differential hiStoPathological reSPonSe of PePPer  
Solanaceae) cultivarS to nacobbuS celatuS  
nematoda) PoPulationS  
(
(
reSPueSta hiStoPatológica diferencial de cultivareS de Pimiento  
(Solanaceae) a PoblacioneS de nacobbuS celatuS (nematoda)  
Verónica A. Cabrera¹* , Marcelo E. Doucet² & Paola Lax²*  
Summary  
Background and aims: The false-root knot nematode (Nacobbus spp.) comprises  
1
. Laboratorio de Morfología  
polyphagous species, with pepper (Capsicum annuum) being one of the most  
affected crops. Due to the lack of resistant pepper genotypes, we compared the  
responses of different commercial cultivars to identify possible plant defence  
mechanisms against N. celatus.  
M&M: Nematodes from Río Cuarto (Córdoba Province) and Lisandro Olmos (Buenos  
Aires Province) were inoculated on pepper cultivars: California Wonder (control),  
Fyuco INTA, Yatasto, and Fenomeno RZ. Plants were grown under a greenhouse  
and galls were analysed by histopathological techniques.  
Vegetal. Instituto Multidisciplinario  
de Biología Vegetal (CONICET-UNC),  
Facultad de Ciencias Exactas, Físicas  
y Naturales, Universidad Nacional  
de Córdoba, Córdoba, Argentina  
2
. Instituto de Diversidad y Ecología  
Animal (CONICET-UNC) and Centro  
de Zoología Aplicada, Facultad  
Results: The roots of the commercial cultivars showed the typical morpho-anatomical  
alterations induced by N. celatus: gall formation, hyperplasia reactions, development  
of syncytia in the central cylinder and disorganisation of vascular tissues. Syncytial  
cells in contact with females of nematodes from Lisandro Olmos showed a defence  
reaction by Fyuco INTA, whereas feeding sites in Fenomeno RZ did not denote high  
metabolic activity in nematodes of both origins.  
de Ciencias Exactas, Físicas  
Naturales, Universidad Nacional de  
Córdoba, Córdoba, Argentina  
y
*veronica.cabrera@unc.edu.ar,  
plax@unc.edu.ar  
Conclusions: The different responses observed between populations and/or hosts  
demonstrate the importance of considering nematodes from different geographical  
origins when testing plant material for tolerance and/or resistance to N. celatus.  
Studies of this nature are necessary since they facilitate a more in-depth  
understanding of the parasite-plant interaction.  
Citar este artículo  
CABRERA, V. A., M. E. DOUCET  
&
P. LAX. 2024. Differential  
histopathological response of  
pepper (Solanaceae) cultivars to  
Nacobbus celatus (Nematoda)  
populations. Bol. Soc. Argent. Bot.  
Key wordS  
Capsicum annuum, defence mechanism, false root-knot nematode, histology,  
syncytium.  
5
9: 151-159.  
reSumen  
Introducción y objetivos: El falso nematodo de la agalla (Nacobbus spp.)  
comprende especies polífagas, siendo el pimiento (Capsicum annuum) uno de los  
cultivos más afectados. Debido a la falta de genotipos resistentes del pimiento,  
comparamos las respuestas de diferentes cultivares comerciales para identificar  
posibles mecanismos de defensa contra N. celatus.  
M&M: Nematodos provenientes de Río Cuarto (provincia de Córdoba) y Lisandro  
Olmos (provincia de BuenosAires) se inocularon en cultivares de pimiento: California  
Wonder, Fyuco INTA, Yatasto y Fenomeno RZ. Las plantas se desarrollaron en  
invernadero y las agallas se analizaron mediante técnicas histopatológicas.  
Resultados: Las raíces de los cultivares analizados mostraron las alteraciones morfo-  
anatómicas típicas inducidas por N. celatus: formación de agallas, reacciones de  
hiperplasia, desarrollo de sincitios en el cilindro central y desorganización de los  
tejidos vasculares. Las células sincitiales en contacto con hembras de Lisandro  
Olmos mostraron una reacción de defensa por parte de Fyuco INTA, mientras que  
los sincitios en Fenomeno RZ denotaron baja actividad metabólica en nematodos  
de ambas procedencias.  
Conclusiones: Las diferencias observadas entre las poblaciones y/o hospedadores  
demuestran la importancia de considerar nematodos de diferentes orígenes  
geográficos al analizar material vegetal para determinar su tolerancia y/o resistencia  
a N. celatus. Estudios de esta naturaleza son necesarios ya que facilitan una  
comprensión más profunda de la interacción parásito-planta.  
Recibido: 9 Ene 2004  
Aceptado: 20 May 2024  
Publicado impreso: 30 Jun 2024  
Editora: Ana María Gonzalez  
PalabraS clave  
Capsicum annuum, histología, falso nematodo de la agalla, mecanismo de defensa,  
sincitio.  
ISSN versión impresa 0373-580X  
ISSN versión on-line 1851-2372  
151  
Bol. Soc. Argent. Bot. 59 (2) 2024  
introduction  
previously (Lax et al., 2006, 2016; Gómez-  
Rodríguez et al., 2019), and, in limited situations,  
The genus CapsicumL. belongs to the Solanaceae the histopathology of the interaction was considered  
family and currently includes 43 species; it is native (Moyetta et al., 2007).  
to temperate, subtropical, and tropical regions of  
Argentina is the main pepper producer in South  
the Americas, ranging from the southern United America, with some 6,000 ha under cultivation and  
States to central Argentina and Brazil, with the an annual production of approximately 153,000  
main centre of diversity in the Andes (Barboza et tonnes (FAO, 2022). In the country, nematode  
al., 2022). This genus comprises a diverse group N. celatus (ex N. aberrans) is an important pest  
of sweet and hot peppers, which are consumed for this crop grown in the field and greenhouses.  
by a quarter of the global population (Parvez, To identify potential defence mechanisms of  
2
017). There are five domesticated species, among the plant reaction, we analysed and compared  
which Capsicum annuum L. stands out for being the response of commercially available cultivars  
extensively cultivated worldwide (Barboza et al., [Fyuco INTA, Yatasto, and Fenomeno RZ (resistant  
2
022). to Meloidogyne spp.)], for which the histopathology  
The genus Nacobbus Thorne & Allen, 1944 of the parasite-host interaction is unknown.  
Phylum Nematoda) is native to the American  
(
continent and comprises sedentary endoparasitic  
species of nematodes with polyphagous habits. material and methodS  
Among its wide host range, several species  
belonging to the Solanaceae family are highlighted, Nematode populations and plant material  
being pepper one of the crops that is severely  
Based on its known aggressiveness to pepper, two  
affected (Lorenzo et al., 2001; Manzanilla-López Argentine populations of N. celatus were selected  
et al., 2002; Tordable et al., 2010; Lax et al., 2016, from the localities of Río Cuarto (abbreviation  
2
021). The establishment of the immature female RC, from Córdoba Province) and Lisandro Olmos  
on the host root and the development of its feeding (abbreviation LO, from La Plata, Buenos Aires  
site (syncytium) induce the formation of galls Province). Seeds from commercially available  
(Lax et al., 2022). Because of the great damage cultivars of C. annuum were acquired from the  
they cause to agriculture, the Nacobbus species market; commercial names: Fyuco INTA, Yatasto,  
are of quarantine importance (EPPO, 2024). These and Fenomeno RZ (35-615). According to the  
parasites are known as false root-knot nematodes supplier company, the last cultivar has resistance to  
(
abbreviation FRKN) because the root symptoms RKN species: Meloidogyne incognita, M. javanica,  
are similar to those produced by the Meloidogyne and M. arenaria. California Wonder was also used  
species (root-knot nematodes, abbreviation RKN). as a positive control due to its known susceptibility  
There are no pepper cultivars available that to this nematode (Tordable et al., 2007).  
show a certain degree of resistance to Nacobbus Pepper seeds were germinated in sterile soil. A  
species (Lax et al., 2016; Gómez-Rodríguez et al., completely randomized experimental design was  
019). For this reason, it is of great importance to used with eight plants for each cultivar; single four-  
2
evaluate aspects of the parasite-host interaction leaf stage seedlings were transplanted into pots (20  
in different germplasm, even in cases where the cm long, 4 cm wide) containing sterile soil and  
nematode succeeds in multiplying, since this sand (3:1). The roots were placed on this substrate,  
may reveal patterns of plant defence against the inoculated with 100 second-stage juveniles/1.5  
pathogen. Histology is an efficient resource in ml of water and covered with the substrate. Plants  
infection processes, helping to elucidate penetration developed in a greenhouse (temperature 25 ±  
and colonisation events, and can reveal structural 2 °C; photoperiod 14 h) and were uprooted 60  
host defence mechanisms (Bentes & Matsuoka, days after inoculation. The radical systems were  
2
005; Petitot et al., 2017; Lopes et al., 2020). The washed to remove soil particles, fixed in FAA  
reaction to FRKN infection of different commercial (formalin, glacial acetic acid, ethyl alcohol) for  
and/or experimental pepper lines, some carrying 48 h and transferred to 70% ethyl alcohol. From  
RKN-resistance genes, has been poorly evaluated the different treatments, first-order lateral root  
152  
V. A. Cabrera et al. - Histopathological response of pepper to nematode Nacobbus celatus  
galls of the four cultivars and fragments (1 cm) of  
Differences were observed between populations,  
healthy roots were randomly selected. They were especially with higher development of LO feeding  
dehydrated in an ascending series of ethyl alcohol sites. For that population, the syncytial cells in  
and embedded in Histowax. Cross-sections of 8-10 contact with the anterior region of the female  
µm thick were made with a rotating microtome showed thickened and lignified walls in Fyuco  
and adhered with distilled water to clean slides. INTA (Fig. 2A). In the same cultivar infected  
After 24 h, the inclusion medium was removed by RC, only well-developed but non-functional  
with xylol; the slides were stained with the triple syncytia were found (Fig. 2B) and the presence  
stain (hematoxylin-safranin-permanent green) and of abundant numbers of juveniles in the cortex  
mounted in distyrene, tricresyl phosphate and was also noted (Fig. 2C). In galls induced by the  
xylene (DPX) (Conn et al., 1960; Zarlavsky, 2014). RC population on the three commercial cultivars,  
Observations and photographs were taken with a the development of hyperplastic tissue with  
Carl Zeiss Axiophot microscope equipped with an parenchymatic features in the central cylinder was  
AxioCam HRC camera.  
prominent (Fig. 2C). In Fenomeno RZ, although  
the feeding sites of both populations were highly  
developed, the cytological characteristics did not  
denote great metabolic activity, since they had  
low density in their cytoplasmic content and were  
reSultS  
Healthy roots of all tested pepper cultivars highly vacuolated (Fig. 2D); the most hypertrophic  
exhibited a primary structure, with a normal nuclei were observed in the syncytia related to LO.  
arrangement of the dermal, fundamental, and Table 1 summarizes the main differences observed  
vascular tissue systems. In cross-section, the between the nematode populations and/or the tested  
epidermis was unistratified and the cortex presented commercial cultivars.  
3
-4 layers of parenchyma, with large cells and  
a thin wall. The endodermis and pericycle were  
unistratified, with cells smaller than those in the diScuSSion and concluSionS  
cortex. The metaxylem was located in the centre,  
and phloem groups alternate with protoxylem poles  
Fig. 1A).  
Histopathological studies provide the basis for  
investigating the molecular mechanisms underlying  
(
All commercial cultivars tested, as well as the specific interactions between different pathogen  
positive control, showed galls measuring 2-4 mm genotypes and a particular host genotype (Toulet  
along their long axis, induced by the two N. celatus et al., 2022). Due to the lack of FRKN-resistant  
populations (Fig. 1B), with development of the pepper genotypes, it is important to investigate the  
feeding site (syncytium) in the central cylinder (Fig. response of available cultivars for possible sources  
1
C). The syncytial cells had different shapes, mainly of resistance that can be used as parents for breeding  
isodiametric or elongated. They were hypertrophic programmesorpotentialuseasrootstocks.Ingeneral,  
measuring up to 55 µm along their major axis), the commercial cultivars and the control showed the  
(
with dense or fibrillar cytoplasm containing some root typical morpho-anatomical alterations induced  
vacuoles. The walls were cellulosic, thickened by FRKN in different susceptible hosts, including  
(>5 µm thick) and presented some interruptions, the pepper: gall formation, hyperplasia reactions,  
allowing the confluence of the cytoplasm in the development of syncytia in the central cylinder  
syncytium. Nuclei and nucleoli were hypertrophic; (Moyetta et al., 2007; Tordable et al., 2007), and  
on some occasions, nuclei (1 to 3 per syncytial cell) disorganisation of vascular tissues (Lax et al.,  
exhibited amoeboid contours (Fig. 1D). Xylem 2013; Cabrera et al., 2017; Tordable et al., 2018).  
cells were observed immersed in the syncytium, The main characteristics of the syncytial cells also  
resulting in reduction and fragmentation of the agreed with previous reports for this nematode,  
conductive tissue. The phloem, and sometimes also including thickened and interrupted cellulose walls,  
the xylem, was displaced towards the periphery due dense and/or vacuolised cytoplasm, as well as  
to the presence of the syncytium and the nematode hypertrophic nuclei, and nucleoli (Vovlas et al.,  
female (Fig. 1E-F).  
2007; Tordable et al., 2010; Cabrera et al., 2017).  
153  
Bol. Soc. Argent. Bot. 59 (2) 2024  
Fig. 1. Histopathological response of pepper, Capsicum annuum, cultivars to the nematode Nacobbus  
celatus from Río Cuarto (RC) and Lisandro Olmos (LO) localities. A: Healthy root; California Wonder. B:  
Root system with galls, egg masses are marked with arrows; California Wonder-LO. C: Gall cross-section  
containing the female nematode and syncytium; Fyuco INTA-LO. D: Detail of the syncytial cells; single  
arrows indicate interruptions in cell walls; Fyuco INTA-LO. E: Xylem reduction and fragmentation; Yatasto-  
LO. F: Phloem displacement and disorganisation; Yatasto-RC. Abbreviations= c: cortex; e: endodermis; g:  
gall; hy: hyperplastic tissue; n: nucleus; ne: nematode female; nu: nucleolus; p: phloem; sy: syncytium; x:  
xylem. Scale bars= A: 100 µm; B: 1.5 mm; C: 10 µm; D-F: 100 µm.  
154  
V. A. Cabrera et al. - Histopathological response of pepper to nematode Nacobbus celatus  
Fig. 2. Histopathological response of pepper, Capsicum annuum, cultivars to the nematode Nacobbus celatus  
from Río Cuarto (RC) and Lisandro Olmos (LO) localities. A: Syncytial cells with thickened and lignified  
walls (marked with arrow) around the nematode; Fyuco INTA-LO. B: Well-developed but non-functional  
syncytium; Fyuco INTA-RC. C: Nematode juveniles in the gall cortex and hyperplastic tissue; Fyuco INTA-  
RC. D: Syncytium with low metabolic activity; Fenomeno RZ-RC. Abbreviations= hy: hyperplastic tissue; j:  
juveniles; ne: nematode female; sy: syncytium; x: xylem. Scale bars= A-D: 100 µm.  
Table 1. Main histopathological characteristics observed in commercial pepper, Capsicum annuum,  
cultivars parasitised by two Nacobbus celatus populations.  
Nematode population/Pepper cultivar  
Histological response  
Río Cuarto  
Lisandro Olmos  
Thickened and lignified cell walls associated with females  
Well developed but non-functional syncytia  
Juveniles in the cortex  
-
Fyuco INTA  
Fyuco INTA  
Fyuco INTA  
-
-
Hyperplastic tissue in central cylinder  
Syncytia with low metabolic activity  
Fyuco INTA, Yatasto, Fenomeno RZ  
Fenomeno RZ  
-
Fenomeno RZ  
155  
Bol. Soc. Argent. Bot. 59 (2) 2024  
The syncytial feeding sites produced by tomato cultivars marketed, as “nematode resistant”  
Nacobbus species closely resemble those induced (without specifying the genus and/or species),  
by cyst nematodes (abbreviation CN) and differ cell thickening was also observed in the syncytial  
significantly from the giant cells induced by RKN and parenchyma cell walls surrounding N. celatus  
(Eves-van den Akker et al., 2014). In CN, the flow females, differing from a susceptible cultivar tested  
of solutes from the xylem vessels is a limiting factor (Cabrera et al., 2017). In infections with other plant-  
for feeding site efficiency; for that reason, contact parasitic nematode species, secondary thickening  
and connection with the xylem vessels are crucial of the cell walls surrounding the parasite and egg  
for their development. The developing syncytia masses has also been reported as a defence reaction  
are initially isolated and rely on transport proteins of the plant (Rosso et al., 2004; Hernández-López  
for nutrients but then simplasmically connect to et al., 2006; Lomelí-Rosario et al., 2009).  
the nutrient-dense phloem (Levin et al., 2020). In  
Another difference between populations  
FRKN, the initial syncytial cell undergoes local wall observed at Fyuco INTA was the detection of  
dissolution, and its protoplast fuses with those of the abundant juveniles in the gall cortex and large, non-  
neighbouring cells, which are then incorporated into functional syncytia in plants parasitised by RC. The  
the syncytium (Eves-van den Akker et al., 2014). presence of non-functional syncytia may indicate  
An unusually high frequency of plasmodesmata a faster invasion and multiplication of individuals  
between syncytial cells and neighbouring phloem from the population on this host; the juveniles  
elements was also reported in the Nacobbus genus found in the gall cortex would correspond to a  
(Jones & Payne, 1977). Our results confirm that new re-infection in the roots from the egg masses.  
the feeding sites induced by N. celatus maintain This could be explained by the fact that the RC  
close contact mainly with the xylem but also with population has a higher degree of aggressiveness,  
the phloem. In addition, it was observed that they being able to evade or suppress the Fyuco INTA  
incorporate xylem vessels, such as reported in other defence response observed at the histopathological  
Solanaceae species parasitised by FRKN, as the level in LO. It would be interesting to conduct  
tomato (Solanum lycopersicum L.) and the potato further studies to understand the molecular and  
(S. tuberosum L.) (Tordable et al., 2010, 2018). cellular mechanisms involved in host-specific  
This could support parasite development and/ resistance against different N. celatus populations  
or contribute to maintaining high turgor pressure on the same host.  
within the syncytia (Levin et al., 2020).  
Moyetta et al. (2007) evaluated the  
Although all tested peppers were efficient hosts histopathology of commercial and experimental  
for both N. celatus populations, histopathological pepper cultivars with resistance genes against  
studies in some cases revealed differences either RKN infected by N. celatus. However, no morpho-  
between the populations or between cultivars. anatomical evidence indicating any degree of  
Fyuco INTA infected with RC showed syncytial tolerance or resistance was found. According to the  
cells with cellulose walls surrounding the supplier, Fenomeno RZ carries resistance to RKN.  
nematodes. However, this cultivar parasitised In rice, Oryza glaberrima Steud., lines resistant to  
by LO showed thickened and lignified syncytial M. graminicola (Petitot et al., 2017) and cowpea,  
cell walls associated with the anterior region Vigna unguiculata (L.) Walp., carrying the Rk  
of the females, evidencing a defensive reaction gene with resistance to RKN (Das et al., 2008),  
by the plant. Lignification and suberisation are highly vacuolated feeding sites (giant cells) with  
host responses that stop and prevent infection of low cytoplasmic density were observed, indicating  
plant tissues (Lomelí-Rosario et al., 2009). The low metabolic activity compared to feeding sites  
defence response detected by histopathology for of susceptible cultivars. The same characteristics  
LO is reflected in the lower multiplication rate were observed in Fenomeno RZ, which could be  
(Reproduction Factor: abbreviation RF) previously attributed to its resistance to RKN. Despite this, it  
observed, compared to the control (RF Fyuco was still able to provide the necessary nutrients for  
INTA LO= 20.4; RF California Wonder= 37.9) and the development of N. celatus, as high RF values  
the RC population (RF Fyuco INTA LO= 20.4; have previously been observed for both populations  
RF Fyuco INTA RC= 41.5) (Lax et al., 2016). In multiplied on this cultivar (Lax et al., 2016).  
156  
V. A. Cabrera et al. - Histopathological response of pepper to nematode Nacobbus celatus  
In the present work, the variability in the response  
of the same population to different pepper cultivars  
and histopathological differences between populations  
of FRKN were demonstrated. This highlights the  
SCALDAFERRO. 2022. Monograph of wild and  
cultivated chili peppers (Capsicum L., Solanaceae).  
importance of considering nematodes from different BENTES, J. L. S & K. MATSUOKA. 2005. Histologia da  
geographical origins when screening plant material  
interação Stemphylium solani e tomateiro. Fitopatol.  
for tolerance and/or resistance (Lax et al., 2006,  
2011). Given the limited records of FRKN-resistant  
germplasm, not only in the pepper but also in the CABRERA, V. A., N. DOTTORI & M. E. DOUCET.  
tomato and the potato (Lax et al., 2022), the densities  
of the nematode in the soil are increasing, making its  
management more complicated. Histopathological  
studies facilitate a deeper understanding of the  
nematode-plant interaction, elucidating the behaviour  
2017. Histopathology of roots of three tomato  
cultivars infected with two separate isolates of the  
false root-knot nematode Nacobbus aberrans. Eur.  
and development of the parasite on the host, as well CONN, H. J., M. A. DARROW & V. M. EMMEL.  
as differences in plant response to different nematode  
1960. Staining procedures. Williams Wilkins Co.,  
populations.  
Baltimore.  
DAS, S., D. A. DEMASON, J. D. EHLERS, T. J.  
CLOSE & P. A. ROBERTS. 2008. Histological  
characterization of root-knot nematode resistance in  
cowpea and its relation to reactive oxygen species  
author contributionS  
PLand VC designed the experience. VC made the  
figures. All authors participated in the elaboration  
of the manuscript.  
EPPO (European and Mediterranean Plant Protection  
Organization). 2024. EPPO A1 list of pests  
January 2024]  
acKnowledgementS  
We thank Dr. M. del C. Tordable (Universidad  
Nacional de Río Cuarto) for technical support in the EVES-VAN DEN AKKER, S., C. J. LILLEY, E. G.  
processingofplantmaterialforhistologicalsections.  
This work was financially supported by the Agencia  
Nacional de Promoción Científica y Tecnológica  
DANCHIN, C. RANCUREL, …, & J. T. JONES.  
2014. The transcriptome of Nacobbus aberrans  
reveals insights into the evolution of sedentary  
endoparasitism in plant-parasitic nematodes.  
(
Préstamo BID, PICT 2020 Nº 1342) and the  
Consejo Nacional de Investigaciones Científicas y  
Técnicas (CONICET, PIP 11220200101685).  
FAO. 2022. FAOSTAT: Cultivos y productos de  
faostat/es/#data/QCL [Accessed: 9 January 2024]  
HERNÁNDEZ-LÓPEZ, J., A. TOVAR-SOTO,  
A. CARVAJAL-SANDOVAL & R. TORRES-  
CORONEL. 2006. Alteraciones anatómicas  
inducidas por Cactodera galinsogae (Nemata:  
Heteroderinae) en miembros de Asteraceae.  
Polibotánica 22: 1-8.  
Primary reSearch data  
The authors declare that they are aware of  
law no. 26899/2013 and commit to making the  
primary data available in the repositories of their  
institutions.  
JONES, M. G. & H. L. PAYNE. 1977. The structure of  
syncytia induced by the phytoparasitic nematode  
Nacobbus aberrans in tomato roots, and the possible  
bibliograPhy  
BARBOZA, G. E., C. C. GARCÍA, L. DE BEM  
BIANCHETTI, M. V. ROMERO  
& M.  
157  
Bol. Soc. Argent. Bot. 59 (2) 2024  
LAX, P., M. E. DOUCET, R. BRAGA & R. GIORIA.  
spp. for Meloidogyne incognita resistance and  
histopathological characterization of a near immune  
2
006. Response of different pepper varieties to the  
attack by two populations of Nacobbus aberrans.  
Nematol. Bras. 30: 259-265.  
LAX, P., J. C. R. DUEÑAS, N. B. CORONEL, C. N.  
GARDENAL, ..., & M. E. DOUCET. 2011. Host  
range study of Argentine Nacobbus aberrans sensu  
Sher populations and comments on the differential  
MANZANILLA-LÓPEZ, R. H., M. A. COSTILLA, M.  
DOUCET, J. FRANCO, …, & K. EVANS. 2002. The  
genus Nacobbus Thorne & Allen, 1944 (Nematoda:  
Pratylenchidae): systematics, distribution, biology  
and management. Nematropica 32: 149-228.  
MOYETTA, N., P. LAX, R. BRAGA, R. GIORIA  
& M. DOUCET. 2007. Histopatología en raíces  
de cultivares experimentales y comerciales de  
pimiento (Solanaceae) atacados por una población  
de Nacobbus aberrans (Nematoda: Tylenchida)  
procedente de Catamarca. Kurtziana 33: 39-47.  
PARVEZ, G. M. 2017. Current advances in  
pharmacological activity and toxic effects of various  
Capsicum species. Int. J. Pharm. Sci. Res. 8: 1900-  
LAX, P., J. C. R. DUEÑAS, D. RAMOS, M. E.  
DOUCET, R. BRAGA & R. KOBORI. 2016. Host  
suitability of peppers to the false root-knot nematode  
LAX, P., R. E. GONZALEZ‐ITTIG, J. C. RONDAN  
DUEÑAS, A. J. ANDRADE, …, & M. E. DOUCET.  
2
021. Decrypting species in the Nacobbus aberrans  
(
Nematoda: Pratylenchidae) complex using  
LAX, P., M. A. PASSONE, A.G. BECERRA, A. L.  
SOSA, …, & L. C. ROSSO. 2022. Sustainable  
strategies for management of the “false root-knot  
nematode” Nacobbus spp. Front. Plant Sci. 13:  
PETITOT,A. S.,T. KYNDT, R. HAIDAR,A. DEREEPER  
& D. FERNANDEZ. 2017. Transcriptomic and  
histological responses of African rice (Oryza  
glaberrima) to Meloidogyne graminicola provide  
new insights into root-knot nematode resistance in  
monocots. Ann. Bot. 119: 885-899.  
LAX, P., M. TORDABLE, J. MACAGNO, P. BIMA &  
M. E. DOUCET. 2013. Response of different potato  
cultivars to the presence of Nacobbus aberrans.  
Nematropica 43: 83-90.  
LEVIN, K. A., M. R. TUCKER, D. M. BIRD & D.  
E. MATHER. 2020. Infection by cyst nematodes  
induces rapid remodelling of developing xylem  
https://doi.org/10.1093/aob/mcw256  
ROSSO, L., A. DE CANDIA, P. LEONETTI & A.  
CIANCIO. 2004. Alteraciones histopatológicas  
causadas por Meloidogyne incognita en almendro  
(Prunus amygdalus). Nematropica 34: 257-261.  
TORDABLE, M. D. C., A. J. ANDRADE, M. E.  
DOUCET & P. LAX. 2018. Histopathology of  
Andean Potato (Solanum tuberosum Andigenum  
group) varieties parasitized by the false root-knot  
nematode, Nacobbus aberrans. Braz. J. Biol. 78:  
LOMELÍ-ROSARIO, M. G., A. CARVAJAL-  
SANDOVAL, R. TORRES-CORONEL, J. M.  
HERNÁNDEZ- LÓPEZ & A. TOVAR-SOTO.  
TORDABLE, M. D. C., P. LAX & M. E. DOUCET. 2007.  
Histopatología de raíces de pimiento y remolacha  
atacadas por dos poblaciones del nematodo fitófago  
Nacobbus aberrans de Córdoba. En: VI Encuentro  
Nacional Científico Técnico de Biología del suelo. VI  
Encuentro sobre Fijación Biológica del Nitrógeno.  
Universidad Nacional de Río Cuarto Río Cuarto.  
TORDABLE, M. D. C., P. LAX, M. E. DOUCET, P.  
BIMA, … & L. VARGAS. 2010. Respuesta de  
raíces de diferentes plantas a la presencia del falso  
nematodo agallador Nacobbus aberrans. Russ. J.  
Nematol. 18: 31-39.  
2
009. Alteraciones anatómicas e histológicas  
inducidas por Meloidogyne incognita (Nematoda:  
Heteroderidae) en raíces del arbusto urbano arrayán  
(
Buxus sempervirens L.). En: ORTEGA REYES,  
J., J. E. SEDEÑO DÍAZ & E. LÓPEZ LÓPEZ  
eds.), Setenta y cinco años de la Escuela Nacional  
(
de Ciencias Biológicas, pp. 304-311. Instituto  
Politécnico Nacional, México.  
LOPES, C. M. L., N. D. SUASSUNA, J. E. CARES, A.  
C. M. M. GOMES, …, & R. M. D. G. CARNEIRO.  
2
020. Marker-assisted selection in Gossypium  
158  
V. A. Cabrera et al. - Histopathological response of pepper to nematode Nacobbus celatus  
TORDABLE, M. D. C., P. LAX, M. E. DOUCET, O.  
LUQUE & N. ROJAS. 2010. Histopathological  
study in Salsola kali roots infected by Nacobbus  
aberrans. Nematropica 40: 105-110.  
TOULET, M. L., D. A. NEIRA, M. ESCOBAR, E.  
M. PARDO, …, & N. R. CHALFOUN. 2022.  
Morphological and pathogenic characterization of  
Corynespora cassiicola isolates reveals specific  
genotypic interactions in soybean. Plant Pathol. 71:  
VOVLAS, N., A. I. NICO, F. DE LUCA, C. DE  
GIORGI & P. CASTILLO. 2007. Diagnosis and  
molecular variability of an Argentinean population  
of Nacobbus aberrans with some observations on  
histopathology in tomato. J. Nematol. 39: 17-26.  
ZARLAVSKY, G. 2014. Histología Vegetal. Técnicas  
simples y complejas. Sociedad Argentina de  
Botánica, Buenos Aires.  
159