Studying Pollen rePreSentation of vegetation  
and Plant richneSS from PamPean coaStal duneS  
argentina, South america): exPloring from local to  
landScaPe quantitative linKageS  
(
eStudio de la rePreSentación del Polen de la vegetación y la riqueza de  
PlantaS de laS dunaS coSteraS PamPeanaS (argentina, américa del Sur):  
exPlorando laS relacioneS cuantitativaS deSde lo local al PaiSaje  
1,2  
Carolina Vásquez , Gonzalo Sottile * , Víctor Merino-Campos  
Silvina Stutz  
Summary  
Background and aims: Studying plant dynamics through past pollen records may  
contribute to a better understanding of long-term changes in plant communities.  
Thus, this study aims to establish whether surface pollen composition and richness  
of the Argentinean Coastal Dune System reflect landscape heterogeneity in coastal  
dune environments.  
1
. Grupo de Paleoecología y  
Palinología, Facultad de Ciencias  
Exactas y Naturales, Instituto de  
Investigaciones Marinas y Costeras  
(Universidad Nacional de Mar del  
M&M: Twenty-four sediment surface samples were collected in small lagoons.  
Landscape-scale heterogeneity up to 2000 m was mapped and classified in  
landscape units. Multivariate analyses were used to classify pollen samples and  
compare them to landscape unit coverage (%). Also, we evaluate plant species and  
pollen richness relationship by linear regression models.  
Results: The relationship between plant and pollen richness is influenced by  
taxonomic smoothing, pollen production and taphonomic constraints (dispersal and  
preservation). The pollen assemblages and pollen richness from surface sediments  
of small lagoons and interdune slacks reflect plant richness and vegetation  
heterogeneity at the landscape scale (ca. 1000-2000 m). The main contributors  
to pollen richness are anemophilous pollen types, although some entomophilous  
pollen types are useful to infer some local heterogeneity.  
Plata - CONICET), Mar del Plata,  
Argentina  
2
. Grupo de Biología y Ecodiversidad  
vegetal, Facultad de Ciencias  
Exactas y Naturales, Instituto de  
Investigaciones Marinas y Costeras  
(
Universidad Nacional de Mar del  
Plata - CONICET), Mar del Plata,  
Argentina  
*gonzalo_sottile@yahoo.com.ar  
Conclusions: We report the first quantitative analysis on pollen-vegetation  
relationship of coastal ecosystems showing that pollen records reflect landscape  
vegetation attributes, encouraging the study of past plant diversity and landscape  
variability based on pollen records.  
Citar este artículo  
VÁSQUEZ, C., G. SOTTILE, V.  
MERINO-CAMPOS& S. STUTZ. 2024.  
Studying pollen representation of  
vegetation and plant richness from  
Pampean coastal dunes (Argentina,  
South America): exploring from  
local to landscape quantitative  
linkages. Bol. Soc. Argent. Bot. 59:  
Key wordS  
Coastal dune vegetation, landscape heterogeneity, pollen, quantitative pollen-  
vegetation relationship.  
reSumen  
5
07-527.  
Antecedentes y objetivos: Estudiar la dinámica de la diversidad vegetal mediante  
registros polínicos puede contribuir a entender patrones de cambio de largo plazo.  
Para ello es necesario estudiar cómo la composición y riqueza del polen superficial  
de los sistemas de Dunas Costeros argentinos reflejan la heterogeneidad del paisaje.  
M&M: Se recolectaron 24 muestras de superficie de sedimentos de pequeñas  
lagunas. Se mapeó y clasificó la heterogeneidad vegetal hasta 2000 m en  
unidades de paisaje y mediante análisis multivariados y agrupamiento se comparó  
el contenido polínico y la cobertura de las unidades de paisaje (%). Se modeló la  
relación entre riqueza específica y riqueza polínica, desde la escala local hasta la  
de paisaje mediante regresiones lineales.  
Resultados: La relación entre la riqueza específica y polínica está influenciada por  
el sesgo taxonómico, la producción polínica y limitaciones tafonómicas (dispersión  
y preservación de polen). Las asociaciones y riqueza de polen superficial reflejan la  
riqueza específica y heterogeneidad vegetal a escala de paisaje (ca. 1000-2000 m).  
Los principales contribuyentes a la riqueza polínica son anemófilos. Algunos tipos  
de polen entomófilos son útiles para inferir cierta heterogeneidad local.  
Recibido: 17 Abr 2024  
Aceptado: 24 Jul 2024  
Publicado en línea: 31 Dic 2024  
Publicado impreso: 31 Dic 2024  
Editor: Gonzalo J. Márquez  
Conclusiones: El modelado cuantitativo de la relación polen-vegetación en término  
de unidades de paisaje y riqueza polínica demuestra el alto potencial para la  
aplicación de estos modelos en la reconstrucción de la dinámica de la vegetación  
en este tipo de ambientes a partir de registros polínicos.  
PalabraS clave  
ISSN versión impresa 0373-580X  
ISSN versión on-line 1851-2372  
Heterogeneidad del paisaje, polen, relación cuantitativa polen-vegetación, vegetación  
de dunas costeras.  
507  
Bol. Soc. Argent. Bot. 59 (4) 2024  
introduction  
surface samples (e.g. Goring et al., 2013; Meltsov  
et al., 2011; Matthias et al., 2015; Felde et al., 2015;  
Coastal Dune Systems (CDS) are landforms of Gosling et al., 2018; Reitalu et al., 2019; Abraham  
regional extension, consisting mainly of mobile et al., 2020; Papadopoulou et al., 2022).  
dunes and dune ridges fixed by vegetation, in which  
Modern pollen-vegetation studies in Argentinean  
a mosaic of environments has been formed with CDShavebeencarriedoutonthecoastofSanMatías  
plant communities adapted to different landforms. Gulf (north Patagonia) (Marcos & Mancini, 2012),  
They are abundant on the Argentinian coast, and and in the southwest and southeast coast of Buenos  
according to Isla et al. (1996, 2001) and Codignotto Aires Province (Fontana, 2003, 2004, 2005b; Stutz  
et al. (2012) developed during the late Holocene & Prieto, 2003; Latorre et al., 2010; Monserrat et  
between ca. 3070 and 540 yrs. BP. These systems al., 2012). These studies mainly focused on the  
are highly dynamic and diverse, in terms of relationship between vegetation distribution and  
vegetation cover and composition. They include pollen dispersal. Fontana (2005a) emphasized  
endemic species and provide multiple ecosystem that pollen representation was influenced both by  
services of economic and environmental value differences in pollen production, dispersal, and  
Celsi (2016). Since the XIX century, they have preservation of individual taxa, as well as by the  
been threatened by several factors, including spatial distribution of vegetation and topography of  
afforestation with exotic species of Acacia Mill., the CDS and by wind pattern.  
Populus L., Eucalyptus L'Hér., and Pinus L. genera,  
Since the pioneers of quantitative analysis of  
which dispersion now represents one of the main modern and past pollen-vegetation relationships,  
threats to conservation in the area. Invasions of Prentice (1985), Sugita (1994, 2007a, b) and Bunting  
woody species have been considered to affect & Middleton (2005, 2009), many works have  
severely large areas of grassland causing variations been carried out, mainly in northern hemisphere  
in the dominant life forms, disturbing the dynamics forests and steppe ecosystems. Pollen richness or  
of vegetation and changing the distribution patterns rarefied palynological richness was first interpreted  
of species and increasing ecosystem patchiness as a proxy of past plant diversity (e.g. Birks &  
(Alberio & Comparatore, 2014). Invasion rates and Line, 1992; Bennett et al., 1992; Bunting, 1994;  
its impacts on biodiversity have been characterized Andersen, 1995; Giesecke et al., 2012), however,  
spatially and seasonally, nevertheless, long term during the last twenty years, some quantitative  
effects (decadal or longer time lags) have not been approaches have explored the relationship between  
recorded for Argentinian CDS ecosystems.  
modern vegetation and modern pollen assemblages  
Pollen assemblages preserved in sediments of from surface samples to discuss the performance of  
CDS lagoons and interdune slacks can be used these modeling and appliance to past palynological  
as a proxy for past plant richness as they record records (e.g. Burry et al., 2001; Goring et al., 2013;  
the dynamics of plant taxa through both, space Masciadri et al., 2013; Felde et al., 2015; Matthias et  
and time. However, pollen assemblages studies al., 2015; Reitalu et al., 2019; Li et al., 2022; Senn  
are limited by low taxonomic resolution, pollen et al., 2022). These studies warned about the spatial  
production, and taphonomic processes (transport, scale-dependence and the floristic composition of  
deposition, and preservation). Moreover, pollen- specific ecosystem effects on the capacity of this  
based species richness estimates are sensitive to proxy to reconstruct past plant diversity dynamics.  
source area size, missing taxa, and pollen count Disentangling between natural and human forcing  
sizes (Van der Sande et al. 2021) which may of past Coastal Dune System vegetation dynamics  
decrease the accuracy with which pollen represents demands calibrating modern pollen-vegetation  
vegetation communities (Goring et al. 2013). For representation models since a quantitative approach.  
these reasons, pollen abundance cannot be directly  
The CDS presents a large number of interdune  
translated into plant abundance when interpreting slacks, which have a high potential for pollen  
past pollen assemblages (Fontana, 2005a). To trapping and preservation, as well as a mixture of  
understand fossil pollen assemblages and make landscape units with vegetated and pristine areas and  
ecological inferences, it is necessary to calibrate some areas invaded by exotic forests, particularly in  
modern pollen-vegetation diversity relationships in the northern section of the CDS, which makes it  
508  
C. Vásquez et al. - Pollen representation of vegetation and plant richness of pampean coastal dunes  
an ideal area for performing paleoenvironmental while hydrophytic plants grow in flooded lowlands  
reconstructions of past vegetation changes (lagoons and interdune slacks) (Celsi, 2016).  
(Vásquez et al., 2023). Previous studies based on  
The vegetation of the CDS is characterized  
fossil pollen records of Faro Querandí (northern mainly by psammophytic species that are distributed  
area of the CDS) registered changes in wetland and according to the geomorphology heterogeneity  
dune vegetation over the last 500 years and they (Cabrera, 1941; Stutz & Prieto, 2003; Celsi, 2016;  
recorded also the first expansion of exotic forests Marcomini et al., 2017). According to Fontana  
in the CDS (Vásquez et al., 2023). However, these (2005a) this heterogeneity can be zoned in different  
pollen-based qualitative reconstructions have not landscape units. These landscape units include a strip  
discussed long-term changes in plant diversity. of beach free of vegetation and the back shore, the  
Thus, modeling between modern plant and pollen adjacent area with permanent sand, salt spray, and  
richness and pollen-vegetation representation in a water droplets carried by the wind in storms. Only a  
quantitative dimension would encourage future past few halophytic plant species (<5% coverage), such  
vegetation and diversity changes in quantitative as Sporobolus coarctatus (Trin.) P.M. Peterson &  
reconstructions.  
Saarela, grow under such environmental conditions.  
The aim of this work is to establish whether pollen Mobile dunes, active dunes with a strong substrate  
composition and richness reflect the landscape movement due to wind action, expand toward  
heterogeneity, considering both vegetation patterns the mainland, with <10-30% coverage. This  
and geomorphological characteristics of the CDS. zone is characterized by pioneer species such as  
We plan to evaluate the relationship between Panicum racemosum (P. Beauv.) Spreng., Calycera  
plant and pollen richness in relation to pollen crassifolia (Miers) Hicken, Senecio crassiflorus  
production, taxonomic and taphonomic (dispersal (Poir.) DC. and the exotic Cakile maritime Scop.  
and preservation) constraints, at local and extra- Inward to the continent, the vegetation cover  
local scales.  
increases, stabilizing dunes sediments favoring  
the formation of humus. These semifixed (>30%  
coverage) and fixed dunes (>75% coverage)  
are covered by grasslands and psammophytic  
shrublands dominated by Poa lanuginose Poir.,  
Tessaria absinthioides (Hook. & Arn.) DC., and  
materialS and methodS  
Study area  
The study area corresponds to the Faro Querandí Achyrocline satureioides (Lam.) DC. Herbaceous  
Municipal Nature Reserve (FQNR), located in the plants such as Ambrosia tenuifolia Spreng., Adesmia  
Coastal Dune Systems (CDS) of the southeast of incana Vogel, and Hydrocotyle bonariensis Lam.  
Buenos Aires Province, Argentina, which preserves are subordinated components joint with some shrub  
a valuable area of the Pampa plain ecoregion, species, Baccharis genistifolia DC., Margyricarpus  
characterized mainly by the presence of grassland pinnatus (Lam.) Kuntze, and Discaria Americana  
vegetation (Fig. 1). The CDS constitutes an almost Gillies & Hook., and the exotics Centaurium  
uninterrupted extensive coastal dune fields with a pulchellum (Sw.) Druce, Blackstonia perfoliata  
width, from the sea towards the mainland, ranging (L.) Huds., Medicago lupulina L., Melilotus indicus  
from hundreds of meters to 8 km (Celsi, 2016). (L.) All., and M. albus Desr. The interdune slacks  
These dunes are generally parabolic to pyramidal, (ca. 100% coverage) are intermediate depressions  
although there are also transverse dunes, barkhans frequently flooded covered by species of the genus  
(
crescent-shaped), and star-shaped dunes (Bértola et Typha, other hydrophytic such as Schoenoplectus  
al., 2002). Specifically, the FQNR comprises about spp. and Eleocharis spp., Juncus sp. and other  
000 ha with an aeolian morphology, and dunes herbaceous dicots, Bacopa monnieri (L.) Wettst.,  
5
are mainly transversal, with a general southwest- and Eryngium spp. Cortaderia selloana (Schult.  
northeast orientation (Codignotto et al., 2012). The & Schult. f.) Asch. & Graebn. grow on the edges  
pronounced topographic and edaphic variations at of the interdune slacks and can also form large tall  
the CDS drive noticeable changes in vegetation grasslands in the semifixed dunes or even patches  
cover and floristic composition. Psammophytic on mobile dunes slopes. Temporary or permanent  
plant types cover mobile and semifixed dunes lagoons develop due to the contribution of rainwater  
509  
Bol. Soc. Argent. Bot. 59 (4) 2024  
Fig. 1. Map of study area in Pampa plain (according to Oyarzabal et al., 2018) showing the location of  
Reserve Faro Querandí and other sites mentioned in the text.  
or water table raising, where dense hydrophytic  
The climate is humid temperate with a mean  
vegetation grows, as species of the Cyperaceae and annual temperature of 14 ºC, with marked  
Juncaceae families, Potamogeton spp, Polygonum seasonality; the average yearly precipitation  
punctatum Elliott, Utricularia gibba L., among is 930 mm and the mean annual humidity is  
others.  
greater than 75% (Estación Meteorológica  
Since the early 20th century, exotic trees were Aeródromo de Villa Gesell 37º14’ S, 57º01’ W,  
introduced to fix mobile dunes in the area of Villa Servicio Meteorológico Nacional). The most  
Gesell village and to place the Querandí lighthouse, frequent winds are those coming from the north,  
like pines, eucalyptus, cypresses, poplars, acacias, but the most intense are those coming from the  
tamarisks, and various fruit trees (Benseny, 2011; southeast, south, and southwest (Bértola et al.,  
Provendola, 2013). As a result, at present wide 1999).  
areas have been invaded mainly by Populus alba  
L., Pinus spp., and Acacia spp., particularly in the Sampling and vegetation surveys  
northern and central sector of the FQNR. Other  
Between December 2019 and March 2023, 24  
exotic trees (Betula pendula Roth, Casuarina sp., sediment surface samples, henceforth sampling  
Juglans nigra L., Araucaria araucana (Molina) K. sites, were collected in lagoons and interdune  
Koch and A. angustifolia (Bertol.) Kuntze, Cedrus slacks of the CDS, between 37º32’ S 57º11’ W  
spp.) are widely spread across the gardens of some and 37º22’ S 57º3’ W (Fig. 2), with a spatula or  
countryside residences neighboring the FQNR a Gravity-corer type sampler, depending on the  
(Stutz, 2001).  
presence of water during the sampling.  
510  
C. Vásquez et al. - Pollen representation of vegetation and plant richness of pampean coastal dunes  
Fig. 2. Location of the sampling sites and surrounding landscape units of the Faro Querandí Municipal  
Nature Reserve, in a 2000 m radius: A close-up of the sampling sites in the southern, central and northern  
zones of the FQNR, a detail of the Landscape units of a sampling site and of scheme of the vegetation  
surveys method (adapted from Bunting et al., 2013), are shown. Squares (=quadrat) shows vegetation  
2
survey sampling plot (5 m ) and the distances to the central point of the circumference (central point, 10 m  
and 20 m). Notice the 10 m and the 20 m radii plots are distributed following the main four cardinal directions.  
To characterize the vegetation at a local scale, 5x5 m plots inside the circumference. A total of 9  
concentric censuses were carried out concerning plots per sampling site, one of them placed at the  
each sampling site, at 10- and 20-meter radii, center of the circumference, 4 plots placed at 10m  
distributed following the four main cardinal radius and other 4 plots placed at 20 m radius were  
directions (adapted from Bunting et al., 2013). measured (Fig. 2). A total of 216 vegetation surveys  
According to Prentice (1985), the term ‘local’ were obtained.  
refers to pollen input within 20 m of the basin edge,  
To evaluate pollen representation of extra-  
‘extra-local’ refers from 20 m to 2 km, ‘regional’ local vegetation, we mapped landscape scale  
refers from 2 to 200 km, and ‘extra-regional’ from heterogeneity up to 2000 m radii from the sampling  
beyond 200 km. Cover, as percentages, of every site. We summarized landscape scale heterogeneity  
vascular plant species was measured at different data by defining ten different landscape units,  
511  
Bol. Soc. Argent. Bot. 59 (4) 2024  
following Fontana (2005a), vegetation and the study area or its surroundings are recorded, list  
geomorphological features (see Study area elaborated according to vegetation surveys between  
section), using 2020 Google Earth images by visual 2019 and 2023 and literature review (Cabrera,  
interpretation, and field observations. The identified 1941; Alberio, 2010; Benseny, 2011; Stutz, 2000;  
landscape units were: exotic forest, interdune Stutz, 2001; Alberio & Comparatore, 2014; Celsi,  
slacks, fixed, semifixed and mobile dunes, beach, 2016), about the different pollen types recorded in  
back shore, lagoons, buildings and roads, and the pollen counts. It is shown to which group each  
Atlantic Ocean (Fig. 2). The area of each landscape pollen type was assigned, and data such as the habit  
unit was calculated within the 1000 and 2000 and pollination type of the plant are added.  
m radii (extra-local scales) using QGis software  
version 3.22.11).  
Pollen diagrams were plotted using TILIA  
2.6.1 (Grimm, 2020). Each pollen type grouped in  
Dunes and each pollen type grouped in Grasslands  
was calculated as a percentage of the Dunes plus  
(
Pollen analysis  
Surface sediment samples were processed Grasslands pollen sum (∑D+G); each pollen type  
following the standard protocol for palynomorph grouped in Wetlands were calculated as a percentage  
extraction(Bennet&Willis,2001).TwoLycopodium of the Dunes plus Grasslands plus Wetlands pollen  
spore tablets were added before treatment. We sum (∑D+G+W). Finally, percentages of each  
tried to reach a minimum 300 pollen grain sum pollen type grouped in Exotics are based on the  
without counting Wetlands and Exotic taxa, and, in total pollen sum (∑D+G+W+E+Extra-regional).  
addition, due to the overrepresentation of Poaceae Results are presented as pollen percentages and  
in grasslands samples, 100 pollen grains other than include the value of pollen richness. Rarefied  
Poaceae were counted. Pollen identification was total pollen richness was performed using the  
performed using the pollen reference collection minimum count size (536 pollen grains) with the  
of the Paleoecology and Palynology Lab (IIMyC, Vegan package (Oksanen et al., 2017) for R (R  
CONICET- Universidad Nacional de Mar del Plata) Development Core Team, 2021). Only Podocarpus  
and published palynological atlases. Identified and Nothofagus t. dombeyi (extra-regional) were  
pollen types were grouped into Dunes, Grasslands, excluded from the complete dataset, to calculate  
Exotics, and Wetlands (Supplementary material, rarified pollen richness.  
Appendix 1).  
Pollen vs. Landscape-scale heterogeneity analysis  
Pollen - Vegetation relationships analysis  
Landscape units cover (%) at a 2000 m radius  
Pollen samples were classified using of each sampling site were compared using cluster  
unconstrained Cluster Analysis (CONISS, TILIA analysis (CONISS, TILIA 2.6.1) results. This  
2
.6.1) with square root transformation. The pollen comparison implied a two-step dimension. First,  
types were organized according to habitat’s plant different landscape unit covers were summed as: a)  
species; the Wetlands group (considered as strictly low or no vegetation cover units, (<30% coverage)  
local pollen), Podocarpus, and Nothofagus t. b) moderate to high vegetation cover units (>30%  
dombeyi, considered an extra-regional type, were coverage), and c) exotic forest cover. Second,  
excluded from this analysis.  
detailed landscape units were graphed for each  
In the pollen diagram, some genera or species sample site to distinguish the main landscape unit  
were grouped into family categories because some contributor to pollen assemblages’.  
pollen types do not enable the pollen identification  
Ordination analysis was performed to disentangle  
to a lower taxonomic level (see Supplementary andquantifythemainpollentypesinfluencingpollen  
material, Appendix 1). Non-native species of sample variance. To determine which ordination  
Argentinean flora were considered Exotics (Fig. method is the most appropriate for the data analysis,  
3
and Supplementary material, Appendix 1) a Detrended Correspondence Analysis - DCA was  
according to Cabrera & Zardini (1953), Zuloaga performed. According to Legendre & Birks (2012),  
et al. (2019), and Instituto de Botánica Darwinion linear ordination methods work best for short  
(2020). In Appendix 1 of Supplementary material gradients (<1.5 SD units) and unimodal methods for  
the different species that have been reported for long gradients (>3 SD units), while both methods  
512  
C. Vásquez et al. - Pollen representation of vegetation and plant richness of pampean coastal dunes  
513  
Bol. Soc. Argent. Bot. 59 (4) 2024  
can be used on intermediate gradients. In this paper, list of maximum plant richness values for every  
we used Principal Component Analysis (PCA) landscape unit type in Table 1). Then, we calculate  
because the length of the first DCAaxis is 1.67 units the estimated landscape plant richness at the site ()  
of standard (SD) (closer to 1.5) therefore suggests as the sum of the maximum plant richness of every  
unimodal data.  
landscape unit type (), multiplied by its individual  
cover at 1000 and 2000 m radii from each sampling  
Pollen richness versus local and landscape plant site ().  
species richness modeling  
A linear regression model was applied between  
A linear regression model was applied between the values of the LPRI obtained at 1000 m and 2000  
local plant species richness vs. local plant species m vs. Pollen richness for each site, total as well as  
richness transformed into pollen types (PSRPT), to for anemophilous and entomophilous taxa.  
evaluate the effect of taxonomic smoothing. Local  
Finally, a linear regression model was applied  
plant species richness was calculated considering between the values of axis 1 of the PCA obtained  
all the different species registered at every plot according to the pollen assemblages of sediment  
included at a 20 m radius of each sampling site. samples vs. pollen richness values, as a measure  
PSRPT was calculated by smoothing the plant to relate pollen-landscape unit composition with  
data to pollen equivalents (plant species were sediment pollen richness values.  
assigned to pollen taxa as shown in Appendix 1 of  
Supplementary material).  
Different linear regression models were  
performed between Rarefied total pollen richness  
Table 1. Maximum plant richness registered by  
landscape unit. 5x5 m plots. Note: Atlantic Ocean,  
beach, back shore and buildings and roads did not  
registered plant cover so they were not considered  
for this table.  
a
(
henceforth pollen richness), as well as for  
anemophilous and entomophilous taxa, vs. PSRPT  
from plant surveys performed at 0, 10, and 20 m  
radii, to evaluate possible taphonomic attributes  
Maximum  
Landscape units richness (spp.  
number)  
Vegetation  
surveys per  
Landscape unit  
a
(
transport and deposition, and preservation) and  
pollen production that affect PSRPT and pollen  
richness relationship.  
To extend the analysis of pollen contribution  
and its relationship with plant richness from local  
Interdune slacks  
Semifixed dunes  
Mobile dunes  
Fixed dunes  
Exotic forest  
Lagoon  
35  
25  
18  
37  
23  
28  
89  
35  
19  
35  
18  
21  
(0-20m) to landscape scale (0-1000 m and 0-2000  
m - extra-local pollen source areas), we calculate a  
Landscape plant richness Index (LPRI) following  
this equation:  
reSultS  
RLandsc(): Estimated landscape plant richness at site i  
: Number of landscape units  
Pollen - Vegetation relationships analysis  
Cluster Analysis of pollen samples showed  
two large pollen assemblages, Group 1 and Group  
̅: Maximum plant richness calculated for  
landscape unit type a at local scale  
퐶표푉푖푥푚: Ratio cover (from 0 to 1) of landscape unit  
type at x meters radii from site i  
: Semifixed dunes / Fixed dunes / Mobile dunes /  
Lagoon / Exotic forest / Interdune slacks  
2
(Fig. 3). Group 1 presented high percentages  
of Pinaceae (16.2-78.7%) and Asteraceae  
subf. Asteroideae Ambrosia type (14.2-32.6%,  
henceforth Asteroideae Ambrosia type), as well  
as the lowest to intermediate values for Poaceae  
We first characterize the maximum plant richness (18.6-50.2%). Also, this group showed the highest  
of a landscape unit type () as the number of richness of exotic pollen types (10 of the 14 exotic  
different species registered considering the total pollen types registered for the complete pollen  
plots surveyed for landscape unit type () (see the dataset).  
514  
C. Vásquez et al. - Pollen representation of vegetation and plant richness of pampean coastal dunes  
Group 2 was mainly characterized by high variation of the pollen data. It was explained  
percentages of Poaceae (35.9-74.6%) and Adesmia mainly by the variables Pinaceae, followed by  
(
0.3-23.1%). This group was further subdivided Asteroideae Ambrosia type (positive values),  
into two groups (A and B). Subgroup A was Adesmia, and Poaceae (negative values). Group 1  
also characterized by the highest presence of sites presented mainly positive PC1 values. The  
Hydrocotyle (0.5-28.8%) and Orobanchaceae positive values also correspond to the sites with  
(Agalinis/Castilleja) (0.3-10.2%). Subgroup B, in the highest percentage of exotic forest cover,  
addition to Poaceae (37.3-74.6%), is characterized as opposed (negative values) to the sites with  
by Pinaceae (1.1-24.6%) and presented the greatest the highest percentages of units with low or no  
variety of pollen types. The sites FQ3 to FQ5, vegetation cover (Fig. 4).  
recorded intermediate values of Pinaceae (13.8  
PC2 axis (Fig. 5, eigenvalue 0.12) explained  
-
24.6%) and high values of Poaceae. Despite 12% of variance and it was related with  
the presence of species like Juncus acutus L., Poaceae (positive values), and Hydrocotyle and  
Ceratophyllum sp., Triglochin striata Ruiz & Pav. Orobanchaceae (Agalinis/Castilleja, negative  
in vegetation surveys (Appendix 1), no or lower values). Subgroup 2A sites presented mainly  
than expected pollen grains were recorded in the negative PC2 values meanwhile Subgroup 2B  
surface samples.  
sites presented mainly positive PC2 values.  
Pollen vs. Landscape-scale heterogeneity Pollen richness versus local and landscape plant  
analysis  
To obtain a general picture of pollen  
species richness modeling  
When we graphed Plant species richness vs.  
percentages and landscape vegetation cover plant species richness transformed into pollen  
relationship, we showed the information of types (PSRPT) (Fig. 6A), we observed strong  
landscape units at the stacked column graphs correspondencebetweentherawdata.Theanalysis  
summed as three main cover types. Units with of taxonomic smoothing (Plant species richness  
low or no vegetation cover (buildings and roads, vs. PSRPT regression, see Fig. 6B) showed a  
2
Atlantic Ocean, beach, back shore, and mobile positive relation (r = 0.57, p-value=1.067e-05)  
dunes) vs. moderate to high native vegetation suggesting that the estimation of plant species  
cover (semifixed and fixed dunes, interdune richness by pollen richness may be possible at the  
slacks and lagoons), and exotic forest (Fig. 4). Coastal Dune Systems (CDS). The slope estimate  
When comparing the results of Cluster Analysis (β=0.38) is considerably lower than 1, thus pollen  
to the different landscape composition at every richness values represent only ca. 40% of actual  
site, for a 2000 m radius (Fig. 4A-B), Group 1 plant richness.  
registered the highest percentages of exotic forest  
16.77-25.52%); and high values of low or no richness (total, anemophilous, and entomophilous)  
vegetation cover units (11.36-51.08%) and fixed vs. PSRPT (5, 10, and 20 m) and LPRI -Landscape  
dunes (17.27-45.95%). plant richness Index- (1000 m and 2000 m) are  
The regressions parameters between pollen  
(
Landscape units with low or no vegetation shown in Table 2. The r-squared estimate from  
cover were highly represented in Subgroup 2A pollen richness vs. PSRPT regression models was  
(48.12-69.76%, including mobile dunes coverage positive and significant at 20 m, as well as at the  
between 10.40-42.73%, Fig. 4A-B) with almost extra-local scale (pollen richness versus LPRI).  
no exotic forest cover. Exotic forest cover was This pattern suggests that these models fit best  
below 23.75% at subgroup 2B (Fig. 4A-B) with the assuming a Relevant Pollen Richness Source Area  
highest values at FQ3, FQ4, FQ5, and FQ23. There (RPRSA) ca. 1000 m (extra-local scale). Even  
was also a mixture of landscape units with a greater though 64% of total plant species recorded in  
representation of interdune slacks in some sites and this study present entomophilous pollination,  
fixed dunes in others.  
entomophilous pollen richness versus plant  
The PCA (Fig. 5) showed two large groups richness relationship was not significant at any  
mostly consistent with Cluster Analysis. PC1 of the scales, while anemophilous pollen richness  
axis (eigenvalue 0.29) described 29% of the versus plant richness relationship presented  
515  
Bol. Soc. Argent. Bot. 59 (4) 2024  
Fig. 4. Stacked columns graph of landscape units cover (%) at 2000 m radius, ordered according to CONISS  
analysis. 4B. Low or no vegetation cover units (<30%); moderate to high vegetation cover units (>30%).  
516  
C. Vásquez et al. - Pollen representation of vegetation and plant richness of pampean coastal dunes  
Fig. 5. Principal Component Analysis biplot, with squared transformation, for the different sampling sites  
according to the pollen types, and the loadings (eigenvectors), on the first two principal component axes.  
The main groups separated by CONISS (Fig. 4) are delimited in black circles (1 and 2), and the subgroups  
2A and 2B are delimited in pink and orange respectively. Orobanchaceae = Orobanchaceae (Agalinis/  
Castilleja). For visual purposes, we only show the 10 variables that contribute the most (>3%) to PC1 or PC2.  
Table 2. Linear regression results between PSRPT, and LPRI vs. Pollen richness. Abbreviations= PSRPT: plant  
species richness transformed into pollen types; LPRI: landscape plant richness Index. *Significance 0.05.  
Scale of analysis– Pollen  
Variables evaluated  
Adjusted R-squared  
p-value  
source area scale  
m - Local  
10 m - Local  
5
-0,04  
-0,03  
0,16  
-0,01  
-0,04  
-0,008  
-0,02  
0,01  
0,39  
0,27  
0,07  
0,18  
0,28  
0,04  
0,14  
0,8  
0,54  
PSRPT vs. Pollen richness  
20 m - Local  
0,03*  
0,42  
5
m - Local  
0 m - Local  
0 m - Local  
PSRPT vs. Pollen richness  
Entomophilous  
1
2
0,78  
0,37  
5
m - Local  
10 m - Local  
0 m - Local  
0,52  
PSRPT vs. Pollen richness Anemophilous  
0,28  
2
0,002*  
0,006*  
0,11  
LPRI vs. Pollen richness  
1
000 m (landscape)  
extra-local  
LPRI vs. Pollen richness Entomophilous  
LPRI vs. Pollen richness Anemophilous  
LPRI vs. Pollen richness  
-
0,02*  
0,005*  
0,17  
2
000 m (landscape)  
extra-local  
LPRI vs. Pollen richness Entomophilous  
LPRI vs. Pollen richness Anemophilous  
-
0,04*  
517  
Bol. Soc. Argent. Bot. 59 (4) 2024  
Fig. 6. The loss of plant species richness due to taxonomic smoothing to plant genus or family levels and  
pollen types equivalents. A. Area graph that shows the magnitude of the differences according to Plant  
spp. richness vs. Plant spp. richness (in pollen types-PSRPT) categories for each pollen sample. B. Linear  
regression graph between Plant spp. richness vs. PSRPT. β estimate is shown at the modelled regression  
equation.  
518  
C. Vásquez et al. - Pollen representation of vegetation and plant richness of pampean coastal dunes  
positive and significant adjusted r2 values at the presented higher pollen richness values than pure  
2
0 m and extra-local scales.  
native environments (those with high values of  
Comparison between pollen richness values Adesmia and Poaceae pollen percentages), see Fig.  
and different pollen assemblages suggested that 5 and Table 3. Indeed, the average pollen richness  
sites with the presence of exotic forest (those with of the sites in Group 1 (Fig. 5) was 33.4, while for  
high values of Pinaceae and Asteroideae Ambrosia those in the middle zone (subgroup 2B) it was 29  
type pollen percentages) within a 2000 m radius and for those on the right (subgroup 2A) it was 28.  
Table 3. Linear regression results between PC1 Axis vs. Pollen richness and the pollen variables that  
most contribute to PC1, with squared transformation. * Significance0.05.  
Variables evaluated  
Adjusted R-squared  
Adjusted R-squared p-value  
b
b p-value  
PC1 Axis vs. Pollen richness  
PC1 Axis vs. % Pinaceae  
PC1 Axis vs. % Ambrosia  
PC1 Axis vs. % Adesmia  
PC1 Axis vs. % Poaceae  
0.07  
0.8  
0.11  
1.643e-09*  
5.057e-06*  
0.001*  
0.59  
0.71  
0.4  
0.11  
1.64e-09*  
5.06e-06*  
0.001*  
0.6  
0.34  
0.18  
-0.29  
-0.2  
0.02*  
0.02*  
diScuSSion  
vegetation relationships at a local scale or compared  
qualitatively different vegetation units. This study  
presents the first quantitative analysis of pollen  
Pollen - Vegetation relationships analysis  
Do surface sediment pollen assemblages and vegetation relationship in terms of spatial  
reflect landscape heterogeneity at the CDS?: The heterogeneity at an extra-local scale (2000 m radius  
challenge of this study was to assess whether pollen from a sampling site). The pollen-vegetation model  
assemblages reflect the heterogeneity of plant presented here shows that pollen assemblages  
communities within the Coastal Dune Systems may discern between forested and non-forested  
(
CDS) area. We found that pollen assemblages landscapes. Furthermore, mobile dunes vs. fixed  
were strongly influenced by landscape unit cover, dunes+semi-fixed dunes+interdune slacks could  
beyond the local scale, and reflected landscape be separated as well. These results about the  
heterogeneity. This is mainly reflected in the pollen attributes of the pollen record may be compared  
composition of sampling sites with predominantly with other coastal dune systems to evaluate the  
exotic forest, mobile dunes or mixed landscape effect of different vegetation compositions on  
units.  
Several studies carried out in coastal dunes  
pollen representation.  
We found that pollen assemblages from sites of  
ecosystems in Argentina, Uruguay and in small the CDS surrounded by exotic forests showed high  
lake in the northeastern United States, have also values of Pinaceae and Asteroideae Ambrosia type  
found correspondence between plant communities (e.g. Group 1: FQ6-FQ8, Fig. 3 and Fig. 4). The  
and environments, and confirmed that pollen relevant values of Pinaceae reported in this study  
spectra reflect the spatial heterogeneity of different had already been highlighted in previous steppe  
plant communities (Stutz & Prieto, 2003; Fontana, environments (Li et al., 2022), considering also  
2
005a; Marcos & Mancini, 2012; Montserrat that e.g. Pinus spp. has a good pollen dispersal and  
et al., 2012; Masciadri et al., 2013; Liu et al., is usually over-represented in pollen assemblages  
022). All these studies have evaluated pollen and (Felde et al., 2015). Also, the large amount of  
2
519  
Bol. Soc. Argent. Bot. 59 (4) 2024  
Pinaceae may be related to a) higher pollen by various adventitious species (Cabrera, 1941).  
productivity than native herbs and shrubs of the This could explain the lower values of Adesmia in  
CDS and b) the regional pollen source area is Group 1, both at the pollen record and plant cover.  
composed mainly of landscape units with low or Hydrocotyle bonariensis is a frequent hydrophytic  
no vegetation cover. Likewise, it has been possible species in sandy and humid soils that adapts  
to evidence that afforestation with exotic species easily to sandy soils, as do Agalinis communis  
reduces the area of psammophytic grassland (Yezzi and Castilleja arvensis, adapted to coastal dunes  
et al., 2018) which implies less participation of (Cabrera, 1941). The other sites -Group 2B- showed  
other pollen types.  
the highest values of Poaceae and Asteraceae.  
The major vegetation taxa belong to Poaceae,  
Sites FQ3 to FQ5 with intermediate percentages  
of exotic forest landscape unit (in a 2000 m radius) Cyperaceae, and Asteraceae in this study coinciding  
registered intermediate values of Pinaceae, but with those results reported by Fontana (2005a) in the  
they also recorded high values of Poaceae, both southern CDS. The higher values of Poaceae could  
pollen types with anemophilous dispersal. As be because this family includes several species  
already stated, the composition of pollen spectra and had representatives in all landscape units.  
is influenced by dominant wind patterns (Fontana, Likewise, they have a high pollen production, with  
2
005a) since high wind speed could carry more an anemophilous and easily dispersed pollen grain,  
pollen grains (van der Sande et al., 2021). In that favors their good representation in the pollen  
these sites, landscape units with moderate to high spectra (Fernández & Grill, 2016). Stutz & Prieto  
vegetation cover dominate south/southwestward (to (2003) also highlighted that Poaceae, Cyperaceae,  
sampling sites).As Faro Querandí Municipal Nature and psammophytic types (like Adesmia incana,  
Reserve (FQNR) presented a south/southwest Calycera crassifolia, Senega cyparissias (A. St.-  
dominant wind direction, this factor would Hil. & Moq.) J.F.B. Pastore & Agust. Martinez  
counteract the over-representation of Pinaceae and (Polygala type), Apiaceae -including Hydrocotyle  
favored the contribution of Poaceae and other taxa. - and Asteraceae which grow on sandy soils),  
On the contrary, in Group 1, the highest exotic conformed the pollen assemblages of the coastal  
forest cover was located north/northwestward, dune barrier in the area of the Mar Chiquita coastal  
which favored the over-representation of Pinaceae.  
lagoon, adjacent to the FQNR. Also, Fontana  
We found a strong Asteroideae Ambrosia type (2005a) pointed out that pollen assemblages  
association with sites located in patchy grassland- differed considerably from the composition of  
forested areas. This was consistent with post surrounding local vegetation. These results are  
disturbance colonization of Ambrosia associated coherent with those reported in this study as  
with pine forest (Yezzi et al., 2018). These high pollen assemblages from surface samples reflect  
values of Ambrosia pollen type in the CDS have not only local vegetation, but indeed they reflect  
already been reported in previous studies such as a wider pollen source area and sense landscape  
that of Stutz & Prieto (2003) and Fontana (2005a), heterogeneity.  
although these authors did not investigate the  
association of Ambrosia pollen type with pine psammophytic pollen types in addition to Poaceae  
forests. and Asteraceae (like Apiaceae, Caryophyllaceae,  
Group 2B recorded a greater variety of  
We also found that sampling sites surrounded and Calycera). These sites also had a mix of  
up to 40% of landscape units with low vegetation landscape units, mainly fixed/semi-fixed dunes and  
cover (e.g. Mobile dunes, Group 2A) had a strong interdune slacks. This situation was similar to that  
influence of psammophytic species pollen types, reported by Montserrat et al. (2012), who found  
like Adesmia, Hydrocotyle, and Orobanchaceae that the sectors located on these landscape units  
(
Agalinis communis (Cham. & Schltdl.) D’Arcy were characterized by diverse plant associations,  
and Castilleja arvensis Schltdl. & Cham.), genera and the species composition was highly diverse.  
and species which have entomophilous pollen This great vegetation heterogeneity and the effect  
dispersal. Adesmia incana, a psammophytic species of taxonomic smoothing, would trigger the pollen  
abundant in sandy dunes, can be affected by assemblages of these landscape unit overlap. It  
indirect anthropogenic action, being substituted is not possible to separate at the genus or species  
520  
C. Vásquez et al. - Pollen representation of vegetation and plant richness of pampean coastal dunes  
level of Poaceae and Asteraceae, pollen types that Sugita, 1994; Odgaard, 2018). The relation between  
could be indicative of each type of environment. local and extra-local plant and pollen richness  
These difficulties have been previously reported in reported in our study may reflect vegetation structure  
southern CDS (Fontana, 2005a) and dune deserts in and diversity at these scales, rather than at the  
north China (Li et al., 2022).  
regional level, as previously published by Goring  
et al. (2013), Matthias and Giesecke (2014) and  
Matthias et al. (2015). Odgaard (2018) highlighted  
Pollen, plant and, landscape richness analysis  
The relationship between plant richness and that modern pollen assemblages can better reflect α,  
pollen richness is driven both by taxonomic γ, or ε- diversity according to the size of the lakes  
smoothing, pollen production, and taphonomic or basin where they have been deposited. Sugita  
constraints (pollen dispersal and preservation). The (2007a) indicates small lakes (up to 350 m radius,  
effect of taxonomic smoothing is likely due to the like those of this study) are more suitable to capture  
abundance of plant species producing pollen grains local vegetation spatial heterogeneity (ca. 700 m)  
often only identifiable to genus, and sometimes to by the 30-45% of the total pollen loading deposited  
family, like Poaceae, Asteraceae and Cyperaceae. in the basin. However, pollen richness calculation  
In this study, Panicum racemosum, Poa lanuginosa, is based on the pollen counts of the complete pollen  
and Polypogon monspeliensis (L.) Desf. were loading deposited in a basin. That includes those  
registered in the vegetation surveys, but at the pollen pollen types from the local scale (the Relevant  
level they could only be identified as Poaceae. Also, Pollen Source Area- RPSA- sensu Sugita, 2007a)  
Eleocharis maculosa (Vahl) Roem. & Schult., and those beyond the RPSA from extra-local. Thus,  
Isolepis spp., and Schoenoplectus americanus firstly, the fact that our models present significant  
(Pers.) Volkart ex Schinz & R. Keller were recorded adjusted-r2 values for local scales pollen-plant  
in the vegetation but their pollen grains could only richness relationship coincides with those results  
be determined at the family level: Cyperaceae. The previously published by Sugita (2007a). Secondly,  
fidelity of pollen richness relative to plant richness our results suggest that the RPRSA fits with extra-  
may be affected by taxonomic smoothing since the local scale pollen-plant richness relationships. This  
taxonomy in the plant dataset is not equivalent to inference coincides with previously published  
pollen taxonomy, but this effect may be recoverable semiquantitative-qualitative pollen-vegetation  
(Goring et al., 2013). Thus, taxonomic smoothing relationships studies for the CDS (e.g. Stutz &  
of CDS plant richness could be overcome by the use Prieto, 2003;Latorreetal., 2010).ThewiderRPRSA  
of the statistical models presented in this paper and than expected RPSA may be related to extra-local  
adding different paleobotany proxies to the classic pollen inputs linked to a) anemophilous species  
vegetation-palynological based reconstruction (e.g. Poaceae and Amaranthaceae/Chenopodiaceae  
when studying Holocene records.  
species) growing in open landscapes as semifixed  
As we discussed in the previous section (“Pollen- and mobile dunes (Latorre et al., 2010; Felde et  
Vegetation relationships analysis”) that pollen al., 2015; Adeleye et al., 2020) and b) species  
assemblages reflect landscape heterogeneity, the with high pollen productivity (Latorre, 1999;  
Relevant Pollen Richness Source Area (RPRSA) Odgaard, 1999; Weng et al., 2006) growing in  
for small lagoons of the CDS correlate with extra- forest patches (e.g. Ambrosia tenuifolia, Pinus spp.)  
local scale vegetation heterogeneity. Even though of the CDS. Weng et al. (2006) and Goring et al.  
the regression models between plant and pollen (2013) have also highlighted that anemophilous  
richness were significant at the local scale (20 pollen types are usually the main component of  
m, Table 2), the goodness of fit of these models pollen assemblages and drive pollen richness  
increase and stabilize up to the extra-local scale patterns. Some entomophilous and hydrophytic-  
(1000 and 2000 m, Table 2). Recent studies have anemophilous species are also important local  
shown that modern pollen assemblages can reflect scale components of pollen richness. Between  
plant richness at different scales (Birks et al., 2016), entomophilous species we found Asteraceae  
however, the relationship is not direct as pollen (Tessaria type, Baccharis type, Senecio type, and  
richness reflects pollen evenness, productivity, other Asteroideae), Hydrocotyle spp., and Adesmia  
and dispersal across the landscape (Prentice, 1985; incana which pollen grains can be transported over  
521  
Bol. Soc. Argent. Bot. 59 (4) 2024  
a few meters (Wang et al., 2022), they usually et al. (2020) for Patagonian forest-steppe ecotone  
produce low quantity of pollen grains (Väli et and for Central Europe by Abraham et al. (2020).  
al., 2022) and are under-represented in pollen Birks & Line (1992) and Matthias et al. (2015) have  
assemblages (Mourelle et al., 2017). Hydrophytic- discussed the relationship between disturbance  
anemophilous species growing at interdune slacks frequency and pollen richness. They stay that a  
(Cyperaceae species and Typha spp.) produce high disturbed environment is related to higher pollen  
quantities of pollen which are highly dispersed (Xu richness than a stable environment. Disturbances  
et al., 2012; Frazer et al., 2020). This fact explains promote the availability of new niches and thus  
the high values of these pollen types reported in the establishment of new species. If disturbance  
most sites of the CDS even though these species frequency is high (low), vegetation communities  
may be absent in some interdune slacks.  
are expected to be dominated by r-strategy plants  
Pollen richness is also a function of landscape (k-strategy plants). Intermediate disturbance  
structure, openness and plant diversity within frequencies favor the coexistence of both r and  
the Relevant Pollen Source Area (RPSA), k- strategy plants, thus showing the highest  
pollination syndromes and dispersal, and other species richness values (“intermediate disturbance  
taphonomic processes (Birks et al., 2016). Within hypothesis”, Wittaker et al., 2001). The higher  
these taphonomic processes, we found that pollen pollen richness values linked to sampling sites with  
preservation could be different between taxa and values of exotic forest up to 20% may be associated  
could be a source of uncertainty (Goring et al., with coastal dune environments characterized  
2
013; Grindean et al., 2019; Li et al., 2022; Wang by intermediate disturbance frequencies regime.  
et al., 2022). Regarding taphonomic processes The establishment of small patches of forest  
triggering pollen-vegetation representation, we communities may diminish the frequency  
found that Juncaceae and Juncaginaceae pollen of vegetation burial because of they partially  
types as those with minor preservation potential prevent dune movements and provides a mosaic  
in the CDS. As noted in the results section, in the of heliophilous and shade-tolerant environments.  
vegetation surveys, species of these families were Also, anthropogenic fires, vegetation clearings  
recorded although they were absent from the pollen linked to off-road tourism, and horse sheltering  
record in the first case, or with low representation usually increase near forested areas, and thus these  
in the second. These and other taxa of hydrophilic types of disturbance frequency. Conversely, sites  
pollen present very thin exines that hinders their with the lowest pollen richness were found in more  
preservation, and also tends to disintegrate during pristine areas with a high presence of landscape  
acetolysis (Moore et al., 1991), therefore, causes units with low or no vegetation cover, mainly  
their low representation in the pollen records mobile dunes, and with a low presence of the exotic  
(Fontana, 2005a; Erdtman, 1952; Chenlo, 2014).  
forest. This low plant richness (and consequently  
The higher pollen richness values recorded at low pollen richness) may be due to the strong  
sampling sites with high values of exotic forest (up stress conditions that occur in active dunes, such  
to 20% coverage within a 2000 m radius) is one of as high wind intensity, substrate instability, saline  
the most outstanding results we reported for the spray, and low organic matter content, among  
CDS. All these sites presented a forest matrix mixed others, which cause that few species can adapt to  
with open grasslands areas with diverse herbaceous these conditions (Kumler, 1997; Fontana, 2005a;  
and shrub species, which were characterized by Montserrat et al., 2012).  
more stable substrate and sheltered from wind  
desiccation effects. These factors favor higher  
organic matter content accumulation and less concluSionS  
frequency of disturbances related to burial effects  
produced by sand over vegetation, which may also  
favor greater species richness (Montserrat et al., type cover, patchiness, and location with respect  
012). The increase in pollen richness associated to dominant wind direction), pollen production,  
Landscape heterogeneity (in terms of vegetation  
2
to the development of forest patches with open taphonomic constraints and taxonomic smoothing  
steppe environments was also reported by Sottile determined pollen assemblages from small lagoons  
522  
C. Vásquez et al. - Pollen representation of vegetation and plant richness of pampean coastal dunes  
in Pampean CDS. Pollen assemblages are good 2021 -11220200100204CO), SS. We also thank to  
proxy records to reconstruct past landscape the park rangers of the Faro Querandí Municipal  
heterogeneity at an extra-local scale (ca. 2000 m) Nature Reserve, for their help during the field work  
of coastal grasslands of southern South America. and two anonymous reviewers whose comments  
As other grassland ecosystems (dominated by contributed improving a previous version of this  
Poaceae, Asteraceae and Cyperaceae), pollen manuscript.  
richness represents less than 50% of real plant  
richness. However, we reported a significant relation  
between plant and pollen richness as a promising Primary data availability  
proxy record encouraging future landscape scale  
paleoecological reconstructions. Our results suggest  
All plant species recorded in this work  
that anemophilous pollen types play a major role are available at https://www.gbif.org/es/  
in driving pollen richness, and that a landscape dataset/36fc65f3-ba8d-4c06-917e-6ffe62b63577  
composed of coastal dunes and small forest patches and pollen information is deposited in Repositorio  
provideshighervaluesofpollenrichnessthanpristine Institucional CONICET (https://ri.conicet.gov.ar/).  
coastal dune patches. Even though we detected few  
entomophilous species that frequently contribute to  
pollen richness, we encourage the consideration of bibliograPhy  
the presence of all pollen types (those produced by  
anemophilous or entomophilous) to draw a better ABRAHAM, V., J. ROLEČEK, O. VILD, E.  
picture of the paleoenvironmental changes. Future  
studies may explore other techniques that avoid the  
use of strong acid-base solutions that may affect  
the preservation of vulnerable pollen grain walls  
such as Juncaceae or Juncaginaceae. We presented  
JAMRICHOVÁ … & P. KUNEŠ. 2020. Spatial  
scaling of pollen-based alpha and beta diversity  
within forest and open landscapes of Central Europe.  
bioRxiv: 2020.08.18.255737.  
https://doi.org/10.1101/2020.08.18.255737  
the first work in South America that shows that ADELEYE, M. A., M., MARIANI, S. CONNOR, S.  
pollen assemblages and pollen richness patterns in  
coastal dune ecosystems reflect landscape (1000-  
HABERLE … & J. STEVENSON. 2020. Long-  
term drivers of vegetation turnover in Southern  
Hemisphere temperate ecosystems. Global Ecol  
Biogeogr. 30: 557-571.  
2
000 m) variability. These findings encourage  
paleoecologist to model quantitatively pollen-  
vegetation representation and perform pollen- ALBERIO, C. 2010. Patrones de invasión de especies  
based-quantitative vegetation reconstruction during  
different time windows of the last millennia to  
understand vegetation dynamics from a long-term  
perspective.  
vegetales leñosas en Mar Azul, Buenos Aires. Tesis  
de Grado, Universidad Nacional de Mar del Plata,  
Argentina.  
ALBERIO, C. & V. COMPARATORE. 2014. Patterns  
of woody plant invasion in an Argentinean coastal  
grassland. Acta Oecol. 54: 65-71.  
authorScontribution  
https://doi.org/10.1016/j.actao.2013.09.003  
ANDERSEN, S. T. 1995. History of vegetation and  
agriculture at Hassing Huse Mose, Thy, Northwest  
Denmark since the Ice Age. J. Danish Archaeol 11:  
57-79.  
All authors have jointly and equally carried out  
the data collection, interpretation, and writing of the  
manuscript.  
https://doi.org/10.1080/0108464X.1993.10590072  
BARRIOS, Y. & N. RAMÍREZ. 2020. Biología floral y  
solapamiento fenológico de las angiospermas de un  
bosque inundable, cuenca del lago de Maracaibo,  
Venezuela. Acta Bot. Mex. 127: e1704.  
acKnowledgementS  
This research was supported by the Neotropical  
Grassland Conservancy (NGC) [Student Grant  
https://doi.org/10.21829/abm127.2020.1704  
Program, 2020], CV; Universidad Nacional de Mar BENNETT, K. & K. J. WILLIS. 2001. Pollen. En: SMOL,  
del Plata (EXA1105/22), SS; CONICET, PIP (PIP  
J. P., H. J. B. BIRKS, W. M. LAST, R. S. BRADLEY  
523  
Bol. Soc. Argent. Bot. 59 (4) 2024  
&
K. ALVERSON (eds.), Tracking Environmental  
a critical step for model-based reconstruction of  
Quaternary land cover. Quat. Sci. Rev. 82: 41-55.  
https://doi.org/10.1016/j.quascirev.2013.10.006  
BURRY, L. S., M.E. TRIVI DE MANDRI, P. I. PALACIO  
& M. C. LOMBARDO. 2001. Relaciones polen-  
vegetación de algunos taxas de la estepa patagónica  
(Argentina). Rev. Chil. Hist. Nat. 2: 419-427.  
https://dx.doi.org/10.4067/S0716-078X2001000200016  
CABRAL, E. L. & C. PASSICOT. 2010. Asterideas:  
Diversidad vegetal, biotaxonomía de spermatofitos.  
Facultad de Ciencias Exactas y Naturales y  
Agrimensura, Universidad Nacional del Nordeste,  
Argentina.  
CABRERA, A. L. 1941. Las comunidades vegetales  
de las dunas costaneras de la Provincia de Buenos  
Aires. D.A.G.I. Publicaciones técnicas 1: 5-44.  
CABRERA, A. L. & E. M. ZARDINI. 1953. Manual de  
la flora de los alrededores de Buenos Aires. Editorial  
Acme, Buenos Aires.  
Change Using Lake Sediments. Developments in  
Paleoenvironmental Research, vol. 3: 5-32, Springer,  
Dordrecht. https://doi.org/10.1007/0-306-47668-1_2  
BENNETT, K. D., S. BOREHAM, M. J. SHARP & V. R.  
SWITSUR. 1992. Holocene history of environment,  
vegetation and human settlement on Catta Ness,  
Lunnasting, Shetland. J. Ecol 80: 241-273.  
https://doi.org/10.2307/2261010  
BENSENY, G. C. 2011. La zona costera como escenario  
turístico: Transformaciones territoriales en la costa  
Atlántica Bonaerense Villa Gesell (Argentina). Tesis  
de Doctor en Geografía. Universidad Nacional Del  
Sur, Argentina.  
BÉRTOLA, G. R., M. FARENGA, L. CORTIZO & F.  
I. ISLA. 1999. Dinámica morfológica de las playas  
de Villa Gesell (1994-1996), provincia de Buenos  
Aires. Rev. Asoc. Geol. Argent. 54: 23-35.  
BÉRTOLA, G. R., F. I. ISLA, L. CORTIZO & H. A.  
ORELLANO. 2002. Modelo sedimentario de la  
barrera medanosa al norte de Villa Gesell (provincia  
de Buenos Aires) – de aplicación hidrogeológica.  
Lat. Am. J. of Sedimentol. Basin. Anal. 9: 109-126.  
BIRKS,H.J.B.&J.M.LINE.1992.TheuseofRarefaction  
Analysis for estimating palynological richness from  
Quaternary Pollen-Analytical Data. Holocene 2:  
CHENLO, U. 2014. Palinoteca de plantas  
vasculares acuáticas para el análisis polínico en  
paleolimnología. Tesis de Grado, Universidade da  
Coruña, España.  
CELSI, C. E. 2016. La vegetación de las dunas costeras  
pampeanas. En: ATHOR, J. & C. E. CELSI (eds.),  
La costa atlántica de Buenos Aires: naturaleza y  
patrimonio cultural. pp. 116-138. Fundación de  
Historia Natural Félix de Azara, Buenos Aires.  
CODIGNOTTO, J. O., F. I. ISLA&A. L. MONTSERRAT.  
2012. Manejo del Sistema Playa-Dunas en las Costas  
en la Provincia de Buenos Aires (Argentina).  
En: RODRÍGUEZ-PEREA, A., G. X. PONS, X.  
ROIG-MUNAR, Á. MARTÍN-PRIETO… & A.  
CABRERA (eds.), La gestión integrada de playas  
y dunas: experiencias en Latinoamérica y Europa.  
Monografies de la Societat d’Història Natural de  
les Balears, vol 19: 271-287. Societat d’Història  
Natural de les Balears, Palma de Mallorca.  
1
-10. https://doi.org/10.1177/095968369200200101  
BIRKS, H. J. B., V.A. FELDE, A. E. BJUNE, J.  
GRYTNES … & T. GIESECKE. 2016. Does pollen-  
assemblage richness reflect floristic richness? A  
review of recent developments and future challenges.  
Rev. Palaeobot. Palynol. 228: 1-25.  
https://doi.org/10.1016/j.revpalbo.2015.12.011  
BUNTING, M. J. 1994. Vegetation history of Orkney,  
Scotland; pollen records from two small basins in  
west Mainland. New Phytol. 128: 771-792.  
https://doi.org/10.1111/j.1469-8137.1994.tb04039.x  
BUNTING, M. J. & D. MIDDLETON. 2005. Modelling  
pollen dispersal and deposition using HUMPOL  
software, including simulating windroses and  
irregular lakes. Rev. Palaeobot. Palynol. 134: 185-  
DEL VITTO, L. A. & E. M. PETENATTI. 2015.  
Asteráceas de importancia económica y ambiental:  
Segunda parte: Otras plantas útiles y nocivas.  
Multequina 24: 47-74.  
1
96. https://doi.org/10.1016/j.revpalbo.2004.12.009  
BUNTING, M. J. & R. MIDDLETON. 2009. Equifinality  
and uncertainty in the interpretation of pollen data:  
the Multiple Scenario Approach to reconstruction  
of past vegetation mosaics. Holocene 19: 799-803.  
https://doi.org/10.1177/0959683609105304  
BUNTING, M. J., M. FARRELL, A. BROSTRÖM,  
K. L. HJELLE … & C. L. TWIDDLE. 2013.  
Palynological perspectives on vegetation survey:  
ERDTMAN, G. 1952. Pollen Morphology and Plant  
Taxonomy—Angiosperms. Almqvist and Wiksell,  
Stockholm.  
FAYE, P. F.,A. M. PLANCHUELO & M. L. MOLINELLI.  
2002. Relevamiento de la flora apícola e identificación  
de cargas de polen en el sureste de la provincia de  
Córdoba, Argentina. Agriscientia 19: 19-30. https://  
doi.org/10.31047/1668.298x.v19.n0.2649  
524  
C. Vásquez et al. - Pollen representation of vegetation and plant richness of pampean coastal dunes  
FELDE, V. A., S. M. PEGLAR, A. E. BJUNE, J. A.  
GRYTNES & H. J. B. BIRKS. 2015. Modern  
pollen–plant richness and diversity relationships  
exist along a vegetational gradient in southern  
Norway. Holocene 26: 163–175.  
tropics. Veg Hist Archaeobot. 27: 411-418.  
https://doi.org/10.1007/s00334-017-0642-y  
GRIMM, E. 2020. TILIA 2.6.1 [Software]. Illinois State  
Museum, Illinois.  
GRINDEAN, R., A. B. NIELSEN, I. TANŢĂU & A  
FEURDEAN. 2019. Relative pollen productivity  
estimates in the forest steppe landscape of  
southeastern Romania. Rev. Palaeobot. Palynol.  
264: 54-63.  
https://doi.org/10.1016/j.revpalbo.2019.02.007  
INSTITUTO DE BOTÁNICA DARWINION. 2020.  
Catálogo de las Plantas Vasculares del Conosur.  
Buenos Aires, Argentina: Instituto de Botánica  
Darwinion. Available in: http://www.darwin.edu.ar/  
Proyectos/FloraArgentina/BuscarEspecies.asp.  
ISLA, F. I., L. C. CORTIZO & E. J. SCHNACK. 1996.  
Pleistocene and Holocene beaches and estuaries  
along the Southern Barrier of Buenos Aires,  
Argentina”. Quat. Sci. Rev. 15: 833-841.  
https://doi.org/10.1177/0959683615596843  
FERNÁNDEZ, A. L. & S. C. GRILL. 2016. Análisis  
de la vegetación y del polen actual en la cuenca  
inferior del río Colorado, sudoeste de la provincia  
de Buenos Aires, Argentina. Rev. Bras. Paleontol.  
1
9: 111-126.  
https://doi.org/10.4072/rbp.2016.1.09  
FONTANA, S. L. 2003. Pollen deposition in coastal  
dunes, south Buenos Aires Province, Argentina.  
Rev. Palaeobot. Palynol. 126: 17-37.  
https://doi.org/10.1016/S0034-6667(03)00034-4  
FONTANA, S. L. 2004. Present and past coastal dune  
environments of southwest Buenos Aires Province,  
Argentina. Comprehensive Summaries of Uppsala  
Dissertations from the Faculty of Science  
and Technology, vol. 940. Acta Universitatis  
Upsaliensis, Upsala.  
FONTANA, S. L. 2005a. Coastal Dune Vegetation  
and Pollen Representation in South Buenos Aires  
Province, Argentina. J. Biogeogr. 32: 719-735.  
https://doi.org/10.1111/j.1365-2699.2004.01221.x  
FONTANA, S. L. 2005b. Holocene vegetation history and  
palaeoenvironmental conditions on the temperate  
Atlantic coast of Argentina, as inferred from multi-  
proxy lacustrine records. J. Paleolimnol. 34: 445-  
https://doi.org/10.1016/S0277-3791(96)00065-0  
ISLA, F. I., L. C. CORTIZO & H. A. TURNO  
ORELLANO. 2001. Dinámica y Evolución de las  
Barreras Medanosas, Provincia de Buenos Aires,  
Argentina. Rev. Bras. Geomorfol. 2: 73-83.  
https://doi.org/10.20502/rbg.v2i1.9  
KUMLER, M. L. 1997. Critical environmental factors in  
dry coastal ecosystems. En: VAN DER MAAREL, E.  
(ed.), Dry Coastal Ecosystems, Part C. Ecosystems  
of the World, 2C. pp. 387–409. Elsevier, Amsterdam.  
LATORRE, F. 1999. El polen atmosférico como indicador  
de la vegetación y de su fenología floral. Tesis  
Doctoral. Universidad de Buenos Aires, Argentina.  
LATORRE, F., C. PÉREZ, S. STUTZ & S. PASTORINO.  
2010. Pollen deposition in Tauber traps and surface  
soil samples in the Mar Chiquita Coastal Lagoon  
Area, Pampa Grasslands (Argentina). Bol. Soc.  
Argent. Bot. 45: 321-332.  
4
69. https://doi.org/10.1007/s10933-005-5792-8  
FRAZER, H., A. R. PRIETO & J. C. CARBONELLA,  
020. Modern pollen source and spatial distribution  
2
from surface lake sediments in the southwestern  
Pampa grasslands, Argentina: Implications to  
interpret Holocene pollen records. Rev. Palaeobot.  
Palynol. 277: 104207.  
GIESECKE, T., S. WOLTERS, S. JAHNS & A.  
BRANDE. 2012. Exploring Holocene changes in  
palynological richness in northern Europe – did  
postglacial immigration matters? PLoS ONE 7: 1-12.  
https://doi.org/10.1371/journal.pone.0051624  
GORING, S., T. LACOURSE, M. PELLATT & R.  
MATHEWES. 2013. Pollen assemblage richness  
does not reflect regional plant species richness: a  
cautionary tale. J. Ecol. 101: 1137-1145.  
LEGENDRE, P. & H. BIRKS. 2012. From classical  
to canonical ordination. En: BIRKS, H., A.  
LOTTER, S. JUGGINS & J. SMOL (eds), Tracking  
environmental change using lake sediments.  
Developments in paleoenvironmental research, vol  
5: 201–248. Springer, Dordrecht.  
https://doi.org/10.1007/978-94-007-2745-8_8  
LI, B., W. WANG, H. WANG, Y. ZHANG … & Y.  
MA. 2022. Pollen–vegetation relationship based  
on lake surface sediments of arid and semi-arid  
northern China; considerations and limitations. Rev.  
Palaeobot. Palynol. 303: 104694.  
https://doi.org/10.1111/1365-2745.12135  
GOSLING, W. D.,A. C. M. JULIER, S.ADU-BREDU, G.  
D. DJAGBLETEY … & S. MOORE. 2018. Pollen-  
vegetation richness and diversity relationships in the  
https://doi.org/10.1016/j.revpalbo.2022.104694  
525  
Bol. Soc. Argent. Bot. 59 (4) 2024  
LIU, Y. K. OGLE, J. LICHSTEIN & S. JACKSON. 2022.  
Estimation of pollen productivity and dispersal:  
How pollen assemblages in small lakes represent  
vegetation. Ecol. Monogr. 92: e1513.  
MOURELLE, D. & A. PRIETO. 2016. Pollen and  
spores from surface samples in the campos region  
of Uruguay and their paleoecological implications.  
Acta Bot. Bras. 30: 351-370.  
https://doi.org/10.1002/ecm.1513  
https://doi.org/10.1590/0102-33062016abb0117  
MOURELLE, D., A. PRIETO & F. GARCÍA-  
RODRÍGUEZ. 2017. Riparian woody vegetation  
history in the campos region, southeastern South  
America, during two time windows: late Pleistocene  
and late Holocene. Quat. Sci. Rev. 167: 14-29.  
https://doi.org/10.1016/j.quascirev.2017.04.024.  
NAVARRO, C., J. S. CARRIÓN, M. MUNUERA & A.  
R. PRIETO. 2001. Sedimentación y distribución  
superficial de palinomorfos en cuevas del SE  
Ibérico. Implicaciones en paleoecología. An. biol.  
23: 103-132.  
ODGAARD, B. V. 1999. Fossil pollen as a record of past  
biodiversity. J. Biogeogr. 26: 7-17.  
ODGAARD, B. V. 2018. Reconstructing past biodiversity  
development. En: ELIAS, S. A. (ed.), Reference  
module in earth systems and environmental sciences.  
Elsevier, Amsterdam..  
https://doi.org/10.1016/B978-0-12-409548-9.11644-6  
OKSANEN, J., G. L. SIMPSON, G. BLANCHET, R.  
KINDT … & J. WEEDON. 2017. Vegan: Community  
Ecology Package. R package Version 2.4-3. Available  
in: https://CRAN.R-project.org/package=vegan  
OYARZABAL, M., J. CLAVIJO, L. OAKLEY, F.  
BIGANZOLI … & R. J. C. LEON. 2018. Vegetation  
units of Argentina. Ecol. Austral 28: 40-63.  
MADANES, N. & C. A. FERNÁNDEZ. 2018. Pollen  
dispersal and deposition in an agroecosystem at  
Province of Buenos Aires, Argentina. Darwiniana,  
n. s. 6: 35-46.  
https://dx.doi.org/10.14522/darwiniana.2018.61.785  
MARCOMINI, S., R. LÓPEZ, P. PICCA, N. MADANES  
&
L. BERTOLÍN. 2017. Natural Coastal Dune-  
Field Landforms, Plant Communities, and Human  
Intervention along Buenos Aires Northern Aeolian  
Barrier. J. Coast. Res. 33: 1051-1064.  
https://doi.org/10.2112/JCOASTRES-D-15-00219.1  
MARCOS, M. A. & M. V. MANCINI. 2012. Modern  
pollen and vegetation relationships in northeastern  
Patagonia (Golfo San Matías, Río Negro). Rev.  
Palaeobot. Palynol. 171: 19-26.  
https://doi.org/10.1016/j.revpalbo.2011.11.007  
MASCIADRI, S., S. STUTZ & F. GARCÍA-  
RODRÍGUEZ. 2013. Modern pollen–vegetation  
relationship of plant communities in the Uruguayan  
Atlantic coast. Braz. J. Bot. 36: 31–44.  
https://doi.org/10.1007/s40415-013-0006-5  
MATTHIAS, I. & T. GIESECKE. 2014. Insights into  
pollen source area, transport and deposition from  
modern pollen accumulation rates in lake sediments.  
Quat. Sci. Rev. 87: 12-23.  
MATTHIAS, I., M. SWEN SEMMLER & T. GIESECKE.  
PAPADOPOULOU, M., I. TSIRIPIDIS, S.  
2
015. Pollen diversity captures landscape structure  
PANAJIOTIDIS, G. FOTIADIS…  
& T.  
and diversity. J. Ecol. 103: 880-890.  
https://doi.org/10.1111/1365-2745.12404  
GIESECKE. 2022. Testing the potential of pollen  
assemblages to capture composition, diversity and  
ecological gradients of surrounding vegetation in  
two biogeographical regions of southeastern Europe.  
Veg. Hist. Archaeobotany 31: 1-15.  
MEDINA, R. (ed). 2018. Flora del valle de Tehuacán-  
Cuicatlán: Lemnaceae. Instituto de Biología,  
Universidad Nacional Autónoma de México,  
México.  
MELTSOV, V., A. POSKA, B.V. ODGAARD, M.  
SAMMUL & T. KULL. 2011. Palynological  
richness and pollen sample evenness in relation to  
local floristic diversity in southern Estonia. Rev.  
Palaeobot. Palynol. 166: 344--351.  
https://doi.org/10.1007/s00334-021-00831-4  
PRENTICE, I. C. 1985. Pollen representation, source  
area, and basin size: toward a unified theory of  
pollen analysis. Quat. Res. 23: 76-86.  
PROVENDOLA, J. I. 2013. Villa Gesell. La baliza  
que invento un lugar: Al principio, fue el faro.  
https://www.pagina12.com.ar/diario/suplementos/  
turismo/9-2558-2013-05-05.html. [Access: May 9  
2023].  
R DEVELOPMENT CORE TEAM. 2021. R: A language  
and environment for statistical computing. R  
Foundation for Statistical Computing, Vienna,  
Austria. Available in: https://www.R-project.org/.  
MONSERRAT, A. L., C. E. CELSI & S. L. FONTANA.  
2
012. Coastal dune vegetation of the Southern  
Pampas (Buenos Aires, Argentina) and its value for  
conservation. J. Coast. Res. 28: 23-35.  
https://doi.org/10.2112/JCOASTRES-D-10-00061.1  
MOORE, P. D., J. A. WEBB & M. E. COLLINSON.  
1
991. Pollen analysis. 2nd ed. Blackwell, Oxford.  
526  
C. Vásquez et al. - Pollen representation of vegetation and plant richness of pampean coastal dunes  
REITALU, T., A. E. BJUNE, A. BLAUS, T. GIESECKE …  
J. B. BIRKS. 2019. Patterns of modern pollen and  
plant richness across northern Europe. J. Ecol. 107:  
662-1677. https://doi.org/10.1111/1365-2745.13134  
SANZ, M., D. SÁNCHEZ & S. VESPERINAS. 2004.  
Atlas de las Plantas Alóctonas Invasoras en España.  
Dirección General para la Biodiversidad, Madrid.  
SÁNCHEZ,A. C. & L. C. LUPO. 2011. Origen botánico y  
geográfico de las mieles de El Fuerte, Departamento  
de Santa Bárbara, Jujuy, Argentina. Bol. Soc. Argent.  
Bot. 46: 105-111.  
pollen-specific parameters? Veg Hist Archaeobot. 31:  
611-622. https://doi.org/10.1007/s00334-022-00879-w  
VAN DER SANDE, M. T., M. B. BUSH, D. H. URREGO,  
M. SILMAN … & GOSLING W. 2021. Modern pollen  
rain predicts shifts in plant trait composition but not plant  
diversity along the Andes–Amazon elevational gradient. J.  
Veg. Sci. 32: e12925. https://doi.org/10.1111/jvs.12925  
VÁSQUEZ, C., G. SOTTILE, S. STUTZ, G. SÁNCHEZ-  
VUICHARD & V. MERINO-CAMPOS. 2023.  
Reconstrucción paleoambiental en el Sistema de Dunas  
Costeras del SE bonaerense. In: Libro de Resúmenes  
XXX Reunión Argentina de Ecología. INIBIOMA/  
IFAB CONICET-ASAE, Bariloche.  
&
1
SENN, C., W. TINNER, V. FELDE, E. GOBET … &  
C. MORALES-MOLINO. 2022. Modern pollen  
vegetation – plant diversity relationships across  
VELÁZQUEZ, N. J. & BURRY, L. S. 2019. Análisis  
palinológico de superficie de hojas y tallos de ítems  
dietarios de Lama guanicoe (Fam. Camelidae)  
en Patagonia (Argentina): implicancias en la  
identificación del origen del polen en coprolitos.  
Bol. Soc. Argent. Bot. 54: 67-78.  
WANG, Q., J. LI, K. LU, G. XIE … & Y. WANG. 2022.  
Pollen R-values in arid central Asia for quantitative  
palaeo-vegetation reconstruction. Palaeogeogr.  
Palaeoclimatol. Palaeoecol. 596: 110993.  
large environmental gradients in northern Greece.  
Holocene 32: 159–173.  
https://doi.org/10.1177/09596836211060494  
SOTTILE,G.D.,M.E.ECHEVERRÍA,M.S.TONELLO,  
M. A. MARCOS… & M. V. MANCINI. 2020.  
Dinámica de la vegetación andina del lago Argentino  
(50° S, 72° O) desde el retiro de los glaciares (ca.  
1
2.000 años cal AP). Andean Geol. 47: 599-627.  
http://dx.doi.org/10.5027/andgeoV47n3-3303  
STUTZ, S. 2000. Historia de la vegetación del litoral  
bonaerense durante el último ciclo transgresivo –  
regresivo del Holoceno. Tesis Doctoral. Universidad  
Nacional de Mar del Plata, Argentina.  
STUTZ, S. 2001. Vegetación del área de la laguna Mar  
Chiquita. En: IRIBARNE, O. (Ed), Reserva de  
Biosfera Mar Chiquita: Características físicas,  
biológicas y ecológicas, pp. 75-78. Editorial Martín,  
Mar del Plata.  
STUTZ, S. & A. R. PRIETO. 2003. Modern pollen and  
vegetation relationships in Mar Chiquita coastal  
lagoon area, southeastern Pampa grasslands,  
Argentina. Rev. Palaeobot. Palynol. 126: 183-195.  
https://doi.org/10.1016/S0034-6667(03)00084-8  
SUGITA, S. 1994. Pollen representation of vegetation in  
Quaternary sediments: theory and method in patchy  
vegetation. J. Ecol. 82: 881-897.  
https://doi.org/10.1016/j.palaeo.2022.110993  
WENG, C., H. HOOGHIEMSTRA  
& J. F.  
DUIVENVOORDEN. 2006. Challenges in  
estimating past plant diversity from fossil pollen  
data: statistical assessment, problems and possible  
solutions. Divers. Distrib. 12: 310-318.  
WIEMER, A. P., A. N. SÉRSIC & A. O. SIMÕES.  
2009. Biología floral de Oxypetalum solanoides  
(Apocynaceae). Bol. Soc. Argent. Bot. 44 (Supl), p.  
177. Huerta Grande, Argentina.  
WITTAKER, R. J., K. J. WILLIS, R. FIELD. 2001.  
Scale and species richness: towards a general,  
hierarchical theory of species diversity. J. Biogeogr.  
28: 453-470.  
XU, Q., F. TIAN, M. J. BUNTING, Y. LI… & Z. HE.  
2012. Pollen source areas of lakes with inflowing  
rivers: modern pollen influx data from Lake  
Baiyangdian, China. Quat. Sci. Rev. 37: 81-91.  
YEZZI, A. L., A. J. NEBBIA & S. M. ZALBA.  
2018. Fragmentación de pastizales psamófilos por  
plantaciones de pinos: efectos sobre la riqueza y  
la composición vegetal. Ecol. Austral 28: 133-144.  
https://doi.org/10.25260/EA.18.28.1.0.640  
https://doi.org/10.2307/2261452  
SUGITA, S. 2007a. Theory of quantitative reconstruction  
of vegetation I: pollen from large sites REVEALS  
regional vegetation composition. Holocene 17: 229-  
2
41. https://doi.org/10.1177/0959683607075837  
SUGITA, S. 2007b. Theory of quantitative reconstruction  
of vegetation II: all you need is LOVE. Holocene 17:  
ZULOAGA, F., M. BELGRANO & C. ZANOTTI.  
2019. Actualización del Catálogo de las Plantas  
Vasculares del Cono Sur. Darwiniana, n. s.7:  
208-278.  
243-257. https://doi.org/10.1177/0959683607075838  
VÄLI, V., B. V. ODGAARD, Ü. VÄLI & A. POSKA. 2022.  
Pollen richness: a reflection of vegetation diversity or  
527