Soil seed bank contribution to the restoration of agroecosystems and forest fragments in the Espinal (Córdoba)

Authors

DOI:

https://doi.org/10.31055/1851.2372.v59.n2.43133

Keywords:

land use change, regeneration, secondary succession, dry forest, central Argentina

Abstract

Background and aims: The most substantial global land use change is the transformation of native ecosystems into agroecosystems, leading to loss of  biodiversity and reduction of ecosystem services. Potentially, these degraded systems could be restored from their soil seed bank. Our aim was to assess species richness and density of the soil seed bank along a structural complexity gradient in
agroecosystems and Espinal forest fragments. Furthermore, we compared species composition between the soil seed bank and established vegetation of the reference system to explore its potential for regeneration of native plant communities.
M&M: A structural complexity gradient was created from vegetation and soil structural variables from plots with different land uses to analyze seed bank variables.
Results: The highest richness was recorded in the pasture soil seed bank, followed by the forests. The highest density and similarity to the established vegetation of the reference system was registered in the forests. Herbaceous species predominated in all plots. With the exception of Celtis tala, seeds of dominant woody species from the reference system were not observed.
Conclusions: The pasture seed bank may be particularly relevant in the early stage of native forest restoration, especially if the aim is to reduce costs. However, the contribution of the seed bank to Espinal forests recovery in short to medium term is limited due to its low similarity to reference system.

References

BASKIN, C. C. & J. M. BASKIN. 2014. Seeds: ecology, biogeography, and evolution of dormancy and germination. 2nd ed. Academic Press, San Diego. https://doi.org/10.1016/C2013-0-00597-X

BELLINDER, R. B., H. R. DILLARD & D. A. SHAH. 2004. Weed seedbank community responses to crop rotation schemes. Crop Prot. 23: 95–101. https://doi.org/10.1016/S0261-2194(03)00174-1

BOSSUYT, B. & O. HONNAY. 2008. Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. J. Veg. Sci. 19: 875-884. https://doi.org/10.3170/2008-8-18462

BRAY, J. R. & J. T. CURTIS. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 326-349.

BRYSON, C. T. & G. D. WILLS. 1985. Susceptibility of bermudagrass (Cynodon dactylon) biotypes to several herbicides. Weed Sci. 33: 848-852.

BUHLER, D. D., K. A. KOHLER & R. L. THOMPSON. 2001. Weed seed bank dynamics during a five-year crop rotation. Weed Technol. 15: 70-176. https://doi. org/10.1614/0890-037X(2001)015[0170:WSBDD A]2.0.CO;2

CABIDO, M., S. R. ZEBALLOS, M. ZAK, M. L. CARRANZA … & A. T. ACOSTA. 2018. Native woody vegetation in central Argentina: Classification of Chaco and Espinal forests. Appl. Veg. Sci. 21: 298-311. https://doi.org/10.1111/avsc.12369

CABRERA, A. L. 1976. Regiones fitogeográficas argentinas. En: KUGLER, W. F. (ed.), Enciclopedia Argentina de Agricultura y Jardinería, pp. 1-85. Acme, Buenos Aires.

CARO, J. A. & M. M. CECONELLO. 2020. Principales iniciativas vinculadas al desarrollo rural en Argentina (1995-2015). Una revisión de características y alcances. Breves Contrib. Inst. Estud. Geogr 31: 110-117.

CAVERS, P. B. & D. L. BENOIT. 1989. Seed banks in arable land. En: LECK, M. A., V. T. PARKER & R. L. SIMPSON (eds.), Ecology of Soil Seedbanks, pp. 309-328. Academic Press, San Diego. https://doi.org/10.1016/B978-0-12-440405-2.50019-1

CLEWELL, A. F. & J. ARONSON. 2007. Ecological restoration: principles, values, and structure of an emerging profession. 2nd ed. Island Press. Washington, DC. https://doi.org/10.5822/978-1-59726-323-8

CRAMER, V. A., R. J. HOBBS & R. J. STANDISH. 2008. What’s new about old fields? Land abandonment and ecosystem assembly. Trends Ecol. Evol. 23: 104-112. https://doi.org/10.1016/j. tree.2007.10.005

CSONTOS, P. 2007. Seed banks: ecological definitions and sampling considerations. Community Ecol. 8: 75-85. https://doi.org/10.1556/comec.8.2007.1.10

DALLING, J. W. 2002. Ecología de semillas. En: M. R. GUARIGUATA & G. H. KATTAN (eds.), Ecología y conservación de bosques neotropicales, pp. 345- 375. Ediciones LUR, Cartago.

DE VILLIERS, A. J., M. W. VAN ROOYEN & G. K. THERON. 2003. Similarity between the soil seed bank and the standing vegetation in the Strandveld Succulent Karoo, South Africa. Land Degrad. Dev. 14: 527-540. https://doi.org/10.1002/ldr.582

DEMAIO, P., U. O. KARLIN & M. MEDINA. 2015. Árboles nativos de Argentina. Tomo 1: Centro y Cuyo. Primera edición. Ecoval editorial, Buenos Aires.

DEVLAEMINCK, R., B. BOSSUYT & M. HERMY. 2005. Inflow of seeds through the forest edge: evidence from seed bank and vegetation patterns. Plant Ecol. 176: 1-17. https://doi.org/10.1007/s11258-004-0008-2

DÖLLE, M. & W. SCHMIDT. 2009. The relationship between soil seed bank, above‐ground vegetation and disturbance intensity on old‐field successional permanent plots. Appl. Veg. Sci. 12: 415-428. https://doi.org/10.1111/j.1654-109X.2009.01036.x

DONELAN, M. & K. THOMPSON. 1980. Distribution of buried viable seeds along a successional series. Biol. Conserv. 17: 297-311. https://doi.org/10.1016/0006-3207(80)90029-4

DOUCET, C., S. E. WEAVER, A. S. HAMILL & J. ZHANG. 1999. Separating the effects of crop rotation from weed management on weed density and diversity. Weed Sci. 47: 729-735. https://doi.org/10.1017/S0043174500091402

ERNST, R. D., C. E. SUÁREZ, H. D. ESTELRICH, E. F. MORICI & M. A. CAMPOS. 2020. Fachinales de Prosopis caldenia intervenidos por distintos manejos: Análisis desde su banco de semillas. Ecol. Austral 30: 380-392. https://doi.org/10.25260/EA.20.30.3.0.989

ESKELINEN, A., M. T. JESSEN, H. A. BAHAMONDE, J. D. BAKKER ... & L. L. SULLIVAN. 2023. Herbivory and nutrients shape grassland soil seed banks. Nat. Commun. 14: 3949. https://doi.org/10.1038/s41467-023-39677-x

ETCHEPARE, M. A. & S. I. BOCCANELLI. 2007. Análisis del banco de semillas y su relación con la vegetación emergente en una clausura de la llanura pampeana. Ecol. Austral 17: 159-166.

FELEDYN SZEWCZYK, B. J. SMAGACZ, C. A. KWIATKOWSKI, E. HARASIM & A. WOŹNIAK. 2020. Weed flora and soil seed bank composition as affected by tillage system in three-year crop rotation. Agric. 10: 1-20. https://doi.org/10.3390/agriculture10050186

FENNER, M. & K. THOMPSON. 2005. The ecology of seeds. First edition. Cambridge University Press. Cambridge.

FERRERAS, A., P. MARCORA, P. VENIER & G. FUNES. 2018. Different strategies for breaking physical seed dormancy in field conditions in two fruit morphs of Vachellia caven (Fabaceae). Seed Sci. Res. 28: 8-15. https://doi.org/10.1017/S096025851800003X

FERRI, R., M. CEBALLOS, N. VISCHI, E. HEREDIA & A. OGGERO. 2009. Banco de semillas de un relicto de Espinal (Córdoba, Argentina). IHERINGIA, Sér. Bot. 64: 93-100.

FLORENTINE, S., MILBERG, P. & M. WESTBROOKE. 2023. Potential contributions of the soil seed bank and seed rain for accelerating the restoration of riparian catchments in Australia. Glob. Ecol. Conserv. 47: e02645. https://doi.org/10.1016/j.gecco.2023.e02645

FRECHERO, J. I. 2013. Extractivismo en la economía argentina. Categorías, etapas históricas y presente. Estud. Crit. Desarro. 3: 45-82. https://doi.org/10.35533/ecd.0304.jif

FUNES, G., S. BASCONCELO, S. DÍAZ & M. CABIDO. 2001. Edaphic patchiness influences grassland regeneration from the soil seed‐bank in mountain grasslands of central Argentina. Ecol. Austral 26: 205-212. https://doi.org/10.1046/j.1442-9993.2001.01102.x

FUNES, G., S. BASCONCELO, S. DÍAZ & M. CABIDO. 2003. Seed bank dynamics in tall‐tussock grasslands along an altitudinal gradient. J. Veg. Sci. 14: 253-258. https://doi.org/10.1111/j.1654-1103.2003.tb02150.x FUNES, G., S. DÍAZ & P. VENIER. 2009. La temperatura como principal determinante de la germinación en especies del Chaco seco de Argentina. Ecol. Austral 19: 129-138.

GARACHANA, D. M., R. ARAGÓN & G. BALDI. 2018. Estructura espacial de remanentes de bosque nativo en el Chaco Seco y el Espinal. Ecol. Austral 28: 480- 607. https://doi.org/10.25260/EA.18.28.3.0.767

GIORGIS M. A. & P. A. TECCO. 2014. Árboles y arbustos invasores de la Provincia de Córdoba (Argentina): una contribución a la sistematización de bases de datos globales. Bol. Soc. Argent. Bot. 49: 581-603. https://doi.org/10.31055/1851.2372.v49.n4.9991

GRIME, J. P. 1979. Plant strategies, vegetation processes and ecosystem properties. John Wiley & Sons, Ltd., Nueva York. GUIDA JOHNSON, B. & G. A. ZULETA. 2013. Land-use land-cover change and ecosystem loss in the Espinal ecoregion, Argentina. Agric. Ecosyst. Environ. 181: 31-40. https://doi.org/10.1016/j.agee.2013.09.002

HARING, S. C. & M. L. FLESSNER. 2018. Improving soil seed bank management. Pest Manag. Sci. 74: 2412-2418. https://doi.org/10.1002/ps.5068

HAUSSMANN, N. S., C. DELPORT, V. KAKEMBO, K. K. MASHIANE & P. C. LE ROUX. 2019. Restoration potential of invaded abandoned agricultural fields: what does the seed bank tell us? Restor. Ecol. 27: 813-820. https://doi.org/10.1111/rec.12923

HEAP, I. 2014. Herbicide Resistant Weeds. En: PIMENTEL D. & R. PESHIN (eds.), Integrated Pest Management, pp. 281-301. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7796-5_12

HEREDIA PINOS, M. R., G. A. MONTERO, E. RAJASEKHAR, D. E. FACCINI ... & R. PRASAD. 2023. Post-dispersal predation of weed seeds in a pampas agroecosystem, Argentina. South Afr. J. Bot. 156: 1-12. https://doi.org/10.1016/j.sajb.2023.02.038

HOPFENSPERGER, K. N. 2007. A review of similarity between seed bank and standing vegetation across ecosystems. Oikos 116: 1438-1448. https://doi.org/10.1111/j.0030-1299.2007.15818.x

HOROWITZ, M. 1972. Spatial growth of Cynodon dactylon (L.) Pers. Weed Res. 12: 373-383. https://doi.org/10.1111/j.1365-3180.1972.tb01231.x

HOSSEINI, P., H. KARIMI, S. BABAEI, H. R. MASHHADI & M. OVEISI. 2014. Weed seed bank as affected by crop rotation and disturbance. Crop Prot. 64: 1-6. https://doi.org/10.1016/j.cropro.2014.05.022

HOUSPANOSSIAN, J., R. GIMÉNEZ, J. I. WHITWORTH-HULSE, M. D. NOSETTO ... & E. G. JOBBÁGY. 2023. Agricultural expansion raises groundwater and increases flooding in the South American plains. Sci. 380: 1344-1348. https://doi.org/10.1126/science.add5462

IDECOR. 2020. Infraestructura de Datos Espaciales de la Provincia de Córdoba. Ministerio de Finanzas de la Provincia de Córdoba. https://www.idecor.gob.ar/ conoce-las-principales-variables-economicas-porclase-de-uso-del-suelo/

JOBBÁGY, E. G., M. D. NOSETTO, C. S. SANTONI & G. BALDI. 2008. El desafío ecohidrológico de las transiciones entre sistemas leñosos y herbáceos en la llanura Chaco-Pampeana. Ecol. Austral 18: 305--322.

LEE, L. J. & J. NGIM. 2000. A first report of glyphosate‐resistant goosegrass (Eleusine indica (L) Gaertn) in Malaysia. Pest Manag. Sci. 56: 336-339. https://doi.org/10.1002/(SICI)1526- 4998(200004)56:43.0.CO;2-8

LEKBERG, Y., C. A. ARNILLAS, E. T. BORER, L. S. BULLINGTON … & J. A. HENNING. 2021. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nat. Commun. 12: 3484. https://doi.org/10.1038/s41467-021-23605-y

LEWIS, J. P., S. NOETINGER, D. E. PRADO & I. M. BARBERIS. 2009. Woody vegetation structure and composition of the last relicts of Espinal vegetation in subtropical Argentina. Biodivers. Conserv. 18: 3615-3628. https://doi.org/10.1007/s10531-009-9665-8

LIPOMA, M. L., V. FORTUNATO, L. ENRICO & S. DÍAZ. 2020. Where does the forest come back from? Soil and litter seed banks and the juvenile bank as sources of vegetation resilience in a semiarid Neotropical forest. J. Veg. Sci. 31: 1017- 1027. https://doi.org/10.1111/jvs.12842

LOYDI, A. 2019. Effects of grazing exclusion on vegetation and seed bank composition in a mesic mountain grassland in Argentina. Plant Ecol. Divers. 12: 127-138. https://doi.org/10.1080/17550874.2019.1593544

LUO, C., X. GUO, C. FENG & C. XIAO. 2023. Soil seed bank responses to anthropogenic disturbances and its vegetation restoration potential in the arid mining area. Ecol. Indic. 154: 110549. https://doi.org/10.1016/j.ecolind.2023.110549

MA, M., C. C. BASKIN, W. LI, Y. ZHAO … & G. DU. 2019. Seed banks trigger ecological resilience in subalpine meadows abandoned after arable farming on the Tibetan Plateau. Ecol. Appl. 29: 1-13. https://doi.org/10.1002/eap.1959

MA, M., S. L. COLLINS, Z. RATAJCZAK & G. DU. 2021. Soil seed banks, alternative stable state theory, and ecosystem resilience. Biosci. 71: 697- 707. https://doi.org/10.1093/biosci/biab011

MANLEY, B. S., H. P. WILSON & T. E. HINES. 2002. Management programs and crop rotations influence populations of annual grass weeds and yellow nutsedge. Weed Sci. 50: 112-119. https://doi. org/10.1614/0043-1745(2002)050[0112:MPACRI] 2.0.CO;2

MAZA VILLALOBOS, S., C. LEMUS HERRERA & M. MARTÍNEZ RAMOS. 2011. Successional trends in soil seed banks of abandoned pastures of a Neotropical dry region. J. Trop. Ecol. 27: 35-49. https://doi.org/10.1017/S0266467410000611

MCDONALD, A. W., J. P. BAKKER & K. VEGELIN. 1996. Seed bank classification and its importance for the restoration of species‐rich flood‐meadows. J. Veg. Sci. 7: 157-164. https://doi.org/10.2307/3236315

MCDONALD T., G. D. GANN, J. JONSON & K. W. DIXON. 2016. International standards for the practice of ecological restoration – Including principles and key concepts. First edition. Society for Ecological Restoration, Washington D.C.

MEAVE, J. A., C. FLORES RODRÍGUEZ, E. A. PÉREZ GARCÍA & M. A. ROMERO ROMERO. 2012. Edaphic and seasonal heterogeneity of seed banks in agricultural fields of a tropical dry forest region in southern Mexico. Bot. Sci. 90: 313-329. https://doi.org/10.17129/botsci.393

MEFTAUL, I. M., K. VENKATESWARLU, R. DHARMARAJAN, P. ANNAMALAI … & M. MEGHARAJ. 2020. Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture? Environ. Pollut. 263: 1-18. https://doi.org/10.1016/j.envpol.2020.114372

MIDDLETON, B. A. 2003. Soil seed banks and the potential restoration of forested wetlands after farming. J. Appl. Ecol. 40: 1025-1034. https://doi.org/10.1111/j.1365-2664.2003.00866.x MILBERG, P. 1995. Soil seed bank after eighteen years of succession from grassland to forest. Oikos 72: 3-13. https://doi.org/10.2307/3546031

NIU, F., L. HUO, Z. WANG, J. LIU … & B. XU. 2022. Effects of nitrogen addition & watering on soil seed bank germination in a semiarid grassland on the Loess Plateau of China. Land Degrad. Dev. 34: 142- 155. https://doi.org/10.1002/ldr.4449

NOUTCHEU, R., F. M. OLIVEIRA, R. WIRTH, M. TABARELLI & I. R. LEAL. 2023. Coppicing as a driver of plant resprouting and the regeneration of a Caatinga dry forest. For. Ecol. Manag. 529: 120736. http://dx.doi.org/10.2139/ssrn.4200135

OKSANEN, J., G. L. SIMPSON, F. G. BLANCHET, R. KINDT … & J. WEEDON. 2022. Package vegan: Community Ecology Package. R package version 2.6-2. Disponible en: https://CRAN.R-project.org/ package=vegan [Acceso: Agosto 2023].

OWEN, M. D. & I. A. ZELAYA. 2005. Herbicide‐ resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61: 301-311. https://doi.org/10.1002/ps.1015

OYARZABAL, M., J. CLAVIJO, L. OAKLEY, F. BIGANZOLI ... & R. J. LEÓN. 2018. Unidades de vegetación de la Argentina. Ecol. Austral 28: 40-63. https://doi.org/10.25260/EA.18.28.1.0.399

PAN, J., L. ZHANG, L. WANG & S. FU. 2020. Effects of long-term fertilization treatments on the weed seed bank in a wheat-soybean rotation system. Glob. Ecol. Conserv. 21: 1-8. https://doi.org/10.1016/j.gecco.2019.e00870

PERUZZO, P. J., A. A. PORTA & A. E. RONCO. 2008. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ. Pollut. 156: 61-66. https://doi.org/10.1016/j.envpol.2008.01.015

POZNER, R. 2015. Cucurbitaceae. En: ANTON, A. M. & F. O. ZULOAGA (dir.), Flora Argentina [online]. Disponible en: www.floraargentina.edu.ar [Acceso: 13 noviembre 2023].

R CORE TEAM. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponible en: https:// www.R-project.org/. [Acceso: Julio 2023].

RAGO, M. M., M. F. URRETAVIZCAYA, I. A. ORELLANA & G. E. DEFOSSÉ. 2020. Strategies to persist in the community: Soil seed bank and above‐ ground vegetation in Patagonian pine plantations. Appl. Veg. Sci. 23: 254-265. https://doi.org/10.1111/avsc.12482

ROBERTS, H. A. & F. G. STOKES. 1965. Studies on the weeds of vegetable crops. V. Final observations on an experiment with different primary cultivations. J. Appl. Ecol. 2: 307-315. https://doi.org/10.2307/2401482

ROBERTS, H. A. 1981. Seed Banks in Soil. Adv. Appl. Biol. 6: 1-55.

ROBERTSON, G. P., D. C. COLEMAN, C. S. BLEDSOE & P. SOLLINS. 1999. Standard soil methods for long-term ecological research. Oxford University Press, Nueva York.

RSTUDIO TEAM. 2022. RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA. Disponible en: http://www.rstudio. com/. [Acceso: Julio 2023].

SATORRE, E. H., B. ELBA, M. T. MAS, S. A. SUÁREZ … & A. M. VERDÚ. 2020. Crop rotation effects on weed communities of soybean (Glycine max L. Merr.) agricultural fields of the Flat Inland Pampa. Crop Prot. 130: 1-7. https://doi.org/10.1016/j.cropro.2019.105068

SAVADOGO P., L. SANOU, S. D. DAYAMBA, F. BOGNOUNOU & A. THIOMBIANO. 2017. Relationships between soil seed banks and aboveground vegetation along a disturbance gradient in the W National Park trans-boundary biosphere reserve, West Africa. J. Plant Ecol. 10: 349-363. https://doi.org/10.1093/jpe/rtw025

SERVICIO METEOROLÓGICO NACIONAL. Atlas Climático Argentina. 1991-2020. Disponible en: https://www.smn.gob.ar/clima/atlasclimatico [Acceso: 13 noviembre 2023].

SHRESTHA, A., S. Z. KNEZEVIC, R. C. ROY, B. R. BALL COELHO & C. J. SWANTON. 2002. Effect of tillage, cover crop and crop rotation on the composition of weed flora in a sandy soil. Weed Res. 42: 76-87. https://doi.org/10.1046/j.1365-3180.2002.00264.x

SILVA, G. H. M. & G. E. OVERBECK. 2020. Soil seed bank in a subtropical grassland under different grazing intensities. Acta Bot. bras. 34: 360-370. https://doi.org/10.1590/0102-33062019abb0297

SIMPSON, R. L., M. A. LECK & V. T. PARKER. 1989. Seed banks: general concepts and methodological issues. En: LECK, M. A., V. T. PARKER & R. L. SIMPSON (eds.), Ecology of soil seed banks, pp. 3-8. Academic press inc., San Diego, California, USA.

SOUZA DE PAULA, A., J. C. SFAIR, D. P. F. TRINDADE, K. F. RITO … & M. F. BARROS. 2023. The role of seed rain and soil seed bank in the regeneration of a Caatinga dry forest following slash-and-burn agriculture. J. Arid Environ. 211: 104948. https://doi.org/10.1016/j.jaridenv.2023.104948

SUDING, K. N. & R. J. HOBBS. 2009. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24: 271-279. https://doi.org/10.1016/j.tree.2008.11.012

TESSEMA, Z. K., W. F. DE BOER, R. M. BAARS & H. H. PRINS. 2012. Influence of grazing on soil seed banks determines the restoration potential of aboveground vegetation in a semi‐arid savanna of Ethiopia. Biotropica 44: 211-219. https://doi.org/10.1111/j.1744-7429.2011.00780.x

THOMPSON, K. 1978. The occurrence of buried viable seeds in relation to environmental gradients. J. Biogeogr. 5: 425-430. https://doi.org/10.2307/3038032

VÁZQUEZ GARCÍA, J. G., R. ALCÁNTARA DE LA CRUZ, A. M. ROJANO DELGADO, C. PALMA BAUTISTA … & R. DE PRADO. 2021. Multiple herbicide resistance evolution: The case of Eleusine indica in Brazil. J. Agric. Food Chem. 69: 1197-1205. https://doi.org/10.1021/acs.jafc.0c03999

VÉLEZ, S., N. P. CHACOFF & C. M. CAMPOS. 2018. Pre-dispersal seed loss in two Prosopis species (Fabacea: Mimosoidea) from the Monte Desert, Argentina. Ecol. Austral 28: 361-373. https://doi.org/10.25260/EA.18.28.2.0.576

VENIER, P., M. CABIDO & G. FUNES. 2017. Germination characteristics in five coexisting neotropical species of Acacia in seasonally dry Chaco forests from Argentina. Plant Spec. Biol. 32: 134-146. https://doi.org/10.1111/1442-1984.12134

VERESOGLOU, S. D., E. K. BARTO, G. MENEXES & M. C. RILLIG. 2013. Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathol. 62: 961-969. https://doi.org/10.1111/ppa.12014

VIGLIZZO, E. & E. G. JOBBÁGY. 2010. Expansión de la frontera agropecuaria en Argentina y su impacto ecológico-ambiental. Ediciones Instituto Nacional de Tecnología Agropecuaria, Buenos Aires.

WAGNER, M. & N. MITSCHUNAS. 2007. Fungal effects on seed bank persistence & potential applications in weed biocontrol: a review. Basic Appl. Ecol. 9: 191- 203. https://doi.org/10.1016/j.baae.2007.02.003

WALKLEY, A. & I. A. BLACK. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37: 29-38.

WANG, N., X. HE, F. ZHAO, D. WANG & J. JIAO. 2020. Soil seed bank in different vegetation types in the Loess Plateau region and its role in vegetation restoration. Restor. Ecol. 28: 5-12. https://doi.org/10.1111/rec.13169

WEERASINGHE, M., M. S. ASHTON, E. R. HOOPER & B. M. SINGHAKUMARA. 2018. Floristics of soil seed banks on agricultural and disturbed land cleared of tropical forests. Restor. Ecol. 27: 138- 147. https://doi.org/10.1111/rec.12711

WICKHAM, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Second edition. Springer, Verlag, Nueva York.

WILLIAMS LINERA, G., M. BONILLA MOHENO & F. LÓPEZ BARRERA. 2016. Tropical cloud forest recovery: the role of seed banks in pastures dominated by an exotic grass. New For. 47: 481- 496. https://doi.org/10.1007/s11056-016-9526-8

YANG, X., C. C. BASKIN, J. M. BASKIN, R. J. PAKEMAN … & J. H. CORNELISSEN. 2021. Global patterns of potential future plant diversity hidden in soil seed banks. Nat. Commun. 12: 1-8. https://doi.org/10.1038/s41467-021-27379-1

ZEBALLOS, S. R., M. A. GIORGIS, M. R. CABIDO, A. T. R. ACOSTA … & J. J. CANTERO. 2020. The lowland seasonally dry subtropical forests in central Argentina: vegetation types and a call for conservation. Veg. Clasif. Surv. 1: 8

Published

2024-06-27

Issue

Section

Ecology and Conservation

How to Cite

“Soil Seed Bank Contribution to the Restoration of Agroecosystems and Forest Fragments in the Espinal (Córdoba)”. 2024. Boletín De La Sociedad Argentina De Botánica (Journal of the Argentine Botanical Society 59 (2). https://doi.org/10.31055/1851.2372.v59.n2.43133.

Similar Articles

81-90 of 590

You may also start an advanced similarity search for this article.