How well do treeS fit tHe city? leSSonS from an  
urban tree Survey in córdoba, argentina  
¿
Qué tan bien Se ajuStan loS árboleS a la ciudad? reSPueStaS  
a Partir de un relevamiento de arbolado urbano en córdoba,  
argentina  
1
& Ana Calviño  
Giovana M. Galfrascoli * , Gabriel Bernardello  
Summary  
Background and aims: Urban tree composition is generally highly diverse and largely  
non-native in origin. Species selection, however, should consider not only future  
predicted climate and species’ environmental requirements, but also the regional  
invasion risk assessments and the respiratory health potential of species. Here, we  
assessed the suitability of the most frequent urban tree species by using available  
online databases.  
M&M: Suitability was assessed by analysing tree attributes in relation to their invasive  
status in the study area, the respiratory health potential of the species given by their  
known pollination strategy and the bioclimatic match of species with the plantation zone.  
We grouped species according to their nativeness as non-native, regionally native and  
local native. After filtering those with undesirable characteristics (i.e., invasive species  
and/or with anemophilous pollination strategy) we analysed three bioclimatic variables:  
annual temperature, annual precipitation and precipitation seasonality.  
1
. Instituto Multidisciplinario  
de Biología Vegetal (CONICET-  
Universidad Nacional de Córdoba),  
Córdoba, Argentina  
2
. Facultad de Ciencias Exactas,  
Físicas y Naturales, Universidad  
Nacional de Córdoba, Argentina  
*giovanagalfrascoli@gmail.com  
Citar este artículo  
G A L F R A S CO L I, G. M., G.  
BERNARDELLO & A. CALVIÑO.  
Results: Results showed that the composition of Córdoba’s street trees is heavily biased  
towards non-native species, many of which are invasive, have an anemophilous  
pollination strategy and/or exhibit high bioclimatic mismatch. In addition, the strong bias  
in the current tree composition towards species from more humid, temperate regions  
is evident.  
2
023. How well do trees fit the  
city? lessons from an urban tree  
survey in Córdoba, Argentina. Bol.  
Soc. Argent. Bot. 58: 561-572.  
Conclusions: Our results highlight the importance of revising current policy decisions to  
adjust urban tree flora in the face of climate change.  
Key wordS  
Anemophilous pollination, invasive species, nativeness, policy making, urban forestry.  
reSumen  
Introducción y objetivos: La composición del arbolado urbano suele ser muy diversa  
y en gran medida de origen no nativo. Sin embargo, la selección de especies debe  
tener en cuenta no sólo el clima previsto en el futuro y los requisitos ambientales  
de las especies, sino también las evaluaciones regionales del riesgo de invasión y  
el potencial perjuicio para la salud respiratoria. Aquí evaluamos la idoneidad de las  
especies arbóreas urbanas más frecuentes utilizando bases de datos de libre acceso.  
M&M: La idoneidad se evaluó analizando los atributos de los árboles en relación  
con su estatus invasor en la zona de estudio, el potencial perjuicio para la salud  
respiratoria dado por la estrategia de polinización de las especies y la correspondencia  
bioclimática de las especies con la zona de plantación. Agrupamos las especies según  
su origen como no nativas, nativas regionales y nativas locales. Tras filtrar aquellas  
con características indeseables (especies invasoras y/o anemófilas) analizamos tres  
variables bioclimáticas: temperatura anual, precipitación anual y estacionalidad de las  
precipitaciones.  
Resultados: La composición del arbolado de Córdoba está fuertemente sesgada hacia  
especies no nativas, muchas de las cuales son invasoras, tienen una estrategia de  
polinización anemófila y/o presentan un elevado desajuste bioclimático. Además, es  
evidente el fuerte sesgo de la composición arbórea actual hacia especies procedentes  
de regiones más húmedas y templadas.  
Recibido: 5 Sep 2023  
Aceptado: 2 Nov 2023  
Publicado impreso: 22 Dic 2023  
Conclusiones: Nuestros resultados ponen de manifiesto la importancia de revisar las  
decisiones políticas actuales para ajustar la flora arbórea urbana frente al cambio climático.  
Editora: Natalia Aguirre Acosta  
PalabraS clave  
Elaboración de políticas, especies invasoras, origen nativo, polinización anemófila,  
silvicultura urbana.  
ISSN versión impresa 0373-580X  
ISSN versión on-line 1851-2372  
561  
Bol. Soc. Argent. Bot. 58 (4) 2023  
introduction  
and adaptive traits that help them cope with local  
environmental stresses, which are particularly  
Trees are recognized as key elements of important in arid and semi-arid environments (de  
urbanized landscapes given the valuable ecosystem Carvalho et al., 2022) avoiding waste of water by  
services provided by tree cover in cities around the irrigation (Roman et al., 2021). This, however,  
world. Temperature regulation, runoff control, does not guarantee their full adaptation to future  
carbon sequestration, wildlife sheltering and floral conditions challenging tree planning in the face  
reward for pollinators are a few examples of the of the current rapid climate change (Davis &  
environmental benefits provided by trees (Bates et Shaw, 2001). Moreover, urban systems can trigger  
al., 2011; Roy et al., 2012; Willis & Petrokofsky, different responses for both native and non-native  
2
017). They also provide important social (i.e., species than those registered for other ecosystems  
enhancing quality of urban life), economic (i.e., (e.g., Moser et al., 2017; Smith et al., 2019).  
energy saving), health (i.e., reducing stress), While recognising this range of possibilities,  
aesthetic and cultural benefits (i.e., a sense of the benefits of native trees stand out, and are  
place and identity) (reviewed in Priego-González especially important for biodiversity conservation,  
&
Breuste, 2008; Roy et al., 2012). A remarkable ecosystem integrity and for people (de Carvalho  
aspect is that urban tree composition is highly et al., 2022).  
diverse and largely non-native in origin (Nagendra Planting trees is one of the most feasible  
Gopal, 2011; Sjöman et al., 2012; Freire Moro actions within cities to increase urban greenery  
&
et al., 2014), mainly because of early decisions and the optimal species selection is crucial for  
on urban forestry or due to citizen´s own choices. optimizing urban green infrastructure (Roman et  
Nevertheless, given the potential of urban areas al., 2021) and scaling up their benefits (reviewed  
for biodiversity conservation, the selection of in Ferrini et al., 2020). However, the selection of  
plant species for urban green infrastructure has tree species is not a simple task given that it might  
become a widely discussed topic nowadays consider and weight multiple criteria, according  
(
reviewed by Farrell et al., 2022). Tree species to concrete objectives expressed at the beginning  
selection strategies are usually pulling in opposite of any design and intervention. For instance, tree  
directions, from the ‘natives are best’ to the ‘right species should be chosen not only depending  
tree in the right place’ assumptions (e.g., Fontaine on their planting sites but also balancing the  
&
Larson, 2016; Grant, 2016; Roman et al. 2021) advantages and disadvantages related to both,  
often disregarding how local the final planning their expected performance and the multiple  
decisions are. Recent evidence of the effects benefits they provide for the human and non-  
of plants’ origin on urban ecosystem function, human beings in the city. Among these criteria, the  
combined with local survey data can be used to climatic match between species’ environmental  
shed light on how much current urban trees fit a requirements and actual or predicted climate  
given city, and to further improve urban planning.  
for the city has been widely used (reviewed in  
Increasing evidence points to the multiple Farrell et al., 2022). This approach, however, has  
benefits derived from the presence of native usually been applied irrespectively of the species  
vegetation within urbanized communities origin (i.e., not considering species’ native range)  
(
reviewed in Berthon et al., 2021 and de Carvalho (Roloff et al., 2009; Yang, 2009; Sjöman et al.,  
et al., 2022). Native vegetation has been shown to 2016). One drawback of this approach is that  
be better for climate change mitigation, nutrient some non-native species are prone to invasion  
cycling regulation, soil stability and native animal (Roman et al., 2021) or even more, have become  
diversity than non-native species (Berthon et al., successful invaders out-side their native range.  
2
021; de Carvalho et al., 2022). Fostering native Therefore, they should be subject to special  
vegetation can even be highly synergistic as scrutiny when considering them as candidate  
community-level insect abundance and ecological urban trees. In addition, the allergenic potential  
interactions can be simultaneously promoted (e.g., of urban tree pollen has been little considered  
Fenoglio et al., 2023; Calviño et al., 2023). In in the past but requires special attention since  
addition, native species possess great plasticity pollen allergy is one of the most widespread  
562  
G. M. Galfrascoli et al. - How well do trees fit the city?  
diseases in urban populations (reviewed by cities, despite the large non-native forestry history  
Cariñanos & Caseres, 2011). Pollen release and the major relevance of trees to increase native  
during the pollination period affects human flora within urban areas, there has been little  
health, prompting an allergic response in around attention on them. Punctually, a few municipalities  
3
0-40% of the world population (Bousquet et have developed preliminary assessments of  
al., 2008; Pawankar et al., 2011). Databases that their tree composition (e.g., https://www.rosario.  
summarize tree data on invasive species, their gob.ar/inicio/arbolado-publicoand Buenos Aires:  
allergenic potential and climatic match are needed data available in https://data.buenosaires.gob.ar/  
especially in regions with so many records of tree dataset/arbolado-publico-lineal). Between 2017  
invasions like South America (Giorgis & Tecco, and 2019, the city council of Córdoba developed  
2
014; Richardson et al., 2014). They will also a virtual platform to share information about a  
contribute to improving decision making on the preliminary urban tree inventory, which was used  
identity of the tree species to be implanted in here as a baseline for identifying common street  
urban areas. In Argentina, most of the invasive tree species.  
trees were introduced for ornamental or forestry  
The aim of this study was to characterize and  
purposes (i.e., 70 recognized invasive tree species compare the suitability of the current urban tree  
in http://www.inbiar.uns.edu.ar/), and even some species in relation to their nativeness status. For  
native species from humid regions are becoming the purpose of this paper we decided to narrow  
invasive in semi-arid areas of the country (Giorgis the nativeness status into three groups (but see  
&
Tecco, 2014). Therefore, the invasive status Lemoine&Svenning2022forbroaderdefinitions):  
of urban trees should be a matter of concern, non-native (i.e., species with no biogeographic  
especially for policy makers. history in the area), regionally natives (i.e.,  
The relentless urban sprawl adds to the extensive species with a regionally biogeographic history)  
modifications that agriculture and livestock and local natives (i.e., species with a local  
farming have made to the land surface over the last biogeographic history). Suitability was assessed  
half-century. Under this scenario, and considering by analysing tree attributes in relation to their  
that the global growth rate of urban lands was invasive status in the study area, the respiratory  
higher than the population growth rate over the health potential of the species given by their  
last 30 years -which is, in turn, consistently known pollination strategy and the bioclimatic  
positive- (Liu et al., 2020), it is imperative to match of species with the plantation zone.  
consider urban green infrastructure in a functional  
way (Tan, 2017). Given the strong negative effect  
of urbanization in native plant species richness materialS and metHodS  
(
reviewed in Hou et al., 2023) and the great  
potential of urban habitats to contribute with Study system  
native species conservation (Xing et al., 2017),  
Córdoba city in central Argentina (31°20’ S,  
planning urban tree composition would benefit 64°10’ W, elevation 440 m a.s.l.) has a subtropical  
from nativeness. This is especially meaningful climate with dry winters (Cwa under the Köppen-  
in places with a strong colonial imprint on Geiger classification system) (Peel et al., 2007).  
urban forestry (i.e. prevalence of non-native Two phytogeographic provinces, Chaco and  
plants) like America, since urban trees are part Espinal, converge on it (Luti et al., 1979; Kopta,  
of an inherited landscape (Roman et al., 2018). 1999; Oyarzabal et al., 2018). Córdoba has  
Therefore, recognizing the role of local socio- undergone an accelerated urbanization process  
political history in the urban tree stock is crucial (Grifone, 2014) characterized by a diffuse growth  
and incorporating this view into current forestry beyond the city edges. As a consequence, an  
decisions is paramount if a more native future is accelerated metropolitanisation is taking place  
sought. A first step in planning any intervention to hold the growing population (Marengo et al.,  
2
is to know the current species composition of a 2006). The city covers an area of 576 km and has  
city’s tree stock, which is unknown in many South a population of 1,565,112 inhabitants (INDEC,  
American cities. As an example, in Argentinian 2023).  
563  
Bol. Soc. Argent. Bot. 58 (4) 2023  
Species selection and characterization  
Species original ranges: the selection of  
The above-mentioned virtual platform has been geographical coordinates  
developed to share information about urban trees.  
Thirty spatial coordinates for each species were  
It includes common names, location, structural selected from available databases and floras, to  
problems, phytosanitary status, and missing trees. obtain a representative sample of coordinates from  
A table with 22700 records located at the urban species´ native distribution range (Supplementary  
core was downloaded and it was used for the material: Tables S2 and S3). We opted to use 30  
selection of target species. The scientific names coordinates per species to balance the sampling  
of the target species were assigned by the authors. as some species barely reached this number while  
The available dataset was downloaded from others far exceeded it. Geographic coordinates  
https://gobiernoabierto.Córdoba.gob.ar/arbolado from the native range of each species were  
(
accesed date:11/5/2018). Unfortunately, this obtained from GBIF (https://www.gbif.org) using  
preliminary survey was interrupted in 2018 before the occ_search and filter functions of the rgbif  
completing the entire sampling. Of the total package (Chamberlain & Boettiger, 2017) from  
number of species, we considered only those with uploaded accessions’ information. For simplicity  
at least 100 trees, i.e., 26 species, as indicators in citations Catalogue ID were listed instead of  
of the most frequent ones. The selected species DOI or URL of each specimen used (Table S3).  
were then categorized by their origin (see Table For central Córdoba ten geographic coordinates  
S1). The native/non-native status of each species that encompass the capital and nearby smaller  
was determined by regional and local floras after cities (e.g., Carlos Paz, Alta Gracia) and their  
Pyšek et al. (2004), within a biogeographical surroundings were defined. That is, the two  
perspective.  
biogeographical provinces that converge in the  
Then, species were categorized as invasive city were represented. Ten coordinates were used  
or non-invasive according to Giorgis & Tecco instead of thirty because the area to be sampled was  
(
2014). Schinus areira is a special case as its considerably smaller than the species’ distribution  
native status depends on the time scale used. This ranges. By projecting the coordinates on a map,  
species is an example of an historic introduction we visually inspect that the selected ones were  
(
sensu Lemoine & Svenning, 2022) from Peru uniformly spread over the native range of each  
in pre-colonial times (Demaio et al., 2002). Here species.  
we decided to consider S. areira as a native tree.  
The respiratory health potential of the species was Bioclimatic parameters  
inferred by the pollination strategy of species (i.e.,  
Three bioclimatic parameters were chosen:  
anemophilous or entomophilous). Respiratory mean annual temperature, mean annual  
allergy caused by allergens contained in pollen precipitation, and mean precipitation seasonality.  
grains is called pollinosis, and is one of the most We chose mean annual temperature given the joint  
frequent allergic diseases (Alfaya Arias, 2002). effect of the ‘heat island effect’ and greenhouse  
Central Argentina is severely affected by seasonal gas emissions on urban temperature (McPherson  
pollinosis and in Córdoba in particular, about et al., 2018). It is worth mentioning that the aim  
8
0% of atmospheric pollen comes from urban of this study was not to assess urban heat island  
trees (Ramon et al., 2020), with a consequent effects per se, but to provide an overview of a  
negative impact on public health. Pollinosis is possible climate decoupling between species’  
most frequent with pollen from anemophilous original environments and planting areas. In  
plants that pollinate by releasing and dispersing addition, a validation test with an independent  
pollen into the air (Nitiu et al., 2019). Thus, dataset of measured temperature and precipitation  
anemophilous species were treated here as records across Europe found that annual mean  
potentially high allergenic and entomophilous as temperature series dataset of the WorldClim  
not allergenic. Given that ambophilous trees were shows good reliability for the period 1961-  
very sporadic, and their floral characteristics are 1990 (Marchi et al., 2019). Regarding annual  
quite more consistent with biotic pollination, they precipitation, predictions of WorldClim were less  
were treated as entomophilous.  
accurate but also more difficult to estimate than  
564  
G. M. Galfrascoli et al. - How well do trees fit the city?  
those of mean annual temperature (Marchi et al., replacement from the observations). For the  
2
019). Nevertheless, Roloff et al. (2009) already analysis, species were filtered by their invasive  
used annual precipitation to evaluate species’ status and pollination strategy so that only non-  
suitability in urban areas. In addition, mean annual invasive entomophilous-pollinating species would  
temperature and precipitation were widely used to remain. After that, species were grouped by  
explain species occurrence through environmental their origin as: Non-natives, Regionally natives  
gradients (e.g., Cabido et al., 2018; Zeballos et al., (i.e., natives from Argentina without natural  
2
020). Lastly, we chose precipitation seasonality distribution in Córdoba) and Local natives (i.e.,  
because rainfalls are concentrated in summer and natives from Argentina with natural distribution  
it has been shown that precipitation seasonality in Córdoba). Then, all species within each group  
and temperature are the main climatic constraints were pooled and contrasted against Córdoba. If  
for vegetation in Córdoba (Matteucci, 2018). the confidence interval includes zero, there is  
Climatic variables were recognized as appropriate insufficient evidence to argue that the variable  
parameters when the study has a regional to global under consideration differs between Córdoba and  
scale (Pearson & Dawson, 2003). Therefore, the compared group. Effect sizes can be graphically  
we consider these three bioclimatic variables appreciated. In addition, all the 26 species were  
as reliable parameters to estimate the degree of individually compared against Córdoba. These  
mismatch between species’ native environments results are shown in Table S1. The bootstrap-  
and the urban one.  
coupled estimation analysis was made with the  
The three bioclimatic variables of the native dabest function of the dabestr package (Ho et al.,  
range of the selected species and those of central 2019). All analyses were made in R environment  
Córdoba were obtained with the extract function 3.6.3 (R Core Team, 2020).  
of the raster package (Hijmans et al., 2015)  
2
(
resolution = 10 minutes; 18.6 x 18.6 = 344 km  
at the equator), that access to the WorldClim reSultS  
database (Fick & Hijmans, 2017). The sp package  
(
Bivand et al., 2013) was also used. We chose  
By analysing the pollination strategy, invasive  
this resolution to represent in a general way the status and bioclimatic match of common urban  
bioclimatic conditions, both of the city and of the tree species we assessed the suitability of nearly  
original areas of tree species. With this resolution 80% of the recorded trees as a function of their  
the general conditions of an area smaller than that origin (i.e., 13218 tree records belonging to  
of the city are represented. By combining points 26 species, from which 14 are non-native, 8  
throughout the central part of the province we tried are regionally natives and 4 are local natives)  
to represent the range of climatic conditions in and (see Table S1 for individual species responses).  
around the urban area. Although the urban climate Overall, 39% of the species and 69% of the  
is heterogeneous, this general measure represents analysed trees were considered unsuitable for  
the average condition to which trees would be Córdoba, either because they were invasive and/  
exposed.  
or because they were anemophilous (Table S1).  
Within the remaining species, considered as  
potentially suitable species, local natives showed  
Statistical analysis  
Bioclimatic variables for the native range of the best bioclimatic matching, as evidenced  
each species were contrasted with a sample of by the three variables considered (Figs. 1; 2;  
the same variables for central Córdoba using 3). Overall, annual precipitation was the most  
estimation plots (Ho et al., 2019). Estimation uncoupled parameter, followed by seasonality  
plots provide a robust and elegant framework for and mean annual temperature (Figs. 1; 2; 3).  
presenting data. This non-parametric graphical Non-native species showed higher mismatches in  
method, based on bootstrap, allows to visualize precipitation seasonality (Fig. 3) while regionally  
effect sizes and their precision (i.e., its degree of native species showed higher mismatches in mean  
uncertainty) on the same graph. Bootstrapping annual temperature and annual precipitation (Figs.  
was set at five thousand times (resampling with 1; 2).  
565  
Bol. Soc. Argent. Bot. 58 (4) 2023  
Fig. 1. Estimation plots (sensu Ho et al., 2019) for the comparison of mean annual temperature from the native  
range of Non-native species (blue; 6 species), Regionally native species (i.e., species from Argentina without  
natural distribution in Córdoba) (green; 6 species) and Local native species (i.e., species from Argentina with natural  
distribution in Córdoba (purple; 4 species) against Córdoba (red). The species included in the analysis were selected  
according to the other two criteria: invasive status and pollination strategy (see table S1) and grouped according to  
their nativeness. The upper plot shows the values obtained from the WordClim database (30 values for species).  
The lower plot shows the effect sizes for multiple comparisons against central Córdoba (Cba), after 5000 iterations.  
Fig. 2. Estimation plots (sensu Ho et al., 2019) for the comparison of annual precipitation from the native range  
of Non-native species (blue; 6 species), Regionally native species (i.e., species from Argentina without natural  
distribution in Córdoba) (green; 6 species) and Local native species (i.e., species from Argentina with natural  
distribution in Córdoba (purple; 4 species) against Córdoba (red). The species included in the analysis were selected  
according to the other two criteria: invasive status and pollination strategy (see table S1) and grouped according to  
their nativeness. The upper plot shows the values obtained from the WordClim database (30 values for species).  
The lower plot shows the effect sizes for multiple comparisons against central Córdoba (Cba), after 5000 iterations.  
566  
G. M. Galfrascoli et al. - How well do trees fit the city?  
Fig. 3. Estimation plots (sensu Ho et al., 2019) for the comparison of precipitation seasonality from the native  
range of Non-native species (blue; 6 species), Regionally native species (i.e., species from Argentina without  
natural distribution in Córdoba) (green; 6 species) and Local native species (i.e., species from Argentina  
with natural distribution in Córdoba (purple; 4 species) against Córdoba (red). The species included in the  
analysis were selected according to the other two criteria: invasive status and pollination strategy (see table  
S1) and grouped according to their nativeness. The upper plot shows the values obtained from the WordClim  
database (30 values for species). The lower plot shows the effect sizes for multiple comparisons against  
central Córdoba (Cba), after 5000 iterations.  
diScuSSion  
native species of great concern. Their wide climatic  
amplitude makes it abundant in different biomes  
Urban ecosystems are very dynamic environments, around the world and its rapid adaptation to cities is  
where current management decisions may have facilitated by its tolerance to pollution (reviewed by  
positive effects on native species in the near future. Fernandez et al., 2020). Special attention should be  
When selecting urban trees, an appropriate mix of paid to the matching pattern found for this species  
species that supports biodiversity and maximizes in mean annual temperature and precipitation  
ecosystem services should be considered, not only seasonality, since this must be related to the local  
those with easy maintenance (Nagendra & Gopal, success of this invader. Given that in Córdoba  
2
010) or cultivation. Thus, an urban forestry policy L. lucidum has spilled over from urban areas to  
that seeks functionality for people and the urban adjacent forests in an exponential way through the  
ecosystem must take into account the invasive last decades (Gavier-Pizarro et al., 2012), it would  
status of species, their potential for respiratory be essential to stop their ornamental use. Another  
health and/or their bioclimatic mismatch. Notably, species of concern is Bauhinia forficata since it  
the composition of Córdoba’s street trees is heavily also shows a matching pattern and it is invading  
biased towards non-native species, many of which natural environments in Córdoba (Giorgis & Tecco,  
are invasive, have an anemophilous pollination 2014). The environmental similarity between  
strategy and/or exhibit high bioclimatic mismatch.  
Córdoba and B. forficata native range could be  
It is widely recognised that invasive trees are facilitating its spread. Consequently, their use as  
detrimental to biodiversity and ecosystem services, urban trees should be reconsidered. Conversely, if  
yet their use in urban environments has not ceased. non-native species are considered for urban tree  
For instance, Ligustrum lucidum is an invasive non- planting, priority should be given to planting those  
567  
Bol. Soc. Argent. Bot. 58 (4) 2023  
that have some degree of climatic match but are not Furthermore, using more native plants would help  
invasive or allergenic (e.g., Lagerstroemia indica). to maintain arthropods communities’ integrity and  
Furthermore, it would be appropriate to go further in turn, the populations of animals that consume  
in the selection criteria for these non-native species them (Burghardt & Tallamy, 2013, Liang et al.,  
including others such as the dispersal modes. Non- 2023), promoting a higher biodiversity conservation.  
native invasive species which are dispersed by The implementation of native plants in cities not  
birds or wind should be avoided since these are the only depends on legal promotion, but also on their  
modes that facilitate tree invasions (reviewed by availability in local nurseries and the value that the  
Richardson & Rejmánek, 2011).  
neighbours give to these species that represent the  
In arid and semi-arid zones water availability natural heritage of the region. Consequently, it would  
is the main factor limiting natural distribution of be necessary to encourage native tree production  
trees (FAO, 2007). Córdoba´s urban trees natural to reach this purpose. In addition, the urban tree  
watering and are prone to suffer higher water decision process would considerably improve by  
stress due to urban growing conditions (i.e., integrating the perspective of different stakeholders  
shallow soils and high temperatures that accelerate (e.g., citizens, plant breeders, policy makers), which  
evapotranspiration). Precipitation seasonality may is well beyond the scope of the present study.  
also be of great concern since the dry season is  
Finally, it was recently found that urban tree  
very pronounced and could further increase water cover has a direct negative effect on Aedes aegypti  
stress in urban conditions, as found for three mosquito occurrence in Córdoba city (Benítez et  
exotic urban tree species in Mendoza (Martínez al., 2019). However, in spite of being important  
2
014). Consequently, native species and those components of public health, urban trees in Córdoba  
with similar bioclimatic conditions in their original are still insufficient in number and have poor  
ranges of distribution are likely to perform better phytosanitary conditions. Even worse, allergenic  
within the city, and even more under the expected species like F. pennsylvanica are over-abundant  
expansion of arid climate zones in the near future (26% of the total trees recorded), which is of  
(IPCC 2019). Among the studied species here, only concern since the amount of pollen released into  
four were native from Córdoba, which shows the the air is directly proportional to the number of  
scarcity of native species in urban tree plantations. individuals of a single species in any given area  
Overall, the native species showed a complete (Cariñanos et al., 2014) and considering that no  
match pattern in bioclimatic parameters, which single species should exceed 10% of the total  
probably makes them suitable to live under the number of planted trees (Dowhal 2016).  
general climatic conditions of Córdoba. In contrast,  
both non-native species and those regionally native  
showed a completely uncoupled pattern (i.e., in concluSionS  
all three parameters considered). The mismatch in  
annual precipitation and seasonality is a matter for  
Most of the street trees would not fit well in the  
careful consideration as water stress might promote city, which is a worrying situation that demands  
pest outbreaks (Raupp et al., 2010). For regionally concrete action. Córdoba tree species composition  
native species in particular the observed decoupling is heavily biased towards non-native species,  
is likely linked to the widespread use of ornamental many of which are invasive, have an anemophilous  
plants from humid temperate regions of the country pollination strategy and/or exhibit high bioclimatic  
(e.g., Handroanthus spp.).  
mismatch. Given the key ecosystem services that  
Native trees (i.e., here considered as local trees provide in cities and considering the fact that  
natives) are not only suitable for local environments, Córdoba is expected to expand during the following  
but also promote interactions with native animals years, policy makers should answer whether and  
even in Córdoba (e.g., Galfrascoli et al., 2023). how urban green infrastructure would contribute  
Encouraging their planting in cities could help to ameliorate climate change effects. In order to  
to counteract the global pollination crisis and the design a healthy and ecologically functional urban  
generalized negative effects of urbanization on tree infrastructure, and to promote the connectivity  
arthropods´ communities (Fenoglio et al., 2020). of the urban landscape with the remaining native  
568  
G. M. Galfrascoli et al. - How well do trees fit the city?  
urban vegetation, an integrative approach for tree  
species selection is urgently needed. We hope that  
rural gradient. PloS one 6: e23459.  
https://doi.org/10.1371/journal.pone.0023459  
the results obtained from the present study will BENÍTEZ, E. M., F. LUDUEÑA‐ALMEIDA., M.  
contribute with future, more healthy decisions on  
tree urban composition in the city of Córdoba.  
FRÍAS‐CÉSPEDES., W. R. ALMIRÓN & E. L.  
ESTALLO. 2019. Could land cover influence Aedes  
aegypti mosquito populations? Med. Vet. Entomol.  
3
4: 138-144. https://doi.org/10.1111/mve.12422  
autHor contributionS  
BERTHON, K., F. THOMAS & S. BEKESSY. 2021.  
The role of ‘nativeness’ in urban greening to support  
animal biodiversity. Landsc. Urban Plan. 205:  
103959.  
https://doi.org/10.1016/j.landurbplan.2020.103959  
BIVAND, R. S., E. PEBESMA ꢀ V. GOMEZ-RUBIO.  
2013. Applied spatial data analysis with R, Second  
edition. Springer, New York.  
GG: investigation, project administration,  
writing-original draft, formal analysis, review and  
editing, visualization. GB: investigation, review  
and editing, resources. AC: conceptualization,  
methodology, review and editing, resources,  
supervision, project administration.  
BOUSQUET, J., N. KHALTAEV, A. A. CRUZ, J.  
DENBURG, … & D. WILLIAMS. 2008. Allergic  
rhinitis and its impact on asthma (ARIA) 2008.  
Allergy 63: 8-160.  
acKnowledgementS  
We are grateful to Ana Laura Chiapero and  
https://doi.org/10.1111/j.1398-9995.2007.01620.x  
Julieta Badini for valuable suggestions on the first BURGHARDT, K. T. & D. W. TALLAMY. 2013.  
draft and to Lucas Carbone for his motivation.  
We acknowledge the assistance of the Consejo  
Nacional de Investigaciones Científicas y Técnicas  
Plant origin asymmetrically impacts feeding guilds  
and life stages driving community structure of  
herbivorous arthropods. Divers. Distrib. 19: 1553-  
1565. https://doi.org/10.1111/ddi.12122  
(
CONICET) and the Universidad Nacional de  
Córdoba (UNC), both of which support facilities CABIDO, M., S. R. ZEBALLOS., M. ZAK, M. L.  
used in this research. This study was conducted  
without funding during COVID19 lockdown.  
G.M.G has a doctoral scholarship from CONICET  
and G.B and A.C are researchers from the same  
institution.  
CARRANZA, … & A. T. ACOSTA. 2018. Native  
woody vegetation in centralArgentina: Classification  
of Chaco and Espinal forests. Appl.Veg. Sci. 21: 298-  
311. https://doi.org/10.1111/avsc.12369  
CALVIÑO, A. A., J. TAVELLA, H. M. BECCACECE,  
E. L. ESTALLO, … & M. S. FENOGLIO. 2023.  
The native-exotic plant choice in green roof  
design: Using a multicriteria decision framework  
to select plant tolerant species that foster beneficial  
arthropods. Ecol. Eng. 187: 106871.  
Primary data availability  
The link from which the tree records were  
originally downloaded is no longer available. The  
https://doi.org/10.1016/j.ecoleng.2022.106871  
data set has been uploaded to Repositorio de Datos CARIÑANOS, P. & M. CASARES-PORCEL. 2011.  
de Investigación (CONICET): https://ri.conicet.  
gov.ar/handle/11336/218628  
Urban green zones and related pollen allergy: A  
review. Some guidelines for designing spaces with  
low allergy impact. Landsc. Urban Plan. 101: 205-  
214. https://doi.org/10.1016/j.landurbplan.2011.03.006  
bibliograPHy  
CHAMBERLAIN, S. A. & C. BOETTIGER. 2017.  
R Python, and Ruby clients for GBIF species  
occurrence data. PeerJ Preprints 5: e3304v1.  
https://doi.org/10.7287/peerj.preprints.3304v1  
DOWHAL, A. 2016. Arboricultura Urbana. Editorial  
Maipue. Argentina.  
ALFAYA ARIAS, T., M. A. BALTASAR DRAGO &  
J. BELMONTE SOLER. 2002. Polinosis, Polen y  
Alergia. MRA ediciones, S. L. España.  
BATES, A. J., J. P. SADLER, A. J. FAIRBRASS., S. J.  
FALK, … & T. J. MATTHEWS. 2011. Changing bee  
and hoverfly pollinator assemblages along an urban-  
DAVIS, M. B. & R. G. SHAW. 2001. Range shifts and  
adaptive responses to Quaternary climate change.  
569  
Bol. Soc. Argent. Bot. 58 (4) 2023  
Science 292: 673-679.  
to native plants in cities’ treescape? A case study  
in Fortaleza, Brazil. Urban For. Urban Green. 13:  
365-374. https://doi.org/10.1016/j.ufug.2014.01.005  
GALFRASCOLI, G. M.,A. CALVIÑO,A. L. CHIAPERO  
& M. S. FENOGLIO. 2023. Living in an urban pod:  
Seed predation and parasitism of bruchid beetles in a  
native tree species. Ecol. Entomol. 48: 31-39.  
https://doi.org/10.1111/een.13199  
https://doi.org/10.1126/science.292.5517.673  
DE CARVALHO, C. A., M. RAPOSO, C. PINTO-  
GOMES & R. MATOS. 2022. Native or exotic: A  
bibliographical review of the debate on ecological  
science methodologies: Valuable lessons for urban  
green space design. Land 11: 1201.  
https://doi.org/10.3390/land11081201  
DEMAIO, P., U. O. KARLIN & M. MEDINA. 2002.  
Árboles nativos del centro de Argentina. Lola,  
Córdoba, Argentina.  
FAO (Food and Agriculture Organization of the United  
Nations) 2007. Forests and water. Unasylva 229:  
GAVIER-PIZARRO, G. I., T. KUEMMERLE, L. E.  
HOYOS, S. I. STEWART, … & V. C. RADELOFF.  
2012. Monitoring the invasion of an exotic tree  
(Ligustrum lucidum) from 1983 to 2006 with  
Landsat TM/ETM+ satellite data and Support Vector  
Machines in Córdoba, Argentina. Remote Sens.  
Environ. 122: 134-145.  
2007/4.  
FARRELL, C., S. J. LIVESLEY, S. K. ARNDT, L.  
BEAUMONT, … & M. LEISHMAN. 2022. Can we  
integrate ecological approaches to improve plant selection  
for green infrastructure? Urban For. Urban Green. 76:  
https://doi.org/10.1016/j.rse.2011.09.023  
GIORGIS, M. A. & P. A. TECCO. 2014. Árboles y  
arbustos invasores de la Provincia de Córdoba  
(Argentina): una contribución a la sistematización  
de bases de datos globales. Bol. Soc. Argent. Bot.  
49: 681-603.  
GRANT, S. 2016. The right tree in the right place: using  
GIS to maximize the net benefits from urban forests.  
Master Thesis in Geographical Information Science,  
Sweden.  
127732. https://doi.org/10.1016/j.ufug.2022.127732  
FENOGLIO, M. S., E. GONZÁLEZ, J. TAVELLA, H.  
BECCACECE, … & A. CALVIÑO. 2023. Native  
plants on experimental urban green roofs support  
higher community-level insect abundance than exotics.  
Urban For. Urban Green. 86: 128039.  
https://doi.org/10.1016/j.ufug.2023.128039  
FENOGLIO, M. S., M. R. ROSSETTI & M. VIDELA.  
GRIFONE, S. 2014. Primer Encuentro de Investigadores  
que Estudian la Ciudad de Córdoba. Departamento  
de Publicaciones de la Facultad de Arquitectura,  
Urbanismo y Diseño de la Universidad Nacional de  
Córdoba, Argentina.  
2020. Negative effects of urbanization on terrestrial  
arthropod communities: A meta‐analysis. Glob. Ecol.  
Biogeogr. 29: 1412-1429.  
https://doi.org/10.1111/geb.13107  
FERNANDEZ, R. D., S. J. CEBALLOS, R. ARAGÓN, A.  
MALIZIA, ... & H. R. GRAU. 2020. A global review  
of Ligustrum lucidum (OLEACEAE) invasion. Bot.  
Rev. 86: 93-118.  
https://doi.org/10.1007/s12229-020-09228-w  
FERRINI, F., A. FINI, J. MORI & A. GORI. 2020. Role  
of vegetation as a mitigating factor in the urban  
context. Sustainability 12: 4247.  
HIJMANS, R. J., J. VAN ETTEN, J. CHENG, M.  
MATTIUZZI, ... & M. R. J. HIJMANS. 2015.  
Package ‘raster’. R package 734: 473.  
HO, J., T. TUMKAYA, S. ARYAL, H. CHOI & A.  
CLARIDGE-CHANG. 2019. Moving beyond P  
values: data analysis with estimation graphics. Nat.  
methods 16: 565-566.  
https://doi.org/10.1038/s41592-019-0470-3  
https://doi.org/10.3390/su12104247  
FICK, S. E. & R. J. HIJMANS. 2017. WorldClim 2: new  
INDEC (Instituto Nacional de Estadística y Censos de  
la República Argentina) 2023. Censo nacional de  
población, hogares y viviendas 2022: resultados  
[Accessed 9 February 2023].  
IPCC 2019. Summary for Policymakers. In: P.R.  
SHUKLA, J. SKEA, E. CALVO BUENDIA, V.  
MASSON-DELMOTTE, … & J. MALLEY (eds.).  
Climate Change and Land: an IPCC special report  
on climate change, desertification, land degradation,  
1
km spatial resolution climate surfaces for global  
land areas. Int. J. Climatol. 37: 4302-4315.  
https://doi.org/10.1002/joc.5086  
FONTAINE, L. C. & B. M. LARSON. 2016. The right  
tree at the right place? Exploring urban foresters’  
perceptions of assisted migration. Urban For. Urban  
Green. 18: 221-227.  
https://doi.org/10.1016/j.ufug.2016.06.010  
FREIRE MORO, M. F., C. WESTERKAMP & F. S. DE  
ARAÚJO. 2014. How much importance is given  
570  
G. M. Galfrascoli et al. - How well do trees fit the city?  
sustainable land management, food security, and  
greenhouse gas fluxes in terrestrial ecosystems.  
climate-ready trees. Urban For. Urban Green. 29:  
28-39. https://doi.org/10.1016/j.ufug.2017.09.003  
MOSER, A., E. UHL, T. RÖTZER, P. BIBER, … & H.  
PRETZSCH. 2017. Effects of climate and the urban  
heat island effect on urban tree growth in Houston.  
Open J. For. 7: 428-445.  
[
Available in: https://www.ipcc.ch/srccl/chapter/  
summary-for-policymakers/]  
KOPTA, R. F. 1999. Problemática ambiental, con  
especial referencia a la provincia de Córdoba.  
Fundación ACUDE, Córdoba.  
https://doi.org/10.4236/ojf.2017.74026  
LEMOINE, R. T. & J. C. SVENNING. 2022. Nativeness  
is not binary -a graduated terminology for native and  
non‐native species in the Anthropocene. Restor. Ecol  
NAGENDRA, H. & D. GOPAL. 2010. Street trees in  
Bangalore: Density, diversity, composition and  
distribution. Urban For. Urban Green. 9: 129-137.  
https://doi.org/10.1016/j.ufug.2009.12.005  
NITIU, D. S., A. C. MALLO, I. MEDINA & C. PARISI.  
2019. Atlas of allergenic pollens of Buenos Aires,  
Argentina. Archivos de Alergia e Inmunología  
Clínica 50: 67-88.  
3
0: e13636. https://doi.org/10.1111/rec.13636  
LIANG, H., Y. D. HE, P. THEODOROU & C. F. YANG.  
023. The effects of urbanization on pollinators and  
pollination: A meta‐analysis. Ecol. Let. 26: 1629-  
642. https://doi.org/10.1111/ele.14277  
2
1
LIU, X., Y. HUANG, X. XU, X. LI ... & Z. ZENG. 2020.  
High-spatiotemporal-resolution mapping of global  
urban change from 1985 to 2015. Nat. Sustain. 3:  
OYARZABAL, M., J. CLAVIJO, L. OAKLEY, F.  
BIGANZOLI, P. TOGNETTI, I. BARBERIS, ... &  
R. J. LEÓN. 2018. Unidades de vegetación de la  
Argentina. Ecología austral 28: 40-63.  
5
64-570.  
https://doi.org/10.1038/s41893-020-0521-x  
LUTI, R., M. GALERA, N. MÜLLER DE FERREIRA,  
N. BERZAL, … & J. BARRERA. 1979. Vegetación.  
In: VÁZQUEZ. J., R. MIATELLO & M. ROQUE  
PAWANKAR, R., G. W. CANONICA, S. T. HOLGATE  
& R. F. LOCKEY. 2011. WAO white book on  
allergy. World Allergy Organization, pp.156-157.  
Milwaukee, WI, USA.  
(
eds.), Geografía Física de la provincia de Córdoba,  
PEARSON, R. G. & T. P. DAWSON. 2003. Predicting  
the impacts of climate change on the distribution  
of species: are bioclimate envelope models useful?  
Glob. Ecol. Biogeogr. 12: 361-371.  
pp. 297-368. Boldt, Córdoba.  
MARCHI, M., I. SINJUR, M. BOZZANO & M.  
WESTERGREN. 2019. Evaluating WorldClim  
version 1 (1961-1990) as the baseline for sustainable  
use of forest and environmental resources in a  
changing climate. Sustainability, 11: 3043.  
https://doi.org/10.1046/j.1466-822X.2003.00042.x  
PEEL, M. C., B. L. FINLAYSON & T. A. MCMAHON.  
2007. Updated world map of the Köppen-Geiger  
climate classification. Hydrol Earth Syst Sci. 11: 1633-  
1644. https://doi.org/10.5194/hess-11-1633-2007  
PRIEGO-GONZÁLEZ DE CANALES, C. & J.  
BREUSTE. 2008. Social, environmental and  
economic benefits of urban trees to the society.  
Salzburger Geographische Arbeiten 42: 43-60.  
PYŠEK, P., D. M. RICHARDSON, M. REJMÁNEK,  
G. L. WEBSTER, … & J. KIRSCHNER. 2004.  
Alien plants in checklists and floras: towards better  
communication between taxonomists and ecologists.  
Taxon 53: 131-143. https://doi.org/10.2307/4135498  
https://doi.org/10.3390/su11113043  
MARENGO, C. 2006. La periferia de Córdoba:  
cuestiones sobre hábitat urbano. Departamento de  
publicaciones de la FAUD-UNC, Córdoba.  
MARTÍNEZ, C. F. 2014. Crecimiento bajo déficit hídrico  
de especies forestales urbanas de la ciudad-oasis  
de Mendoza, Argentina y su área metropolitana.  
Ecosistemas 23: 147-152.  
https://doi.org/10.7818/ECOS.2014.23-2.20  
MARTÍNEZ, A. C. F., A. M. A. RUIZ & L. M.  
ATENCIO. 2017. Proyecto integral de forestación  
y reforestación urbana para Mendoza. Instituto de  
Ambiente, Hábitat y Energía, Mendoza.  
R
Core Team, 2020. R: A language and  
environment for statistical computing.  
R
MATTEUCCI, S. D. 2018. Ecorregión Espinal.  
In: MORELLO, J., S. D. MATTEUCCI, A. F.  
RODRÍGUEZ & M. SILVA (eds.), Ecoregiones y  
complejos ecosistémicos argentinos, pp: 395-439.  
Foundation for Statistical Computing, Vienna.  
[Available in: http://www.R-project.org]  
RAMON, G. D., E. VANEGAS, M. FELIX, L. B.  
BARRIONUEVO,…&I.CHERREZ-OJEDA.2020.  
Year-long trends of airborne pollen in Argentina:  
More research is needed. WAO Journal 13: 100135.  
https://doi.org/10.1016/j.waojou.2020.100135  
2
nd ed. Orientación Gráfica Editora, Buenos Aires.  
MCPHERSON, E. G., A. M. BERRY & N. S. VAN  
DOORN. 2018. Performance testing to identify  
571  
Bol. Soc. Argent. Bot. 58 (4) 2023  
RAUPP, M. J., P. M. SHREWSBURY & D. A. HERMS.  
mortality, and turnover in street trees. PloS one 14:  
e0215846.  
2
010. Ecology of herbivorous arthropods in urban  
landscapes. Annu. Rev. Entomol. 55: 19-38.  
https://doi.org/10.1146/annurev-ento-112408-085351  
ROLOFF, A., S. KORN & S. GILLNER. 2009. The  
Climate-Species-Matrix to select tree species for  
urban habitats considering climate change. Urban  
For. Urban Green. 8: 295-308.  
https://doi.org/10.1371/journal.pone.0215846  
TAN, P. Y. 2017. Perspectives on greening of cities  
through an ecological lens. In: TAN, P. Y. & J. C.  
YUNG (eds.), Greening cities. Form and functions.  
Springer, Berlin.  
WILLIS, K.J. & G. PETROKOFSKY. 2017. The natural  
capital of city trees. Science 356:374-376.  
https://www.science.org/doi/10.1126/science.aam9724  
XING, Y., P. JONES & I. DONNISON. 2017.  
Characterisation of nature-based solutions for the  
built environment. Sustainability 9: 149.  
https://doi.org/10.1016/j.ufug.2009.08.002  
ROMAN, L. A., T. M. CONWAY, T. S. EISENMAN, A.  
K KOESER, ... & J. VOGT. 2021. Beyond ‘trees  
are good’: Disservices, management costs, and  
tradeoffs in urban forestry. Ambio 50: 615-630.  
https://doi.org/10.1007/s13280-020-01396-8  
https://doi.org/10.3390/su9010149  
ROMAN, L. A., H. PEARSALL, T. S. EISENMAN,  
T. M. CONWAY, ... & C. STAUDHAMMER.  
YANG, J. 2009. Assessing the impact of climate change  
on urban tree species selection: a case study in  
Philadelphia. J. For. 107: 364-372.  
2
018. Human and biophysical legacies shape  
contemporary urban forests: A literature synthesis.  
Urban For. Urban Green. 31: 157-168.  
https://doi.org/10.1093/jof/107.7.364  
ZEBALLOS, S. R., M. A. GIORGIS, M. R. CABIDO,  
A. T. ACOSTA, … & J. J. CANTERO. 2020.  
The lowland seasonally dry subtropical forests in  
central Argentina: vegetation types and a call for  
conservation. VCS 1: 87-102.  
https://doi.org/10.1016/j.ufug.2018.03.004  
ROY, S., J. BYRNE & C. PICKERING. 2012. A  
systematic quantitative review of urban tree  
benefits, costs, and assessment methods across  
cities in different climatic zones. Urban For. Urban  
Green. 11: 351-363.  
https://doi.org/10.1016/j.ufug.2012.06.006  
SJÖMAN, H., J. ÖSTBERG & O. BÜHLER. 2012.  
Diversity and distribution of the urban tree  
population in ten major Nordic cities. Urban For.  
Urban Green. 11: 31-39.  
https://doi.org/10.1127/VCS/2019/38013  
RICHARDSON, D. M., C. HUI, M. A. NUÑEZ &  
A. PAUCHARD. 2014. Tree invasions: patterns,  
processes, challenges and opportunities. Biol.  
Invasions 16: 473-481.  
https://doi.org/10.1111/ddi.12075  
RICHARDSON, D. M. & M. REJMÁNEK. 2011. Trees  
and shrubs as invasive alien species - a global  
review. Divers. Distrib. 17: 788-809.  
https://doi.org/10.1016/j.ufug.2011.09.004  
SMITH, I. A., V. K. DEARBORN & L. R. HUTYRA.  
2
019. Live fast, die young: Accelerated growth,  
https://doi.org/10.1111/j.1472-4642.2011.00782.x  
572