ThermoPhilic and ThermoToleranT microfungi of coal  
mine SPoil TiPS beyond The arcTic circle  
microhongoS TermofílicoS y TermoToleranTeS de laS eScombreraS  
de laS minaS de carbón máS allá del círculo árTico  
1
Vadim A. Iliushin * & Irina Y. Kirtsideli  
Summary  
Background and aims: Thermophilic and thermotolerant fungi occupy a variety of  
ecological niches. The purpose of this article is to show that these microfungi are  
able to live even in such harsh conditions of the high Arctic beyond the Arctic Circle.  
M&M: Rocks from coal mine spoil tips were collected and studied using scanning  
electron microscopy. The method of direct inoculation was employed to isolate  
microfungi. The isolates were identified using morphological identification and  
molecular methods. The growth rate of micromycetes was studied depending on  
temperature.  
1
. Komarov Botanical Institute,  
Russian Academy of Sciences, Saint  
Petersburg, Russia  
*
Citar este artículo  
ILIUSHIN, V. A. & I. Y. KIRTSIDELI.  
Results: Eight cultures of microfungi belonging to six species that are able to grow at  
temperatures of 45 °C and above were isolated from coal mine spoil tips.  
Conclusions: The data obtained indicate the presence of thermophilic and  
thermotolerant microfungi in the spoil tips of coal mines beyond the Arctic Circle. All  
the fungi belonged to the order Eurotiales. These microfungi are able to exist in the  
harshest conditions with several simultaneous adverse factors.  
2
0 2 4 . T h e r m o p h i l i c a n d  
thermotolerant microfungi of coal  
mine spoil tips beyond the Arctic  
Circle. Bol. Soc. Argent. Bot. 59:  
4
51-463.  
Key wordS  
Arctic, coal mine, microfungi, spoil tips, thermophilic, thermotolerant.  
reSumen  
Introducción y objetivos: Los hongos termófilos y termotolerantes ocupan una  
variedad de nichos ecológicos. El objetivo de este artículo es mostrar que estos  
hongos microscópicos son capaces de vivir incluso en las duras condiciones del  
alto Ártico más allá del Círculo Polar Ártico.  
M&M: Se recogieron y estudiaron rocas de los restos de las minas de carbón  
mediante microscopía electrónica de barrido. Se empleó el método de inoculación  
directa para aislar microhongos. Los aislamientos fueron caracterizados mediante  
identificación morfológica y métodos moleculares. La tasa de crecimiento de los  
micromicetos se estudió en función de la temperatura.  
Resultados: Se lograron ocho cultivos de hongos microscópicos pertenecientes a  
seis especies que pueden crecer a temperaturas de 45 °C y superiores de los  
escombros de las minas de carbón.  
Conclusiones: Los datos obtenidos indican la presencia de hongos microscópicos  
termófilos y termotolerantes en los vertederos de minas de carbón más allá del  
Círculo Polar Ártico. Todos los hongos pertenecían al orden Eurotiales. Estos  
hongos microscópicos pueden existir en las condiciones más duras con varios  
factores adversos simultáneos.  
PalabraS clave  
Ártico, microhongos, mina de carbón, termófilo, termotolerante, vertedero de carbón.  
Recibido: 6 Mar 2024  
Aceptado: 10 Sep 2024  
Publicado en línea: 10 Dic 2024  
Publicado impreso: 31 Dic 2024  
Editora: María Victoria Vignale  
ISSN versión impresa 0373-580X  
ISSN versión on-line 1851-2372  
451  
Bol. Soc. Argent. Bot. 59 (4) 2024  
InTroducTion  
Thermophilic fungi were found on the surface of  
rocks during coal mining in areas with high surface  
Fungi are capable of existing at constantly temperatures caused by combustion inside the tip,  
high temperatures. These fungi can be classified and in areas with normal surface temperatures. In  
as thermophilic or thermotolerant, depending on rock samples from areas with elevated temperatures,  
the optimal growth temperature. Thus, fungi are significantly more thermophilic micromycetes were  
considered thermophiles if the optimal growth found than from areas with normal temperatures  
temperature is 45 °C or higher (Mouchacca, (Tansey & Brook, 1978).  
2
000). Thermophiles are considered as a special  
The rock tips of the Chandameta, Parasiya and  
Newton Chikli coal mines (Madhya Pradesh, India)  
case of extremophiles.  
Thermotolerant and thermophilic fungi are characterized by spontaneous combustion  
can be isolated from a wide variety of places processes, which, together with the arid climate,  
where the substrate is heated. Examples of such makes these habitats especially extreme (Salar, 2018).  
habitats can be compost pits, urban landfills of As a result of the study of the mycobiota of these  
household and industrial waste - large, moist, tips, 14 species of microfungi belonging to the  
isolated accumulations of organic matter, where genera Absidia Tiegh., Achaetomium J.N. Rai, J.P.  
internal temperatures rise as a result of microbial Tewari & Mukerji, Aspergillus P. Micheli ex Haller,  
respiration (thermogenesis) (Zak & Wildman, Emericella Berk., Humicola Traaen, Penicillium Link,  
2
004). Thermophilic and thermotolerant fungi can Rhizopus Ehrenb., Sporotrichum Link, Thermoascus  
also be isolated from bird nests (Korniłłowicz- Miehe, Thermomyces Tsikl., Thielavia Zopf, and  
Kowalska & Kitowski, 2013). Thermophilic Torula Pers. were discovered (Johri & Thakre, 1975;  
micromycetes are characteristic of the mycobiota Thakre & Johri, 1976). Two new yeast endemic  
of thermal springs (Pan et al., 2010). Microfungi species, Debaryomyces singareniensis Saluja & G.S.  
are ubiquitous in soils where the sun can heat Prasad and Torulaspora indica Saluja, Yelchuri, Sohal,  
the surface to high temperatures. It is noted Bhagat, Paramjit & G.S. Prasad, have been identified  
that these fungi can make up a significant part from the rock of coal mine spoil tips in another region  
of the mycobiota of soils in arid and tropical of India, Andhra Pradesh (Saluja & Prasad, 2007;  
regions (Mouchacca, 2000). In addition to the Saluja et al., 2012).  
listed habitats, thermophilic and thermotolerant  
The biodiversity of technogenic spoil tips has  
micromycetes are the most important part of the been studied across industrial regions in various  
mycobiota of coal mine spoil tips (Evans, 1971; climatic zones. However, the degree of knowledge  
Tansey & Brook, 1978; Bilaj, 1985).  
of the mycobiota of various coal mining areas is very  
The first studies of the microbiota of coal heterogeneous. Thus, almost all the few studies are  
deposits were carried out in 1928 (Lieske & devoted to the study of rock tips of coal mines and  
Hofmann, 1928). The work described a wide range quarries in the temperate zone of Europe (Evans, 1971;  
of microorganisms, including micromycetes, Ulfig & Korcz, 1995; Detheridge et al., 2018). Studies  
living in German mine spoil tips.  
of coal tips in the Arctic are few and focus primarily on  
The greatest interest in the mycobiota of Svalbard (Iliushin, 2020; Iliushin et al., 2022a), the Komi  
coal mine spoil tips (waste heaps, slagheaps) is Republic (Khabibullina et al., 2015; Iliushin & Kirtsideli,  
due to the fact that tips can serve as a habitat 2021), and the Magadan region (Iliushin et al., 2022b).  
for thermophilic and thermotolerant species.  
In this work, for the first time, thermophilic and  
Strong heating of the insolated surface of the thermotolerant strains of microfungi were screened in  
slope (Manakov & Kupriyanov, 2009), as well as the Arctic Circle.  
oxidative processes occurring in the thickness of  
the tip, leading to heating (Lewińska & Dyczko,  
2
016) or even spontaneous combustion (Querol et maTerialS and meThodS  
al., 2008), create unfavorable conditions for most  
types of fungi. However, such an extreme habitat Sampling  
is suitable for the formation of thermophilic  
mycobiota.  
Samples for the mycological research were taken  
from spoil tips of the coal mine “Nos. 1-5” near  
452  
V. A. Iliushin & I. Y. Kirtsideli - Microfungi of coal mine in the Arctic Circle  
Barentsburg village (78° 03′ 51′′ N, 14° 11′ 09′′ N, 64° 02′ E) Komi Republic (Russia) at the end  
E) on the Svalbard (Norway) from July to August of July 2019 and from spoil tips of the coal mine  
2
018; from spoil tips of the Komsomolskaya “Tal-Yuryakh” near the town of Susuman (62° 47′  
coal mine and the spoil tip of the Pechora Central N, 148° 09′ E) Magadan region (Russia) in august  
Processing Plant near the city of Vorkuta (67° 30′ 2020 (Fig. 1). The samples were obtained from  
Fig. 1. Sampling locations. A: Formed spoil tip from Svalbard. B: Spoil tip with burnt rock from Svalbard. C:  
Formed spoil tip from Komi Republic. D: Spoil tip with burnt rock from Komi Republic. E: Formed spoil tip  
from Magadan region. F: Spoil tip with burnt rock from Magadan region.  
453  
Bol. Soc. Argent. Bot. 59 (4) 2024  
formed (exploited) spoil tips and spoil tips with °C (Raper & Thom, 1949; Kashkin et al., 1979).  
burnt rock of the coal mines. Burnt rocks are formed Chloramphenicol (100 mg/L) was added to the  
during high-temperature transformations of primary culture medium to suppress the growth of bacteria.  
rocks in an oxygen atmosphere (Nenakhova, 1989).  
The isolates of each species were initially  
Thus, the mycobiota of two types of ecosystems identified by morphological identification using  
associated with coal mining, located in three natural the identification handbooks, manuals and articles  
zones (arctic tundra, southern tundra, and forest- after their isolation in pure culture (Egorova,  
tundra) has been studied. Geobotanical descriptions 1986; Domsch et al., 2007; Samson et al., 2010;  
were performed on the selected sites, and average Houbraken et al., 2012; Hubka et al., 2013). For  
samples of soil and spoil tip rock were selected (Table micromorphological examination, microscopy by  
1). Samples of rock for mycological analysis were Carl Zeiss AxioImager А1 was employed.  
collected in individual sterile 50-milliliter plastic  
tubes. All samples were stored at 4 °C.  
The isolates were also identified by molecular  
methods. DNA was extracted by using a Diamond  
Burnt rocks are characteristic of man-made DNA Plant kit (ABT, Russia, Barnaul) according  
ecosystems, but sometimes they are formed as a to the manufacturer’s instructions. Internal  
result of natural processes. The temperature may transcribed spacer rDNA region (ITS1-5.8S-ITS2)  
locally rise in the thickness of the rock tip due to amplified using the PCR-primers ITS1 (5′-TCC-  
oxidative processes. At the same time, due to the GTA-GGT-GAA-CCT-TGC-GG-3′) and ITS4  
high concentration of sulfur, changes in the level (5′-TCC-TCC-GCT-TAT-TGA-TAT-GC-3’) and  
of moisture, as well as a large amount of residual applied as a phylogenetic marker (White et al.,  
coal, spontaneous combustion can occur (Querol 1990). For amplification of the partial ribosomal  
et al., 2008; Bragina, 2013). The composition and polymerase II second largest subunit (RPB2)  
properties of burnt rocks are variable and depend on primers 5F_Eur (5′-GAY-GAY-CGK-GAY-CAY-  
the composition of the source rocks and the degree TTC-GG-3′) and 7CR_Eur (5′- CCC-ATR-GCY-  
of their firing (Nenakhova, 1989). External changes TGY-TTRCCC- AT-3′) were used (Houbraken &  
in the tips are manifested in the reddening of the Samson, 2011). The D1/D2 region of 28S rDNA  
source rocks. It should also be noted that due to the (LSU) was amplified using the PCR-primers NL-1  
combustion processes in tips, pedogenesis can slow (5′-GCATATCAATAAGCGGAGGAAAAG-3′)  
down or even stop (Bragina, 2013).  
and NL-4 (5′- GGTCCGTGTTTCAAGACGG -3′)  
O’Donnell, 1993). The agarose gel electrophoretic  
method was applied to separate the DNA in the  
(
Isolation, incubation and identification  
Themethodofdirectinoculationofsmallfragments samples after amplification. Sequencing of the  
of substrate was employed to isolate microfungi obtained DNA fragments was carried out by the  
(Dudka et al., 1982). Fungi were cultivated on solid ABI 3500 (Thermo Fisher Scientific, USA) using  
media Czapek agar (CZ) and Sabouraud agar at 45 the Sanger method. Sequences were inspected using  
Table 1. Sampling locations.  
Sampling  
locations  
Projective  
coverage  
Type of spoil tip  
Name of mine or quarry  
Coordinates  
formed (exploited) spoil tip  
spoil tip with burnt rock  
Mine No. 1-5  
Mine No. 1-5  
78°02’57” N, 14°13’18.1” E  
78°02’04” N, 14°18’08” E  
67°30’18” N, 63°40’44” E  
0%  
0%  
0%  
Svalbard  
formed (exploited) spoil tip spoil tip of the Pechora  
Central Processing Plant  
Komi Republic  
spoil tip with burnt rock  
formed (exploited) spoil tip  
spoil tip with burnt rock  
Komsomolskaya  
67°29’11” N, 63°46’59” E  
63°20’10” N, 146°37’10” E  
63°17’10” N, 146°40’03” E  
0%  
0%  
Tal-Yuryakh  
Magadan region  
Tal-Yuryakh  
40%  
454  
V. A. Iliushin & I. Y. Kirtsideli - Microfungi of coal mine in the Arctic Circle  
BioEdit version 7.1.9. The obtained sequences were reSulT  
submitted to the NCBI GenBank and compared  
As a result of the study of the spoil tips of  
BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). coal mines of Svalbard, the Komi Republic and  
The criteria were used to interpret the sequences: the Magadan region, eight cultures of microfungi  
the genus and species were accepted for sequence belonging to six species that are able to grow  
identities ≥ 98%; only the genus was accepted at temperatures of 45 °C and above were  
between 95% and 97% (Godinho et al., 2013).  
isolated (Table 2). The observed macro- and  
micromorphology (Figs. 2-3 respectively) of the  
obtained isolates was consistent with the micro- and  
Study of growth rate depending on temperature  
The growth rate of thermophilic and macromorphology of the corresponding species  
thermotolerant micromycetes was studied depending (Egorova, 1986; Domsch et al., 2007; Samson et al.,  
on temperature on Czapek agar (CZ) and Sabouraud 2010; Houbraken et al., 2012; Hubka et al., 2013).  
medium. Cultivation was carried out in thermostats BLAST analysis of the ITS region, LSU or RPB2  
and refrigerators at temperatures of 10 °C, 15 °C, showed 99-100% similarity of the isolates and  
2
6
0 °C, 25 °C, 30 °C, 35 °C, 45 °C, 50 °C, 55 °C, corresponding species. Therefore, molecular and  
0 °C, 62 °C, 65 °C. If necessary, micromycetes morphological data made it possible to conclude  
were cultivated at intermediate temperature values. that the obtained isolates belongs to the species  
Cultivation was carried out in the dark for 7-21 days Aspergillus waksmanii Hubka, S.W. Peterson,  
(
depending on the strain and temperature).  
Frisvad & M. Kolařík, Aspergillus spinosus Kozak,  
Rasamsonia cylindrospora (G. Sm.) Houbraken  
& Frisvad, Rasamsonia byssochlamydoides (Stolk  
Analysis of the rock of coal mine spoil tips  
Thecompositionofthesampleswascharacterized & Samson) Houbraken & Frisvad, Rasamsonia  
using scanning electron microscopy and electron emersonii (Stolk) Houbraken & Frisvad, and  
probe microanalysis using a desktop scanning Thermoascus aurantiacus Miehe.  
electron microscope-microanalyzer TM 3000  
Four species (five strains) of fungi resistant  
(
HITAСHI, Japan) equipped with an OXFORD to the temperature factor were isolated from  
energy dispersion microanalysis console at the the formed spoil tip of the Svalbard coal  
St. Petersburg State University Microscopy and mine (unburned rock). It should be noted that  
Microanalysis Resource Center, as well as X-ray thermotolerant and thermophilic micromycetes  
fluorescence analysis using a portable DELTA XRF were not isolated from the tips of unburned rock  
analyzer (Olympus, Japan).  
of the Komi Republic and the Magadan region.  
Table 2. Culturable microfungi of coal mine spoil tips.  
GenBank  
accession  
numbers  
Phylogenetic  
marker  
Strain  
Species  
Habitat  
OP919555  
OP919563  
OP889566  
PP182127  
OP889565  
OP889574  
PP216935  
OP919556  
OP919564  
ITS  
LSU  
ITS  
IVA-T1  
Rasamsonia emersonii  
formed spoil tip, Svalbard  
IVA-T2  
IVA-T4  
IVA-T6  
IVA-T7  
IVA-T11  
IVA-T14  
IVA-T16  
Aspergillus waksmanii  
Rasamsonia byssochlamydoides  
Aspergillus spinosus  
spoil tip with burnt rock, Svalbard  
formed spoil tip, Svalbard  
ITS  
spoil tip with burnt rock, Komi Republic  
spoil tip with burnt rock, Svalbard  
formed spoil tip, Svalbard  
ITS  
Rasamsonia cylindrospora  
Thermoascus aurantiacus  
Aspergillus waksmanii  
ITS  
RPB2  
ITS  
formed spoil tip, Svalbard  
Aspergillus waksmanii  
formed spoil tip, Svalbard  
LSU  
455  
Bol. Soc. Argent. Bot. 59 (4) 2024  
Fig. 2. Colony of microfungi of coal mine spoil tips. A: IVA-T1 Rasamsonia emersonii. B: IVA-T2 Aspergillus  
waksmanii. C: IVA-T4 Rasamsonia byssochlamydoides. D: IVA-T7 Rasamsonia cylindrospora. E: IVA-T6  
Aspergillus spinosus. F: IVA-T11 Thermoascus aurantiacus.  
Two isolates of Aspergillus waksmanii, IVA-T14 have not been isolated from the tips of burnt  
and IVA-T16, and isolate IVA-T4 Rasamsonia rock in the Magadan region. Two isolates  
byssochlamydoides belonged to thermotolerant belonged to thermotolerant species of the  
species. Thus, the temperature optimum was 35- genus Aspergillus. For IVA-T2 Aspergillus  
4
5 °C for these species, but almost no growth was waksmanii, the temperature optimum was 35-  
observed at 50 °C. The real thermophiles included 45 °C, no growth was observed at 50 °C.  
two isolates, IVA-T1 Rasamsonia emersonii IVA-T6 Aspergillus spinosus was characterized  
and IVA-T11 Thermoascus aurantiacus. The by a lower temperature optimum of 30-40 °C,  
former was characterized by a relatively narrow at the same time, a slight increase was observed  
temperature optimum of 45-50 °C, as well as a at 50 °C. For the third species, Rasamsonia  
high maximum growth temperature of 60 °C. cylindrospora (isolate IVA-T7), the optimum  
On the contrary, the latter isolate exhibited a and maximum growth temperature were higher,  
wide temperature optimum of 40-60 °C and an at 40-50 °C and 60 °C, respectively, which with  
extremely high maximum growth temperature a small assumption, allows this species to be  
of 62 °C. Figure 4 shows the growth curves of classified as thermophilic. Figure 5 shows the  
isolates obtained from coal tips.  
growth curves of isolates obtained from coal tips  
Three thermotolerant fungi were isolated of burnt rocks.  
from the tips of burnt rock of Svalbard (IVA-T2,  
In this study, 87.5% of the isolates were obtained  
IVA-T7) and the Komi Republic (IVA-T6). from rock samples collected from the spoil tips  
Thermotolerant and thermophilic micromycetes of Svalbard, while only 12.5% originated from  
456  
V. A. Iliushin & I. Y. Kirtsideli - Microfungi of coal mine in the Arctic Circle  
Fig. 3. Micromorphological characters of microfungi of coal mine spoil tips. A: Conidiophore of IVA-T1  
Rasamsonia emersonii. B: Conidiophores of IVA-T2 Aspergillus waksmanii. C: Conidia of IVA-T4  
Rasamsonia byssochlamydoides. D: Conidiophore of IVA-T7 Rasamsonia cylindrospora. E: Conidiophore of  
IVA-T6 Aspergillus spinosus. F: Ascospores of IVA-T11 Thermoascus aurantiacus. Scale= 20 μm.  
the Komi Republic. Notably, thermophilic and  
Microphotographs and their corresponding energy  
thermotolerant fungi were not isolated from the tips dispersive X-ray spectra of rocks are presented in Fig.  
of the Magadan region.  
6. The elemental composition is presented in Table 3.  
Fig. 4. Growth curves of thermophilic and  
thermotolerant micromycetes isolated from formed  
Fig. 5. Growth curves of thermophilic and  
thermotolerant micromycetes isolated from spoil  
tips with burnt rock.  
(exploited) spoil tips (unburnt rock).  
457  
Bol. Soc. Argent. Bot. 59 (4) 2024  
The rocks of the studied tips mainly consist of a and well-warmed soils. Some of them are pathogens  
heterogeneous mixture of clastic rocks: siltstones, causing mycoses in humans; strains are isolated  
mudstones, non-carbonate loams and sandstones. from clinical specimens, including blood culture,  
The content of coal particles was detected in the bronchial washing and dialysis fluid. Species of the  
formed tips of Spitsbergen and the Komi Republic. genus Rasamsonia are also an important component  
There is porcellanite in burnt rock. The most of aeromycota (Frohlich-Nowoisky et al., 2009).  
common minerals were quartz and aluminosilicates  
clay minerals, feldspars, micas). It should be noted the genus Thermoascus. This is a small genus  
that the elemental composition turned out to be represented exclusively by thermophiles  
One of the species identified belonged to  
(
relatively similar in the tips (Table 3).  
(Houbraken et al., 2020). Micromycetes of this  
genus live in mushroom compost, peat, coal tips,  
heated soils, sawdust, found in the air, as well  
as in self-heating hay (Salar, 2018). The highest  
temperature maximum among fungi belongs to  
diScuSSion  
All isolated thermotolerant and thermophilic a representative of the genus Thermoascus (T.  
species from the technogenic ecosystems studied aurantiacus). So, this fungus is able to grow at  
in this work belonged to three genera within 62 °C (Cooney & Emerson, 1964; Stolk, 1965;  
the order Eurotiales: Aspergillus, Rasamsonia, Evans, 1971; Domsch et al., 2007; Salar, 2018).  
and Thermoascus. Two species belonged to the This species is very widespread and has been  
genus Rasamsonia. All species of this genus are found in Australia, Canada, Egypt, Germany,  
characterized as thermotolerant and thermophilic India, Indonesia, Italy, Japan, Jordan, Netherlands,  
(Houbraken et al., 2012). Thus, representatives of Russia, South Africa, United Kingdom, and the  
the genus Rasamsonia were found in coal mining United States. T. aurantiacus lives on various  
sites, residential buildings, peat dumps, compost, substrates: cacao husks, chaff, coal mine soils,  
Fig. 6. Microphotographs (SEM) of rock and the corresponding EDS (energy dispersive X-ray spectra). A:  
Spoil tip from Svalbard. B: Spoil tip with burnt rock from Svalbard. C: Formed spoil tip from Komi Republic.  
D: Spoil tip with burnt rock from Komi Republic. E: Formed spoil tip from Magadan region. F: Spoil tip with  
burnt rock from Magadan region. Scale= 100 μm.  
458  
V. A. Iliushin & I. Y. Kirtsideli - Microfungi of coal mine in the Arctic Circle  
Table 3. Elemental composition of spoil tips. All data expressed as a percentage. Abbreviations= <LOD:  
below the level of detail.  
Formed tip  
Magadan  
region  
Burnt rock  
tip Magadan  
region  
Formed tip  
Svalbard  
Formed tip  
Komi Republic  
Burnt rock  
tip Svalbard  
Burnt rock tip  
Komi Republic  
Mg  
Al  
<0,1  
0,5471  
2,3972  
0,1  
<0,1  
0,9724  
6,2361  
0,1886  
0,4235  
<0,01  
<0,1  
1,6947  
10,1379  
0,2249  
<0,01  
<0,1  
3,3639  
8,8637  
0,5381  
0,3724  
<0,01  
<0,1  
1,3281  
7,6233  
0,225  
<0,1  
1,903  
Si  
7,6642  
0,1644  
1,5838  
<0,01  
P
S
1,867  
0,1347  
<0,01  
Cl  
<0,01  
<0,01  
K
0,1573  
0,776  
0,3426  
0,805  
0,6473  
0,3174  
0,2655  
<0,007  
<0,003  
0,0359  
2,7565  
<0,002  
6,00E-04  
<0,001  
0,0015  
4,00E-04  
0,0054  
<LOD  
0,5369  
1,61  
0,3303  
1,7305  
0,3008  
0,0097  
0,0031  
0,1531  
6,2631  
<0,002  
0,0037  
0,0016  
0,0023  
0,0015  
0,0056  
<LOD  
0,5197  
1,9599  
0,2948  
0,007  
Ca  
Ti  
0,0714  
<0,007  
<0,003  
<0,02  
0,2431  
<0,007  
<0,003  
0,0416  
3,7076  
0,0056  
0,0017  
<0,001  
0,0015  
7,00E-04  
0,0037  
<LOD  
0,5947  
0,0194  
0,0053  
0,0171  
5,5289  
<0,002  
0,0018  
<0,001  
1,00E-03  
0,0012  
0,0171  
<LOD  
V
Cr  
Mn  
Fe  
Co  
Ni  
<0,003  
0,0232  
2,732  
1,6752  
0,0022  
<0,0009  
<0,001  
<0,0008  
<0,0007  
0,0036  
<LOD  
<0,002  
1,00E-03  
<0,001  
0,0021  
6,00E-04  
0,0065  
<LOD  
Cu  
Zn  
As  
Zr  
Mo  
Cd  
Sn  
Sb  
W
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
<LOD  
8,00E-04  
<LOD  
<LOD  
Pb  
Bi  
<LOD  
<LOD  
<LOD  
<LOD  
5,00E-04  
8,00E-04  
3,00E-04  
5,00E-04  
5,00E-04  
0,0015  
9,00E-04  
Light  
elements  
92,4027  
87,0259  
83,9117  
78,5271  
81,8818  
83,1365  
heated hay, mushroom compost, peat, sawdust, are found in a wide variety of habitats, including  
self-heated wood chips, soil, stored grains, tobacco. extreme ecosystems where elevated temperatures  
Our isolate IVA-T11 T. aurantiacus from Svalbard are observed. Thus, fungi of the genus Aspergillus  
is capable of growing at the maximum temperature live in all the above habitats where the species  
recorded for fungi: 62 °C.  
of the genera Thermoascus and Rasamsonia are  
Four isolates within the thermotolerant found, and they have also been found in thermal  
specimens found belonged to two species of the springs, landfills, and bird nests. Fungi of the  
genus Aspergillus (A. spinosus and A. waksmanii). genus Aspergillus are an important component  
It is a widespread and numerous genus, its of the mycobiota of deserts (Sterflinger et al.,  
representatives occupy many ecological niches and 2012; Sklenar et al., 2017). However, there are no  
459  
Bol. Soc. Argent. Bot. 59 (4) 2024  
true thermophilic species among this genus, and including in a substrate with severely degraded  
only thermotolerant ones are found in extreme conditions such as tips of burnt rock. Probably,  
ecosystems (optimum < 45°C) (Kozakiewicz the presence of thermotolerant microfungi  
&
Smith, 1994). Most thermotolerant species depends on the ornithogenic factor. Therefore,  
belong to the Fumigati section. Thus, Aspergillus the largest numbers of isolates were found in  
fumigatus is one of the most common species in the the tips on Svalbard and not a single one in the  
rock of coal dumps in the USA, both on the surface Magadan region. All the microfungi isolated in  
of heated areas of tips and at depths up to 30 cm this work were identified as belonging to the  
(
Tansey & Brook, 1978). All the thermotolerant order Eurotiales. This discovery underscores  
Aspergillus species found in this study belonged the presence of thermotolerant and thermophilic  
to the Fumigati section. One of these species fungi in the challenging environment of the Arctic  
was A. sibiricus, which was isolated from a coal Circle.  
mine in Altai (Russia) (Iliushin, 2022). It should  
also be noted that many species of the Fumigati  
section can be tolerant of other factors besides auThorS conTribuTionS  
high temperature. In particular, A. fumigatus and  
A. sibiricus are able to grow at low pH values (2-3)  
IYK was involved in sampling, VAI isolated  
and are acid tolerant species. Tolerance to various and identified micromycetes. The two authors were  
environmental factors (elevated temperatures and involved in the writing of the manuscript.  
low pH of the medium) allows micromycetes to  
exist in such an extreme ecosystem as a burning  
coal quarry and spoil tips with burnt rocks.  
Previous studies have shown that coal mine  
spoil tips are characterized by low species diversity  
acKnowledgemenTS  
This study was carried out as part of the state  
(Khabibullina et al., 2015; Iliushin & Kirtsideli, assignment according to the thematic plan of  
2
021; Iliushin et al., 2022a, b). At the same time, the Botanical Institute of the Russian Academy  
there is not always a clear pattern of an increase of Sciences (theme No. 124013100829-3). The  
in the number of species to southern latitudes. research was done using equipment of The Core  
Probably, the number of species is influenced by Facilities Center “Cell and Molecular Technologies  
the factor of the area of disturbed territories. The in Plant Science” at the Komarov Botanical Institute  
main source of the introduction of propagules into RAS (St.-Petersburg, Russia) and the St. Petersburg  
technogenic ecosystems is aeromycota (Kirtsideli State University Microscopy and Microanalysis  
et al., 2011). Consequently, the larger the area Resource Center.  
disturbed and the farther the tip is located from  
natural communities, the less likely it is that viable  
propagules will be picked up by the air flow and bibliograPhy  
transferred to technogenic ecosystems. On the other  
hand, besides air transport, invasion of microfungi  
may occur through other means, with anthropogenic  
and ornithogenic factors likely playing a relatively  
significant role (Zhu et al., 2011; Kirtsideli et al.,  
BILAJ, T. I. 1985. Termofil’nye griby i ikh fermentativnye  
svojstva. Nauk. dumka, Kiev. (In Russ.).  
BRAGINA, P. S. 2013. Spontaneous combustion of coal  
dumps in Kemerovo region. Vestnik Kuzbasskoj  
Gosudarstvennoj Pedagogicheskoj Akademii 4: 57-  
64. (In Russ.).  
COONEY, D. G. & R. EMERSON. 1964. Thermophilic  
Fungi: An Account of Their Biology, Activities,  
and Classification. W.H. Freeman and Co, San  
Francisco.  
2
020; Sacramento et al., 2023). In particular, on  
Spitsbergen, where there are many bird colonies,  
one of the main ones will be the ornithogenic factor.  
Another important condition is the composition of  
the rocks of tips. On average, spoil tips with burnt  
rock had fewer species.  
The data obtained indicate the existence of  
thermophilic and thermotolerant microfungi  
thriving within the spoil tips of coal mines,  
DETHERIDGE, A. P., D. COMONT, T. M.  
CALLAGHAN, J. BUSSELL … & G.W.  
GRIFFITH. 2018. Vegetation and edaphic factors  
460  
V. A. Iliushin & I. Y. Kirtsideli - Microfungi of coal mine in the Arctic Circle  
influence rapid establishment of distinct fungal  
communities on former coal-spoil sites. Fungal  
ILIUSHIN, V. A. 2020. First find of Cadophora  
antarctica Rodr.-Andrade, Stchigel, Mac Cormack  
ILIUSHIN, V. A. & I. Y. KIRTSIDELI. 2021. Dynamics  
of complexes of microfungi in the process of  
overgrowing spoil tips of coal mines in the southern  
tundra zone (Komi Republic). Mikol. Fitopatol. 55:  
DOMSCH, K. H., W. GAMS & T. H. ANDERSON.  
2
007. Compendium of soil fungi, 2nd taxonomically  
revised edition by W. Gams. IHW, Eching.  
DUDKA,I.A.,S.P.VASSER&I.A.EHLLANSKAYA.  
1
982. Metody ehksperimental’noj mikologii:  
Spravochnik. Nauk. dumka, Kiev. (In Russ.).  
EGOROVA, L. N. 1986. Pochvennye griby dal’nego  
vostoka. Nauka, Leningrad. (In Russ.).  
EVANS, H. C. 1971. Thermophilous fungi of coal spoil  
tips. II Occurrence, distribution and temperature  
relationships. Trans. Brit. Mycol. Soc. 57: 255-266.  
FROHLICH-NOWOISKY, J., D. A. PICKERSGILL,  
V. R. DESPRES & U. POSCHL. 2009. High  
diversity of fungi in air particulate matter. Proc.  
ILIUSHIN, V. A., I. Y. KIRTSIDELI & D. Y. VLASOV.  
2022a. Diversity of culturable microfungi of coal  
ILIUSHIN, V. A., I. Y. KIRTSIDELI & N. A.  
SAZANOVA. 2022b. Diversity of microfungi of  
coal mine spoil tips in the Magadan Region, Russia.  
Current Research in Environmental & Applied  
ILIUSHIN, V. A. 2022. Aspergillus sibiricus  
(Aspergillaceae, Eurotiales), a novel acid-tolerant  
species in Aspergillus section Fumigati. Phytotaxa  
GODINHO, V. M., L. E. FURBINO, I. F.  
SANTIAGO, F. M. PELLIZZARI … & L. H.  
ROSA. 2013. Diversity and bioprospecting of  
fungal communities associated with endemic and  
1
JOHRI, B. N. & R. P. THAKRE. 1975. Soil amendments  
and enrichment media in the ecology of thermophilic  
fungi. Proc. Indian Natl. Sci. Acad. 41: 564-570.  
KASHKIN, P. N., M. K. KHOKHRYAKOV & A.  
P. KASHKIN. 1979. Opredelitel’ patogennykh,  
toksigennykh i vrednykh dlya cheloveka gribov.  
Medicina. Leningr. otd-nie, Leningrad. (In Russ.).  
KHABIBULLINA, F. M., E. G. KUZNETSOVA  
& A. N. PANYUKOV. 2015. Transformation of  
vegetation, soils, and soil microbiota in the impact  
zone of the coal mine «Vorkutinskaya». Theoretical  
and Applied Ecology 4: 30-37. (In Russ.).  
KIRTSIDELI, I. Y., Y. K. NOVOZHILOV & E. V.  
BOGOMOLOVA. 2011. Microfungi complexes  
in soils developed on basic and ultramafic rocks of  
polar Ural. Mikol. Fitopatol. 45: 513-521. (In Russ.).  
KIRTSIDELI I. Y., D. Y. VLASOV, M. S.  
ZELENSKAYA, V. A. ILIUSHIN … & E. P.  
BARANTSEVICH. 2020. Assessment of  
anthropogenic invasion of microfungi in Arctic  
ecosystems, (exemplified by Spitsbergen  
archipelago). Gigiena i Sanitaria (Hygiene and  
Sanitation, Russian journal) 99: 145-151. (In Russ.).  
KORNIŁŁOWICZ-KOWALSKA, T. & I. KITOWSKI.  
2013. Aspergillus fumigatus and other thermophilic  
HOUBRAKEN, J. & R. A. SAMSON. 2011.  
Phylogeny of Penicillium and the segregation of  
7
HOUBRAKEN, J., H. SPIERENBURG & J. C.  
FRISVAD. 2012. Rasamsonia, a new genus  
comprising thermotolerant and thermophilic  
Talaromyces and Geosmithia species. Antonie van  
HOUBRAKEN, J., S. KOCSUBÉ, C. M. VISAGIE,  
N. YILMAZ … & J. C. FRISVAD. 2020.  
Classification of Aspergillus, Penicillium,  
Talaromyces and related genera (Eurotiales): an  
overview of families, genera, subgenera, sections,  
HUBKA, V., S. W. PETERSON, J. C. FRISVAD,  
T. YAGUCHI… & M. KOLARÝK. 2013.  
Aspergillus waksmanii sp. nov. and Aspergillus  
marvanovae sp. nov., two closely related species  
in section Fumigati. Int. J. Syst. Evol. Microbiol.  
461  
Bol. Soc. Argent. Bot. 59 (4) 2024  
FRANCELINO. 2023. Ornithogenesis and soil-  
landscape interplays at northern Harmony Point,  
Nelson Island, Maritime Antarctica. An. Acad. Bras.  
4
KOZAKIEWICZ, Z. & D. SMITH. 1994. Physiology  
of Aspergillus. In: SMITH, J. E. (ed.), Aspergillus,  
Biotechnology handbooks 7, pp. 23-40. Plenum Press,  
New York.  
LEWIŃSKA, P. & A. DYCZKO. 2016. Thermal digital  
terrain model of a coal spoil tip - A way of improving  
monitoring and early diagnostics of potential  
spontaneous combustion areas. J. Ecol. Eng. 17:  
SALAR, R. 2018. Thermophilic Fungi: Basic Concepts  
and Biotechnological Applications. CRC Press, Boca  
Raton.  
SALUJA, P. & G. S. PRASAD. 2007. Debaryomyces  
singareniensis sp. nov., a novel yeast species isolated  
SALUJA, P., R. K. YELCHURI, S. K. SOHAL, G.  
BHAGAT … & G. S. PRASAD. 2012. Torulaspora  
indica a novel yeast species isolated from coal mine  
SAMSON, R. A., J. HOUBRAKEN, U. THRANE,  
J. C. FRISVAD & B. ANDERSEN. 2010. Food  
and indoor fungi. CBS KNAW Biodiversity Center,  
Utrecht.  
SKLENÁŘ, F., Ž. JURJEVIĆ, P. ZALAR, J. C.  
FRISVAD … & V. HUBKA. 2017. Phylogeny  
of xerophilic aspergilli (subgenus Aspergillus) and  
taxonomic revision of section Restricti. Stud. Mycol.  
STERFLINGER, K., D. TESEI & K. ZAKHAROVA.  
2012. Fungi in hot and cold deserts with particular  
reference to microcolonial fungi. Fungal Ecology 5:  
STOLK, A. C. 1965. Thermophilic species of Talaromyces  
Benjamin and Thermoascus Miehe. Antonie van  
Leeuwenhoek 31: 262-276.  
LIESKE, R. & E. HOFMANN. 1928. Untersuchungen  
über die Mikrobiologie der Kohlen und ihrer  
natürlichen Lagerstätten. Die Mikroflora der  
Steinkohlengruben 9: 282-285. (In Germ.).  
MANAKOV, J. A. & A. N. KUPRIYANOV. 2009.  
Criteria for diagnostics of primary succession stages  
ontherockdumpsofKuzbass. Gorny`jinformacionno-  
analiticheskij byulleten` S7: 186-193. (In Russ.).  
MOUCHACCA, J. 2000. Thermophilic fungi and  
applied research: A synopsis of name changes and  
NENAKHOVA, V. F. 1986. Gorelye porody. In:  
KOZLOVSKIJ, E. A. (ed.), Gornaya ehnciklopediya.  
Tom 2, p. 85. Sovetskaya ehnciklopediya, Moscow.  
(In Russ.).  
O’DONNELL, K. 1993. Fusarium and its near relatives.  
In: REYNOLDS, D. R. & J. W. TAYLOR (eds.),  
The Fungal Holomorph: Mitotic, Meiotic and  
Pleomorphic Speciation in Fungal Systematics, pp.  
2
25-233. CABI Publishing, Wallingford.  
PAN, W. Z., X. W. HUANG, K. B. WEI, C. M. ZHANG  
& K. Q. ZHANG. 2010. Diversity of thermophilic  
fungi in Tengchong Rehai National Park revealed by  
ITS nucleotide sequence analyses. J. Microbiol. 48:  
TANSEY, M. R. & T. D. BROOK. 1978. Microbial  
life at high temperatures: ecological aspects. In:  
KUSHNER, D. J. (ed.), Microbial life in extreme  
environments, pp. 159-216. Acad. Press, London.  
THAKRE, R. P. & B. N. JOHRI. 1976. Occurrence of  
thermophilic fungi in coal mine soils of Madhya  
Pardesh. Curr. Sci. 45: 271-273.  
ULFIG, K. & M. KORCZ. 1995. Isolation of keratinolytic  
fungi from a coal mine dump. Mycopathologia 129:  
83-86.  
WHITE, T. J., T. BRUNS, S. LEE & J. TAYLOR.  
1990. Amplification and direct sequencing of fungal  
ribosomal RNA genes for phylogenetics. In: INNIS,  
M. A., D. H. GELFAND, J. J. SNINSKY & T. J.  
WHITE (eds.), PCR protocols: a guide to methods and  
QUEROL, X., M. IZQUIERDO, E. MONFORT, E.  
ALVAREZ … & Y. WANG. 2008. Environmental  
characterization of burnt coal gangue banks at  
Yangquan, Shanxi Province, China. Int. J. Coal Geol.  
RAPER, K. B. & C. THOM. 1949. A manual of  
the Penicillia. The Williams & Wilkins Company,  
Baltimore.  
SACRAMENTO, I. F., C. E. G. R. SCHAEFER,  
R. G. SIQUEIRA, G. R. CORRÊA … & M. R.  
462  
V. A. Iliushin & I. Y. Kirtsideli - Microfungi of coal mine in the Arctic Circle  
applications, pp. 315-322. Academic Press, London.  
ZHU, R., D. MA, W. DING, B. BAI … & J. SUN.  
2011. Occurrence of matrix-bound phosphine in  
polar ornithogenic tundra ecosystems: effects of  
alkaline phosphatase activity and environmental  
ZAK, J. C. & H. G. WILDMAN. 2004. Fungi in  
stressful environments. In: MUELLER, G. M., G.  
F. BILLS & M. S. FOSTER (eds.), Biodiversity of  
fungi, inventory and monitoring methods, pp. 303-  
3
31. Elsevier Academic Press, Amsterdam.  
463