1994	0.2798	0.3384	0.7542	0.4355	0.4463	0.6113
1995	0.2865	0.3143	0.7452	0.4007	0.4736	0.5870
1996	0.2645	0.3035	0.8229	0.3687	0.4820	0.6962
1997	0.3424	0.2905	0.6873	0.4018	0.4112	0.4667
1998	0.2686	0.3314	0.8496	0.3926	0.4197	0.4406
1999	0.3128	0.3203	0.6657	0.3823	0.4970	0.6447
2000	0.3431	0.3213	0.7675	0.4019	0.5007	0.7019

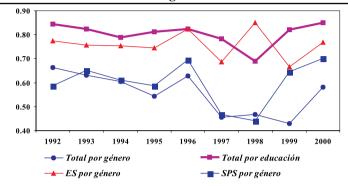
Los χ^2 de los índices D, son significativos a un nivel de 0.01.

Fuente: EPH, INDEC

El coeficiente de Gini para asalariados con educación elemental permaneció estable a lo largo del periodo, a un valor relativamente bajo como es 0.32. En 1992 el coeficiente correspondiente a los perceptores de salarios mujeres con educación elemental se ubicó, tal como se señaló más arriba, por debajo del coeficiente de los hombres, a un valor de 0.28, y creció sostenidamente hasta alcanzar el valor 0.34 al final de periodo. Una importante razón que podría explicar este crecimiento del índice de desigualdad, es que el rápido progreso tecnológico de los años noventa permitió a los sectores comercio y servicios reducir las oportunidades laborales para los trabajadores no calificados y semicalificados, que, en esas áreas, son predominantemente mujeres.

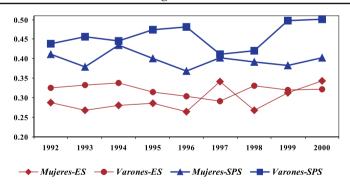
4.2.4. Asalariados Varones y Mujeres con Educación Secundaria y Más


Para los perceptores de salario con educación secundaria y más (Tabla 4) el coeficiente D₁ de distancia entre las distribuciones del ingreso varón-mujer estuvo localizado por debajo de los valores D₁ correspondientes


al grupo con educación elemental. Además, el mismo tuvo un desempeño variado a lo largo del periodo: partió de 0.58, continuó con una tendencia creciente en 1992-1996 y después fluctuó fuertemente hasta el año 2000 cuando la distancia relativa alcanza un índice de 0.70. Al final del periodo bajo estudio, el ingreso diferencial entre varones y mujeres con educación secundaria o más se había incrementado cerca del 20%.

Los coeficientes de Gini para las subpoblaciones de varones y mujeres presentan amplias fluctuaciones con una fuerte tendencia creciente para el sexo masculino y un comportamiento estable en el sexo femenino. Además, el coeficiente de Gini para el grupo de varones con más inversión en educación incorporada, es mayor que el correspondiente Gini de las mujeres. Por esta razón, la pequeña diferencia inicial de 0.027 (un 6.5% más alto en el Gini de varones en 1992), se había incrementado a 0.10 en el año 2000.

Finalmente, las figuras 3 y 4 brindan una descripción visual de la tendencia de D_1 y de los coeficientes de Gini, respectivamente. La Figura 3 muestra la evolución del Coeficiente D_1 de Distancia Económica para las subpoblaciones de (i) mujeres – varones, de la población total, (ii) educación secundaria y más – educación elemental, de la población total, (iii) mujeres – varones, del grupo con educación elemental, (iv) mujeres – varones, del grupo con educación secundaria y más.


El más importante hallazgo, quizá, es el que está referido a la separación entre distribuciones por sexo y por educación para la población total. En primer lugar, hay que destacar que mientras la distancia relativa D_1 que se establece entre varones y mujeres adopta valores en la parte central del intervalo (0,1), los valores calculados de D_1 correspondientes a más – menos educación se ubican, claramente, por encima de aquél, muy cercanos al límite superior del intervalo. En segundo término, se observa que la discriminación por género es menor al considerar los grupos de población con mayor educación. Por fin, estas revelaciones están sugiriendo que, en contra de lo que generalmente se aduce, la educación discrimina más que el sexo en la determinación del nivel de afluencia en la sociedad argentina.

La Figura 4 presenta la evolución del Coeficiente de Gini tanto para los grupos de mujeres y varones en la subpoblación con educación elemental, como para los grupos de mujeres y varones en la subpoblación con educación secundaria y más.

Coeficiente de Gini Figura 4

Allí se puede ver que la subpoblación con educación elemental exhibe un menor grado de desigualdad que la subpoblación con educación secundaria y más. En ambos casos el grupo de varones tiene un nivel más elevado de desigualdad, confirmando que la mayor educación incrementa las oportunidad laborales y ello produce más desigualdad.

V. RESUMEN Y CONCLUSIONES

Resulta posible obtener medidas ponderadas y no ponderadas para cuantificar las distancias entre dos poblaciones de distribuciones del ingreso. Dagum desarrolló una medida de distancia económica relativa que se computa a través de un coeficiente que varía entre 0 y 1, y que está basado en el valor esperado de las diferencias de ingresos entre pares de individuos. Esta medida es la que se aplicó para analizar la distribución del ingreso de los asalariados del aglomerado de la ciudad de Córdoba, teniendo en cuenta las variables educación y sexo.

Los principales resultados se sintetizan a continuación:

- El coeficiente D₁ de distancia económica relativa mujer varón, considerando la población total, está localizado en un punto intermedio entre lo que constituiría una separación total y una superposición completa de las distribuciones. La distancia económica mujer varón, a pesar de haber tenido un salto hacia arriba en 1996, decreció desde 0.66 en 1992 a 0.58 en 2000, significando que las masas de distribuciones del ingreso, al final del periodo, están más próximas entre sí de lo que estuvieron al comienzo.
- La separación del grupo con educación secundaria y más con respecto al grupo con educación elemental es casi total. La distancia económica D₁, entre esos grupos permanece relativamente estable alrededor del nivel de 0.80 (excepto para 1998). Esos valores indican que las distribuciones están cerca de la separación completa a lo largo del periodo, poniendo de manifiesto que el impacto de la expansión de la educación superior contribuyó a marcar una clara distancia entre el ingreso de quienes accedieron al nivel secundario y más, con respecto a quienes no lo hicieron.
- El Coeficiente D₁ de distancia económica relativa mujer-varón en el grupo con educación elemental oscila entre 0.7 y 0.8 y es mayor que el mismo coeficiente mujer-varón calculado para el grupo con educación secundaria y más.
- Cuando se analiza, a través del coeficiente de Gini, lo que ocurre con la distribución del ingreso dentro de cada uno de los dos grupos de educación considerados, se tiene que los coeficientes de las mujeres y de los varones no muestran diferencias significativas, indicando que el género no es un determinante importante de la desigualdad en el ingreso. Sin embargo, es necesario destacar que

la desigualdad del ingreso observada entre quienes poseen un nivel de educación más alto fue mayor que en el grupo con educación elemental. En efecto, el ratio Gini tomó valores significativamente mayores dentro del grupo con educación secundaria y más (aproximadamente 0,4). con relación al grupo con educación elemental (alrededor de 0.3). Estos valores más altos obtenidos a lo largo del periodo analizado están señalando un mayor grado de desigualdad del ingreso entre quienes accedieron a niveles superiores de educación, producto de las mas amplias oportunidades laborales que les brinda el mercado. De esta manera la educación, particularmente de la mano de la expansión en el acceso a la educación superior, se convierte en un factor importante para explicar la desigualdad del ingreso.

Por fin, al utilizar una medida de distancia económica relativa entre poblaciones se obtuvo una indicación del grado de separación que caracterizó durante los años 90 a las poblaciones de asalariados de Córdoba, varones y mujeres, caracterizadas por los años de educación promedio alcanzados en cada caso. La diferenciación, o distancia que se observa entre varones y mujeres resulta, en el caso de Córdoba, de una magnitud menor a la diferenciación manifestada entre los grupos con mayor y con menor educación promedio mientras que, al mismo tiempo, los grupos de varones y mujeres con el nivel mas alto de educación aparecen como más heterogéneos hacia su interior en relación a los varones y mujeres con menor escolaridad promedio. Una lección importante que se desprende del análisis de estos resultados es que la política educativa, más que la política de género, tiene poder para acrecentar en la sociedad las oportunidades de movilidad ocupacional y acceso a posiciones de mayor afluencia económica. Y en este aspecto, el acceso amplio a la educación superior parece haber jugado un papel importante y positivo en el contexto estudiado: el grupo con más educación accede típicamente a niveles de ingresos más altos, asociados con empleos más seguros y menores índices de desocupación. Pero, al mismo tiempo, observamos que se generó una distancia económica que separa a este grupo del grupo de la población menos afluente, que esta distancia es grande y que no presenta signos de disminución a lo largo de la década. La política educativa debería, también, atender el efecto de la distancia económica sobre la equidad. Una política que incluyera la movilización de aquellos recursos e inversiones capaces de provocar un aumento rápido en los años de educación promedio del grupo con menos educación, más acelerado que el ritmo histórico del 7 por ciento anual en la expansión de la educación

superior, por ejemplo, tendría posibilidades amplias de contribuir a alcanzar una menos desigual distribución de los ingresos personales en el futuro.

VI. REFERENCIAS

- Arrow, Kenneth (1973) "Higher Education as a Filter" Journal of Public Economics, 2:193-216.
- Bhattacharya, N y Mahalanobis, B. (1967) "Regional disparities in household consumption in India" *Journal of the American Statistical Association*. 62:143-161
- Bourguignon, F. (1979) "Decomposable Income Distribution Measures" *Econometrica* 47:901-920.
- Carnoy, Martin, con Lobo, J., Toledo, A. y Velloso, J. (1974), *Can Educational Policy Equalize Income Distribution in Latin America?* London, Saxon House.
- Chakravarty, S.R. y Dutta, B. (1987) "A note on measures of Distance between Income Distributions" *Journal of Economic Theory*, 41 (1), 185-188.
- Dagum, Camilo, (1985) "Analyses of Income Distribution and Inequality by Education and Sex" *Advances in Econometrics*, Vol.4:167-227.
- Dagum, Camilo (1997) "A new approach to the decomposition of the Gini income inequality ratio" *Empirical Economics*, 22,4: 515-531.
- Dagum, Camilo (2001) "Desigualdad del rédito y bienestar social, descomposición, distancia direccional y distancia métrica entre distribuciones" *Estudios de Economía Aplicada*, No 17, 2001: 5-52.
- Ebert, U. (1984) "Measures of Distance between Income Distributions" *Journal of Economic Theory*, 32, 266-274.
- Esteban, Joan María y Ray D. (1994) "On the measurement of Polarization" *Econometrica*, Vol. 62. Nº 4 (Julio), 819-851.
- Gertel, Héctor R., De Santis, M. y Pereyra, L. (1987) "Educación y distribución de ingresos en Córdoba", ANALES, XXI Reunión anual de la Asociación Argentina de Economía Política.
- Gertel, H., Giuliodori, R., Auerbach, P., Rodríguez, A. (2001) "Unemployment And Income Distribution Analysis, New Evidences Using a Dagum Parametric Income Distribution Model", ANALES, XXXVI Reunión anual de la Asociación Argentina de Economía Política.
- Gradín, Carlos (2000) "Polarization by sub-populations in Spain, 1973-91" *Review of Income and Wealth*, Series 46, n° 4, diciembre, 457-474.
- Levin, H. M. y Kelley, C. (1994) Can Education Do It Alone? *Economics of Education Review*, vol. XIII (2) pp. 97–108.

- Londoño, Juan Luis (1996) "Pobreza, Desigualdad y Formación del Capital Humano en América Latina, 1950-2025", Washington, Banco Mundial.
- Mincer, Jacob (1974) *Progress in Human Capital Analysis of the Distribution of Income*, National Bureau of Economic Research, Working Paper N 53.
- Patrinos, H. A. (1995) "Socioeconomic Background, Schooling, Experience, Ability and Monetary Rewards in Greece" *Economics of Education Review*, vol. XIV pp. 85–91.
- Ram, Rati (1984) "Population Increase, Economic Growth, Educational Inequality and Income Distribution: Some Referent Evidence" *Journal of Development Economics*, 14 (April), 419-428.
- Ram, Rati (1990) "Educational Expansion and Schooling Inequality: International Evidence and some Implications" *The Review of Economics and Statistics*, Vol.72, 2, (May), 266-274.
- Rao, C.Radhakrishna (1952) *Advanced Statistical Methods in Biometric Research*, New York, John Willey & Sons.
- Sharma, S. (1996) *Applied Multivariate Techniques*, New York, John Willey & Sons. Inc. pp.39-50.
- Shorrocks, Anthony F. (1984), "Inequality decomposition by population subgroups", *Econometrica*, Vol.53, 5, 1369-1386.
- Theil, Henry (1967) *Economics and Information Theory*, Amsterdam, North-Holland.
- Yitzhaky, S. (1994) "Economic Distance and Overlapping of Distributions", *Journal of Econometrics*, 61, 147-159.