SPore viability of fern SPecieS of the genera  
amauroPelta, blechnum, and PhySematium from  
central argentina after low temPerature Storage  
viabilidad de eSPoraS de helechoS de loS géneroS amauroPelta,  
blechnum y PhySematium del centro de argentina luego del  
almacenamiento a baja temPeratura  
1
& M. Luján Luna *  
M. Luz Martinenco , Marcelo D. Arana  
Summary  
Background and aims: Ferns are sensitive to environmental changes, inhabiting  
ecosystems susceptible to degradation. Spore banks and in vitro spore culture are  
useful tools employed in their conservation. The objective was to test the ability of  
the spores to germinate after being stored in a freezer and to develop gametophytes  
and sporophytes, in native fern species of genera Amauropelta, Blechnum and  
Physematium.  
1
.
Laboratorio de Anatomía  
Comparada, Propagación  
y
Conservación de Embriofitas,  
Facultad de Ciencias Naturales y  
Museo, Universidad Nacional de La  
Plata, La Plata, Argentina  
M&M: Spores of A. argentina, B. auriculatum and P. montevidensis were stored at  
2
. Grupo GIVE, Departamento de  
-20 ºC in dry conditions for 6 and 12 months. They were sown in vitro in Dyer liquid  
Ciencias Naturales, Facultad de  
Ciencias Exactas, Físico-Químicas y  
Naturales, Instituto ICBIA (UNRC-  
CONICET), Universidad Nacional de  
Río Cuarto, Río Cuarto, Córdoba,  
Argentina  
medium and incubated in a growth chamber. The means of germination percentages  
were calculated and a one-way Student’s t-test was employed. Gametophyte and  
sporophyte development was registered under light and stereoscopic microscopes.  
Results: Depending on the species, statistical differences were recorded in  
germination percentages (viability) between both storage periods. The spores of A.  
argentina kept in freezer for 12 months completely lost viability. In B. auriculatum,  
viability decreased over time, and in P. montevidensis it remained constant.  
Gametophytes and sporophytes developed in all cultures; except in A. argentina  
spores, with 12 months in freezer.  
3
. Instituto Criptogámico, Área  
Botánica, Fundación Miguel Lillo,  
San Miguel de Tucumán, Tucumán,  
Argentina  
Conclusions: The viability of the spores under dry storage at low temperature could be  
conditioned by the ecological requirements of the species. Protocols used for spore  
storage and culture allowed obtaining gametophytes and sporophytes in trials.  
*lujanluna@fcnym.unlp.edu.ar  
Citar este artículo  
Key wordS  
MARTINENCO, M. L., M. D.  
ARANA & M. L. LUNA. 2024. Spore  
viability of fern species of the  
genera Amauropelta, Blechnum  
and Physematium from central  
Argentina after low temperature  
storage. Bol. Soc. Argent. Bot. 59:  
Amauropelta, Blechnum, ex-situ conservation, fern, freezing, Physematium, spore  
longevity.  
reSumen  
Introducción y objetivos: Los helechos son sensibles a cambios ambientales,  
habitando en ecosistemas susceptibles a degradación. Los bancos de esporas y el  
cultivo in vitro son herramientas útiles para su conservación. El objetivo fue probar  
la capacidad de las esporas para germinar luego del almacenamiento en freezer  
y de desarrollar gametofitos y esporofitos, en especies de helechos nativos de los  
géneros Amauropelta, Blechnum y Physematium.  
M&M: Esporas de A. argentina, B. auriculatum y P. montevidensis se almacenaron  
deshidratadas a -20 ºC durante 6 y 12 meses. Se sembraron in vitro en medio  
Dyer líquido y se incubaron en estufa. Se calcularon las medias de los porcentajes  
de germinación y se empleó una prueba t Student unidireccional. El desarrollo de  
gametofitos y esporofitos fue registrado con microscopio óptico y lupa.  
2
99-309.  
Resultados:Seregistrarondiferenciasestadísticasenlosporcentajesdegerminación  
(viabilidad) entre ambos períodos de almacenamiento. Las esporas de A. argentina  
mantenidas durante 12 meses en freezer perdieron completamente la viabilidad.  
En B. auriculatum, la viabilidad disminuyó con el tiempo y en P. montevidensis  
que permaneció constante. Se desarrollaron gametofitos y esporofitos en todos los  
cultivos; excepto en A. argentina almacenadas 12 meses en freezer.  
Conclusiones: La viabilidad de esporas almacenadas deshidratadas a baja  
temperatura podría estar condicionada por los requerimientos ecológicos de las  
especies. Los protocolos utilizados para el almacenamiento y cultivo de esporas  
permitieron obtener gametofitos y esporofitos en todos los ensayos.  
Recibido: 4 Abr 2024  
Aceptado: 7 Jul 2024  
Publicado en línea: 30 Sep 2024  
Publicado impreso: 30 Sep 2024  
Editor: Gonzalo J. Márquez  
PalabraS clave  
Amauropelta, Blechnum, congelación, conservación ex situ, helecho, longevidad de  
espora, Physematium.  
ISSN versión impresa 0373-580X  
ISSN versión on-line 1851-2372  
299  
Bol. Soc. Argent. Bot. 59 (3) 2024  
introduction  
(most common 20 ℃, 5 ℃, -20 ℃ or -196 ℃ in  
liquid nitrogen) (Pence, 2002, 2008; Quintanilla  
Ferns are one of the oldest lineages of vascular et al., 2002; Aragón & Pangua, 2004; Ballesteros  
plants, highly sensitive to environmental changes. et al., 2006, 2012; Gabriel y Galán & Prada, 2011;  
They usually inhabit ecosystems susceptible to Mikula et al., 2009, 2015; Vargas & Droste, 2014;  
degradation, so their protection and conservation Tomiczak et al., 2023). Usually, the viability of fern  
contribute to ensuring the maintenance of these spores is retained when they are stored in dry and  
ecosystems and the biodiversity therein (Ballesteros cold conditions (Pence, 2008; Gabriel y Galán &  
et al., 2006; Arcand & Ranker, 2008; Mehltreter, Prada, 2010).  
2
010). Ferns have diverse ecological roles and many  
As part of a project that aims to investigate  
species are of economic interest as ornamental, the optimal methods for ex situ conservation  
food or medicinal plants (Mannan et al., 2008; of ferns that inhabit Argentina, we began our  
Lee & Shin, 2010; Sharpe et al., 2010; Liu et al., studies in the central region of this country, one  
2
012; Goswami et al., 2016; Huang et al., 2019). of the four centres of fern diversity in Southern  
Furthermore, various fern taxa are considered as Cone (Arana et al., 2013). In this area, fern  
indicators of environment disturbance, climate populations are concentrated in the mountain  
changes and pollution (Della & Falkenberg, 2019).  
systems (called “Sierras Pampeanas centrales”),  
Procedures for biodiversity plant conservation which act as islands immersed in pampean plains  
can be in situ (protection of natural habitats), or (Arana & Ponce, 2004; Oggero & Arana, 2012;  
ex situ (botanic gardens, germplasm banks, in Arana et al., 2021). Despite habitat heterogeneity,  
vitro culture), both not mutually exclusive but the biota inhabiting isolated mountain systems is  
complementary (Dyer, 1994; Ibars & Estrelles, less likely to survive catastrophic events (Taylor &  
2
012; Breman et al., 2021). Fern spore banks Kumar, 2016). In central Argentina, the mountain  
(
analogous to seed banks for angiosperms) are systems are frequently disturbed by fires which  
an ex-situ conservation tool that allows storing cause strong impacts on species composition,  
large quantities of germplasm with high genetic vegetation structure, and biogeochemical and  
variation in a small space (Dyer, 1994; Pence, hydrological cycles (Whelan, 1995; Morgan et al.,  
2
008; Ibars & Estrelles, 2012; Ballesteros & 2001; Argarañaz et al., 2020).  
Pence, 2018). Ballesteros et al. (2006) claimed The objective of the present work was to test  
that the spores of ferns that inhabit threatened the ability of the spores to germinate after being  
ecosystems should be included in germplasm stored in a freezer and to develop gametophytes  
banks for experimental purposes and for long-term and sporophytes, in native fern species of genera  
biodiversity conservation.  
Amauropelta, Blechnum, and Physematium  
The sporophytes of most ferns produce large from central Argentina with different ecological  
quantities of spores that are readily available every requirements.  
year, and their viability plays an important role for  
the successful establishment of individuals and  
populations in new habitats (Dyer, 1994; Sheffield, materialS and methodS  
1
996). Due to their desiccation tolerance, spores  
can be stored for long periods of time at low  
temperatures maintaining their viability (Dyer, (Hieron.)Salino&T.E.Almeida(Thelypteridaceae),  
979; Ballesteros, 2010). The reduction in spore Blechnum auriculatum Cav. (Blechnaceae), and  
Three taxa were studied: Amauropelta argentina  
1
viability can be measured by the decrease in Physematium montevidensis (Spreng.) Shmakov  
germination percentage over time (Gabriel y Galán (Woodsiaceae). Materials were collected in four  
&
Prada, 2010). localities of the Chaco serrano district, Chaco  
Various works address the analysis of the optimal biogeographic province, Neotropical region: Las  
conditions to preserve the viability of the spores Jarillas (31° 32´ 03.16´´ S, 64° 32´ 14.98´´ W), Atos  
over time, using variables as wet or dry storage Pampa (31° 57´ 49.34´´ S, 64°40´13.19´´ W), Las  
(i.e. spores stored in capsules with mineral agar vs. Albahacas (32° 53´ 59.02´´ S, 64° 50´´ 17.97´´ W),  
kept in Eppendorf tubes), or different temperatures and Achiras (33° 09´ 07.38´´ S, 64° 59´ 32.78´´W).  
300  
M. L. Martinenco et al. - Viabilidad de esporas de helechos del centro de Argentina  
The characteristic vegetation of the district is the 28 µmol m-2 s-1, at 20 ± 2 °C. The cultures were  
xerophytic forest alternating with shrublands. The examined every 2-3 days under a stereoscopic  
analysed taxa occur in different microhabitats: microscope Nikon SMZ 1000.  
A. argentina is a hygrophilous species that lives  
The different stages of gametophyte development  
associated with water courses, usually along stream were photographed employing a Nikon E200 light  
banks, whereas B. auriculatum and P. montevidensis microscope (LM). For this, samples were placed  
grow in xeric microhabitats of deep cracks and rock on microscopic slides and mounted in water. When  
crevices (Fig. 1A-D). Voucher specimens were the gametophytes reached the cordiform phase  
deposited in the herbarium RCVC of the National they were transferred to Petri dishes containing  
University of Río Cuarto, Argentina (Thiers, 2024). previously autoclaved soil extracted from the  
natural habitats. Cultures were kept in the growth  
Spore storage conditions  
chamber until sporophyte emergence.  
Portions of fronds with mature closed sporangia  
were taken from ten individuals per species and Statistical analysis  
transported to the laboratory in paper envelopes.  
First, the means of germination percentages were  
Materials were air-dried at room temperature (~24 calculated in the three fern species at the two cold  
°
C) and ambient RH until spore release. Spores storage conditions and then, a one-way Student’s  
were filtered using a mesh with pores 88 µm in t-test was employed to determine if the differences  
diameter, in order to eliminate remnants of indusia, in percentages were statistically significant at the  
scales, sporangia or leaf material. The spores were distinct storage times. A Student’s test calculator  
kept for 2 months in a refrigerator (4 ºC) before (InfoStat) was used to calculate the T-value, which  
sowing. To test the viability of the spores before can be employed to compare the variability of data  
their storage at low temperature, samples were and to determine whether means were significantly  
sown in vitro following the methodology described different or not. Last, p-values were calculated  
below. The spores were considered viable when using the difference in mean at the 5% significance  
they germinated (rupture of the spore wall and level, for our data from 6 and 12 months of storage  
emergence of the first rhizoid).  
in each species.  
Once the viability of the fresh spores was  
verified, subsamples were placed in Eppendorf  
tubes, labelled and stored in a freezer at -20 ºC. reSultS  
The viability of the spores was evaluated at two  
storage times: 6 and 12 months. Six replicates for  
Fresh spores germinated quickly, between 5  
each storage period per species were employed. days (Blechnum auriculatum) and 7-9 days after  
The final spore viability was calculated according sowing (Amauropelta argentina and Physematium  
to Quintanilla et al., (2002) and Aragon & Pangua montevidensis) (Table 1). In the frozen materials,  
(2004), by analysing the germination percentage a variation in germination time was recorded. The  
after 30 days from spore sown (no further spores of B. auriculatum stored for 12 months in  
germination was observed after). Germination freezer took longer to germinate than those kept for  
percentage was calculated from a random count of 6 months, whereas in P. montevidensis germination  
1
00 spores from each dish (following Aragón & occurred in both trials 15 days after sown. The  
Pangua, 2004).  
spores of A. argentina completely lost viability  
after 12 months of storage at -20 ℃.  
In vitro spore culture and gametophyte development  
There were significant differences in germination  
The spores were cultured in previously percentages between the two storage periods  
autoclaved (120 °C for 20 minutes) Petri dishes 9 in freezer depending on the species analysed  
cm in diameter, containing Dyer liquid medium (Table 2). B. auriculatum showed a greater spore  
(Dyer, 1979). Spores were not disinfected before germination percentage after a 6-months of  
sowing. The capsules where sealed with Parafilm storage in comparison with A. argentina and P.  
and placed in a growth chamber with a photoperiod montevidensis. The storage at low temperature  
of 12 hours, under white fluorescent illumination during 12 months damaged or reduced the viability  
301  
Bol. Soc. Argent. Bot. 59 (3) 2024  
Fig. 1. Sampling area and individuals in their habitats. A: Typical landscape of the Chaco serrano district. B:  
individual of Amauropelta argentina growing on a stream bank. C: population of Blechnum auriculatum growing  
among rocks. D: individuals of Physematium montevidensis with rupicolous habit. Scales= B-D: 20 cm.  
of the spores (expressed as germination percentage) 2-3 cells long (Fig. 2A-B). During the laminar  
in A. argentina and B. auriculatum, meanwhile phase, trichomes developed first on the margins  
storage period did not affect the germination and then on the gametophyte surface (Fig. 2C-F).  
percentage in P. montevidensis.  
Both smaller elongated and larger symmetrical  
Gametophyte and sporophyte development gametophytes were recorded in the cordiform phase  
was registered in all cultures, except for those (Fig. 2G-J). Smaller ones were unisexual male  
corresponding to the spores of A. argentina kept (Fig. 2H-I), whereas larger gametophytes were  
for 12 months in the freezer. The morphological bisexual (Fig. 2J-K). In some instances, branched  
characteristics of the gametophytes, their sexual male gametophytes were observed (Fig. 2L).  
expression and the emergence of the sporophytes Sporophytes developed in trials where fresh spores  
are described in Table 1 and Figs. 2-4. The and those stored in a freezer for 6 months were  
developmental characteristics of gametophytes and used (Fig. 2M-N). In B. auriculatum, the filaments  
sporophytes for each species were similar in all were 3-5 cells long and some of them developed a  
trials (i.e. fresh spores and under different storage terminal trichome (Fig. 3A-B). The bi-dimensional  
periods). Briefly, in A. argentina the filamentous growth phase showed elongated gametophytes that  
gametophyte phase consisted of short filaments bore trichomes on the margins and on the prothallus  
302  
M. L. Martinenco et al. - Viabilidad de esporas de helechos del centro de Argentina  
Table 1. Spore germination, gametophyte and sporophyte development in Amauropelta argentina,  
Blechnum auriculatum, and Physematium montevidensis laboratory trials. References= GCP:  
gametophyte cordiform phase; GFP: gametophyte filamentous phase; GLP: gametophyte laminar phase;  
SG: spore germination.  
Species  
Fresh spores  
Spores 6 months storage Spores 12 months storage  
SG: 8-9 days from sown. TG: 60 %  
SG: 10 days from sown.  
Spores did not germinate  
GFP: 2-5 days from SG.  
Filaments 2-3 cells long.  
GFP: 4-6 days from SG.  
Filaments 2-3 cells long.  
GLP: 5 days from SG.  
GLP: 6 days from SG.  
Trichomes on the margins.  
Trichomes on the margins.  
GCP: 24 days from SG.  
Trichomes on the margins  
and the prothallus surface.  
GCP: 20 days from SG.  
Trichomes on the margins  
and the prothallus surface.  
Amauropelta  
argentina  
Antheridia: 50 days from SG.  
Archegonia: 60 days from SG.  
Antheridia: 60 days from SG.  
Archegonia: 67  
days from SG.  
Gametophyte sexuality: bisexual  
and male unisexual.  
Gametophyte sexuality:  
bisexual and male unisexual.  
Sporophyte: 90-100 days from SG.  
Sporophyte: 120  
days from SG.  
SG: 5 days from sown. TG: 70%  
SG: 6 days from sown.  
SG: 14 days from sown.  
GFP: 2-6 days from SG.  
Filaments 3-5 cells long, some  
with terminal trichome.  
GFP: 2-7 days from SG.  
Filaments 3-5 cells long,  
some with terminal trichome. some with terminal trichome.  
GFP: 2-7 days from SG.  
Filaments 3-5 cells long,  
GLP: 7 days from SG.  
GLP: 7 days from SG.  
GLP: 7 days from SG.  
Trichomes on the margins.  
Trichomes on the margins.  
Trichomes on the margins.  
GCP: 18 days from SG.  
Trichomes on the margins  
and the prothallus surface.  
GCP: 17 days from SG.  
Trichomes on the margins  
and the prothallus surface.  
GCP: 18 days from SG.  
Trichomes on the margins  
and the prothallus surface.  
Blechnum  
auriculatum  
Antheridia: 40 days from SG.  
Antheridia: 75 days from SG. Antheridia: 120  
days from SG.  
Archegonia: 48 days from SG.  
Archegonia: 78  
days from SG.  
Archegonia: 140  
days from SG.  
Gametophyte sexuality: bisexual  
and male unisexual.  
Gametophyte sexuality:  
bisexual and male unisexual. bisexual and male unisexual.  
Gametophyte sexuality:  
Sporophyte: 60 days from SG.  
Sporophyte: 90  
days from SG.  
Sporophyte: 210  
days from SG.  
SG: 6-8 days from sown. TG: 90%  
SG: 15-26 days from sown.  
SG: 15-30 days from sown.  
GFP: 2-4 days from SG.  
Filaments 3-5 cells long.  
GFP: 2-5 days from SG.  
Filaments 3-5 cells long.  
GFP: 2-7 days from SG.  
Filaments 3-5 cells long.  
GLP: 10 days from SG.  
GLP: 10 days from SG.  
GLP: 8 days from SG.  
Trichomes on the margins.  
Trichomes on the margins.  
Trichomes on the margins.  
GCP: 25 days from SG.  
Trichomes on the margins  
and the prothallus surface.  
GCP: 30 days from SG.  
Trichomes on the margins  
and the prothallus surface.  
GCP: 30 days from SG.  
Trichomes on the margins  
and the prothallus surface.  
Physematium  
montevidensis  
Antheridia: 25 days from SG.  
Archegonia: 35 days from SG.  
Antheridia: 43 days from SG. Antheridia: 35 days from SG.  
Archegonia: 49  
days from SG.  
Archegonia: 38  
days from SG.  
Gametophyte sexuality: bisexual  
and male unisexual.  
Gametophyte sexuality:  
bisexual and male unisexual. bisexual and male unisexual.  
Gametophyte sexuality:  
Sporophyte: 52 days from SG.  
Sporophyte: 60  
days from SG.  
Sporophyte: 65  
days from SG.  
303  
Bol. Soc. Argent. Bot. 59 (3) 2024  
Table 2. Significance of storage time on spore germination percentage using Student’s t-test.  
References= n: number of capsules. In each one, 100 spores were counted. Porcentage germination  
(mean±standar error). T: t-valor. **: p>0,05.  
Storage time  
of 6 months  
Storage time  
of 12 months  
Species  
Source variation  
n
T
p-valor  
Amauropelta argenina  
Blechnum auriculatum  
Physematium montevidensis  
% of germination  
% of germination  
% of germination  
6
6
6
30±7  
72±3  
40±7  
0
10,39  
26,37  
0,32  
0,000  
0,000  
30±3  
40±7  
0,7537**  
surface (Fig. 3C-E). The cordiform gametophytes of viable spores after 12 months of storage, as  
were mostly elongated throughout their development occurred in our cultures of B. auriculatum. In the  
(Fig. 3F-I). Both unisexual male (Fig. 3G-H) and case of P. montevidensis, this percentage remained  
bisexual gametophytes were recorded, the latter constant over storage time.  
with a wide notch behind which the gametangia  
By other hand, the spores of the hygrophilous  
differentiated (Fig. 3I-K). Sporophytes developed species A. argentina completely lost viability when  
in all cultures using fresh spores as well as those they remained 12 months stored in the freezer. Our  
stored in freezer (Fig. 3L-N). The filamentous phase results agree in general with those of Quintanilla et  
of P. montevidensis gametophytes consisted of al. (2002), who found in other hygrophilous ferns  
filaments 4-5 cells long, with or without a terminal that dry storage killed the spores after 6 months at  
trichome (Fig. 4A). During the laminar phase, more -20 °C. According to these authors, hygrophilous  
trichomes developed on the margins and on the species require high levels of soil moisture and  
gametophyte surface (Fig. 4B-C). As occurred in relative humidity, thus wet storage seems more  
the other analysed species, a sexual dimorphism was appropriate for them. In our study, the spores of  
observed being the male gametophytes smaller in A. argentina remained viable for up to 6 months  
size and cordiform elongated, whereas bisexual ones of dry storage in the freezer, and gametophytes  
were larger and symmetrical cordiform (Fig. 4D-F). and sporophytes developed in these cultures. This  
Sporophytes developed in all cultures (Fig. 4G).  
indicates that the spores of A. argentina resist  
desiccation to a certain period of time. Ballesteros  
et al. (2012) also observed in some fern taxa, that  
shortest lived spores belonged to species from  
riparian or shaded forests of the Iberian Peninsula.  
diScuSSion and concluSionS  
The spores of Blechnum auriculatum and As Aragón & Pangua (2004) suggested for other  
Physematium montevidensis maintained their ferns, the ecological requirements of this species  
viability for up to 12 months when they were stored seem to have influenced to certain extent spore  
in the freezer. Both fern species completed the life viability.  
cycle in laboratory conditions and sporophytes  
Various studies have shown the beneficial effects  
developed in all essays (after 6 and 12 months of of preserving spores or tissues in liquid nitrogen,  
storage). Quintanilla et al. (2002) analysed spore in particular to preserve endangered fern species  
germination in five threatened ferns after different (Mikula et al., 2009; Ballesteros, 2012; Pence,  
storage conditions, and stated that dry storage at 2015; Filipin et al., 2016; Pence, 2018; Tomiczak  
-20 °C or 5 °C is an effective technique to maintain et al., 2023). However, for other purposes, storage  
spore viability, requiring low preparation time and in a freezer is much less expensive and requires less  
storage space. Aragón & Pangua (2004) also found preparation time. Our findings demonstrate that the  
dry storage at -20 °C fairly effective to maintain spores of B. auriculatum and P. montevidensis can  
spore viability in rupicolous taxa of Asplenium. be stored in freezer (at -20 °C) for at least one year,  
These authors reported a decrease in the percentage whereas in the case of A. argentina, new essays  
304  
M. L. Martinenco et al. - Viabilidad de esporas de helechos del centro de Argentina  
Fig. 2. Amauropelta argentina gametophyte and sporophyte development in cultures of spores stored 6 months  
in freezer. A: Earlier stages of gametophyte development. Some spores have not germinated. B: Three-  
celled filamentous gametophyte. C: Gametophyte at the beginning of the laminar phase. D: Gametophyte  
slightly wider after successive mitotic divisions. E: Laminar phase (left) and early cordiform phase (right). F:  
Detail of gametophyte margin with a unicellular glandular trichome. G: Cordiform gametophyte phase with  
scarce marginal trichomes. H: Elongated cordiform male gametophyte. I: Antheridia in detail. J: Symmetrical  
cordiform bisexual gametophytes. K: Gametangia (archegonia and antheridia) in detail. L: Proliferation of  
male gametophyte bearing antheridia. M: Sporophyte first leaf. N: More developed sporophyte with several  
leaves. Abbreviations= an: antheridium; ar: archegonium; gm: gametophyte; pr: proliferation; sp: sporophyte;  
tr: trichome. Scales= A, H, J, M: 200 µm; B, F: 50 µm; C-D, I, K: 25 µm; E, G, L: 100 µm; N: 2 cm.  
305  
Bol. Soc. Argent. Bot. 59 (3) 2024  
Fig. 3. Blechnum auriculatum gametophyte and sporophyte development in cultures of spores stored  
12 months in freezer. A: Filamentous gametophyte phase with terminal trichome. B: Filaments without  
terminal trichome. C: Early laminar gametophyte phase. D: Laminar phase after successive mitosis. E: Early  
cordiform gametophyte phase. F: Mature cordiform gametophytes. G: Male gametophyte. H: Antheridia in  
detail (arrow). I: Symmetrical cordiform bisexual gametophyte. J: Gametangia near the notch (arrow). K:  
Magnified imagen of gametangia. L: Young sporophyte with first leaf. M: Sporophytes with 2-3 leaves. N:  
Sporophytes with several leaves with divided blade. Scales= A-C: 50 µm; D-E, G, I: 200 µm; F: 400 µm; H,  
K: 25 µm; J: 100 µm; L: 3 mm; M: 5 mm; N: 1 cm.  
306  
M. L. Martinenco et al. - Viabilidad de esporas de helechos del centro de Argentina  
Fig. 4. Physematium montevidensis gametophyte and sporophyte development in cultures of spores stored  
12 months in freezer. A: Filamentous gametophyte phase. B: Early laminar phase. C: Early cordiform phase.  
D: Unisexual male and bisexual gametophytes. E: An archegonium in detail. F: Magnified image of a male  
gametophyte. G: Young sporophyte with first leaves. Scales= A-B, E: 50 µm; C-D, F: 200 µm; G: 5 mm.  
employing other storage and culture conditions will  
be tested to achieve a longer spore viability.  
This work constitutes the first report on the  
viability of spores of fern taxa native to Argentina  
Concerning the developmental and morphological conserved at low temperature. We intend to provide  
features of B. auriculatum and P. montevidensis baseline information for future propagation and  
gametophytes, they were previously described by conservation studies in native ferns, particularly  
Durán (1997) and Martinenco et al., (2023), and our those which inhabit areas with severe periodic  
observations are in coincidence with them. For A. disturbances, as occurs in the central Mountains  
argentina, this information is provided here for the systems of Argentina.  
first time. The spore germination pattern is Vittaria-  
type and the gametophyte development follows the  
Aspidium-type (according to Nayar & Kaur, 1971). author contributionS  
The gametophytic development of each species was  
similar in the different trials (i.e. using fresh spores  
and those stored at low temperatures).  
MLM and MLL made the general  
conceptualization of the manuscript. MDAcollected  
307  
Bol. Soc. Argent. Bot. 59 (3) 2024  
the materials used in the essays. MLM and MLL BALLESTEROS, D. 2010. Conservation of Fern Spores.  
realized the experimental tests and collected the  
data. All authors participated in the interpretation  
of data and in the preparation and writing of the  
manuscript.  
En: FERNÁNDEZ, H., A. KUMAR & M. A.  
REVILLA (eds.), Working with ferns: issues and  
applications, pp. 165-172. Springer, New York.  
BALLESTEROS, D., E. ESTRELLES, C. WALTERS  
&
A. M. IBARS. 2012. Effects of temperature and  
desiccation on ex situ conservation of nongreen fern  
spores. AJB 99: 721-729.  
aKnowledgementS  
BALLESTEROS, D. & V. C. PENCE. 2018. Fern  
conservation: spore, gametophyte, and sporophyte  
ex situ storage, in vitro culture, and cryopreservation.  
En: FERNANDEZ, H. (ed.) Current advances in  
fern research, pp. 227-249. Springer, New York.  
We thank Dr. Antonia Oggero for her  
collaboration during the sampling in the field. This  
research was supported by the Projects 11N/940 of  
the Universidad Nacional de La Plata (MLL), PICT  
0
2227 of the ANPCyT (MLL), and PPI 2020 of the BREMAN, E., BALLESTEROS, D., CASTILLO-  
Universidad Nacional de Río Cuarto (MDA).  
LORENZO, E., COCKEL, … & T. ULIAN.  
2
021. Plant diversity conservation challenges and  
prospects-the perspective of botanic gardens and the  
bibliograPhy  
ARAGÓN, C. F. & E. PANGUA. 2004. Spore viability  
under different storage conditions in four rupicolous  
Asplenium L. taxa. Am. Fern. J. 94: 28-38.  
DELLA, A. P. & D. G. FALKENBERG. 2019.  
Pteridophytes as ecological indicators: an overview.  
ARANA, M. D., M. PONCE&N.VISCHI. 2004. Sinopsis  
de los helechos y grupos relacionados (Pteridophyta)  
de la provincia de Córdoba, Argentina. Bol. Soc.  
Argent. Bot. 39: 89-114.  
ARANA, M. D., J. J. MORRONE, M. M. PONCE. &  
A. J. OGGERO. 2013. Patrones biogeográficos de  
los helechos de las sierras de Córdoba (Argentina)  
y sus implicancias en la conservación. Gayana Bot.  
DURÁN, M. L. 1997. Estudios morfológicos,  
taxonómicos y biosistemáticos en el género  
Blechnum (Blechnaceae-Pteridophyta). Tesis  
Doctoral, Facultad de Ciencias Exactas, Físicas  
y Naturales, Universidad Nacional de Córdoba,  
Argentina.  
DYER, A. F. 1979. The Experimental Biology of Ferns.  
Trans. Bot. Soc. Edinburgh 43: 75-90.  
ARANA, M. D., E. NATALE, A. OGGERO, N.  
FERRETI, … & J. J. MORRONE. 2021. Esquema  
biogeográfico de la República Argentina. Opera  
Lilloana 56: 1- 240.  
DYER, A. F. 1994. Natural soil spore banks-can they  
be used to retrieve lost ferns? Biodivers. Conserv.  
3:160-175.  
FILIPIN, E. P., E. C. SCHMIDT, J. B. BARUFI, Z. L.  
BOUZON &A. M. RANDI. 2016. The Gametophyte  
of Pleopeltis lepidopteris (Langsd. & Fisch.) de  
la Sota (Polypodiaceae), a fern from restinga,  
after spore cryopreservation: morphological,  
ultrastructural, and physiological analyses. IJPS  
177: 294-303.  
ARCAND, N. N. & T. A. RANKER. 2008. Conservation  
biology. En: RANKER, T. A. & C. H. HAUFLER  
(
eds.), Biology and evolution of ferns and  
lycophytes, pp. 257-283. Cambridge University  
Press, Cambridge.  
ARGARAÑAZ, J. P., A. M. CINGOLANI, L. M.  
BELLIS & M. A. GIORGIS. 2020. Fire incidence  
along an elevation gradient in the mountains of  
GABRIEL Y GALÁN, J. M. & C. PRADA. 2010.  
Pteridophyte spores viability. En: HERNÁNDEZ,  
H., A. KUMAR & M. A. REVILLA (eds.), Working  
with ferns: issues and applications, pp. 193-205.  
Springer, New York.  
BALLESTEROS, D., E. ESTRELLES & A. M.  
IBARS. 2006. Responses of Pteridophyte spores to  
ultrafreezing temperatures for long term conservation  
ingermplasm banks. Fern Gaz. 17: 293-302.  
GOSWAMI, H. K., K. SEN & R. MUKHOPADHYAY.  
2016. Pteridophytes: evolutionary boon as medicinal  
308  
M. L. Martinenco et al. - Viabilidad de esporas de helechos del centro de Argentina  
HUANG, Y. M., Y. H. CHANG & W. L. CHIOU. 2019.  
Edible ferns and lycophytes in Asia. Fern Gaz.  
1:45-68.  
PENCE, V. C. 2002. Cryopreservation and in vitro  
methods for ex situ conservation of Pteridophytes.  
Fern Gaz. 16: 362-369.  
2
IBARS A. M. & E. ESTRELLES. 2012. Recent  
developments in ex situ and in situ conservation of  
ferns. Fern Gaz. 19:67-86.  
LEE, C. H. & S. L. SHIN. 2011. Functional activities of  
ferns. En: FERNÁNDEZ, H., A. KUMAR & M. A.  
REVILLA (eds.), Working with ferns: issues and  
applications, pp. 347-359. Springer, New York.  
LIU, Y., W. WUJISGULENG & C. LONG. 2012. Food  
PENCE, V. C. 2008. Ex situ conservation of ferns  
and lycophytes-approaches and techniques. En:  
RANKER, T. A. & C. H. HAUFFLER (eds.),  
Biology and evolution of ferns and lycophytes, pp.  
284-300. Cambridge University Press, Cambridge.  
PENCE, V. C. 2015. Propagation and cryopreservation  
of Asplenium scolopendrium var. americanum, the  
PENCE, V. C. 2018. Growth of fern gametophytes after  
20 years of storage in liquid nitrogen. Fern Gaz. 20:  
337-346.  
MANNAN, M., M. MARIDASS & B. VICTOR. 2008.  
A review on the potential uses of ferns. EBL 12:  
2
81-285.  
QUINTANILLA, L. G., J. AMIGO, E. PANGUA & S.  
PAJARON. 2002. Effect of storage method on spore  
viability in five globally threatened fern species.  
Ann. Bot. 904: 461-467.  
SHARPE, J. M., K. MEHLTRETER & L. R. WALKER.  
2010. Ecological importance of ferns. En:  
MEHLTRETER, K., L. R. WALKER & J. M.  
SHARPE (eds.), Fern Ecology, pp. 1-21. Cambridge  
University Press, Cambridge.  
MARTINENCO, M. L., M. D. ARANA & M. L.  
LUNA. 2023. Morphogenesis of the gametophyte  
of Physematium montevidensis (Woodsiaceae).  
MEHLTRETER, K. 2010. Fern conservation. En:  
MEHLTRETER, K., L. R. WALKER, J. M. SHARPE  
(
eds.), Fern Ecology, pp. 323-359. Cambridge  
SHEFFIELD, E. 1996. From pteridophyte spore to  
sporophyte in the natural environment. En: CAMUS,  
M. G. J. M. & R. JOHNS (eds.), Pteridology in  
perspective, pp. 541-549. Royal Botanic Gardens,  
Kew.  
MIKULA, A., K. JATA & J. J. RYBCZYNKSI. 2009.  
Cryopreservation strategies for Cyathea australis  
(R.Br.) Domin. CryoLetters 30: 429-439.  
MIKUŁA, A., K. TOMICZAK, D. MAKOWSKI, M.  
NIEDZIELSKI & J. J. RYBCZYŃSKI. 2015. The  
effect of moisture content and temperature on spore  
aging in Osmunda regalis. APP 37: 1-11.  
MORGAN, P., C. C. HARDY, T. W. SWETNAM, M.  
G. ROLLINS & D. G. LONG. 2001. Mapping fire  
regimes across time and space: understanding coarse  
TAYLOR, S. & L. KUMAR. 2016. Global climate change  
impacts on pacific islands terrestrial biodiversity: a  
TOMIZAC, K., D. MAKOWSKI, E. SLIWINSKA &  
A. MIKULA. 2023. The development of an in  
vitro propagation and conservation system for the  
endangered serpentine fern Asplenium cuneifolium.  
NAYAR, B. K. & S. KAUR. 1971. Gametophytes of  
homosporous ferns. Bot. Rev. 37: 295-396.  
OGGERO, A. J. & M. D. ARANA. 2012. Inventario de  
la biodiversidad de plantas vasculares del sur de la  
zona serrana de Córdoba, Argentina. Hoehnea 39:  
VARGAS, I. B. D. & A. DROSTE. 2014. In vitro  
propagation of Cyathea atrovirens (Cyatheaceae):  
spore storage and sterilization conditions. Rev. Biol.  
Trop. 62: 359-368.  
WHELAN, R. J. 1995. The ecology of fire. Cambridge  
University Press, Cambridge.  
309