new recordS of mitoSPoric aScomyceteS on  
nothofagaceae from Patagonia, argentina  
nuevoS regiStroS de aScomyceteS mitoSPóricoS en nothofagaceae  
de la Patagonia, argentina  
1
Romina M. Sánchez * & M. Virginia Bianchinotti  
Summary  
Background and aims: The Funga of the Patagonian Nothofagus forests is being  
studied since the late 19 century, but despite many efforts is still far from being  
1. Departamento de Biología,  
th  
Bioquímica y Farmacia, Universidad  
Nacional de Sur (UNS) y Centro de  
Recursos Naturales Renovables de  
la Zona Semiárida (CERZOS-UNS-  
CONICET), Bahía Blanca, Argentina  
completely known. The aim of this paper is to present detailed descriptions and data  
on geographical distribution of some genera and species of mitosporic ascomycetes  
that constitute new records for Argentina and for the Neotropical Region.  
M&M: Bark and woody debris from native Nothofagaceae were collected and studied.  
Reproductive structures were hand-sectioned and examined following traditional  
mycological techniques.  
Results: Six species of mitosporic ascomycetes were identified: Avettaea  
salvadorae, Bactrodesmium atrum, Dwiroopa ramya, Gilmaniella multiporosa,  
Monodictys paradoxa and Pycnopeziza quisquiliaris. Full descriptions, comments  
on identification and data on distribution and habitat of each species are provided,  
along with photographs illustrating diagnostic features.  
Conclusions: Two genera, Dwiroopa and Pycnopeziza, and one species, M.  
paradoxa, are registered for the first time in the Neotropical Region, two other  
species are first recorded in South America (B. atrum and G. multiporosa). This  
constitutes the second record of A. salvadorae in the continent, thus expanding its  
area of distribution.  
Citar este artículo  
SÁNCHEZ, R. M.  
BIANCHINOT TI. 2023. New  
records of mitosporic ascomycetes  
on Nothofagaceae from Patagonia,  
Argentina. Bol. Soc. Argent. Bot. 58:  
& M. V.  
4
91-503.  
Key wordS  
Anamorphs, Andean forests, Ascomycota, Fungi, Lophozonia, Nothofagus.  
reSumen  
Introducción y objetivos: La Funga de los bosques patagónicos de “Nothofagus”  
viene siendo estudiada desde finales del siglo XIX, pero a pesar de los muchos  
esfuerzos realizados aún está lejos de ser completamente conocida. El objetivo  
de este trabajo es presentar descripciones detalladas y datos sobre la distribución  
geográfica de algunos géneros y especies de ascomicetes mitospóricos, que  
constituyen nuevos registros para Argentina y para la Región Neotropical.  
M&M: Se recolectaron y estudiaron restos de corteza y madera de Nothofagaceae  
nativas. Las estructuras reproductivas se seccionaron a mano y se examinaron  
siguiendo las técnicas micológicas tradicionales.  
Resultados: Se identificaron seis especies de ascomicetes mitospóricos: Avettaea  
salvadorae, Bactrodesmium atrum, Dwiroopa ramya, Gilmaniella multiporosa,  
Monodictys paradoxa and Pycnopeziza quisquiliaris. Se presentan descripciones  
completas, comentarios sobre la identificación y datos sobre la distribución y el  
hábitat de cada especie, junto con fotografías que ilustran sus características  
diagnósticas.  
Conclusiones: Se registran dos géneros, Dwiroopa y Pycnopeziza, y una especie,  
M. paradoxa, por primera vez en la Región Neotropical, otras dos especies se  
registran por primera vez para Sudamérica (B. atrum y G. multiporosa). Este  
constituye el segundo registro de A. salvadorae en el continente, ampliando así su  
área de distribución.  
Recibido: 31 Jul 2023  
Aceptado: 20 Oct 2023  
Publicado impreso: 22 Dic 2023  
PalabraS clave  
Anamorfos, Ascomycota, Bosques andinos, Fungi, Lophozonia, Nothofagus.  
Editora: María Victoria Vignale  
ISSN versión impresa 0373-580X  
ISSN versión on-line 1851-2372  
491  
Bol. Soc. Argent. Bot. 58 (4) 2023  
introduction  
and for the Neotropical Region, along with detailed  
descriptions, and data on geographical distribution  
The temperate Andean Patagonian forests of of each one.  
Argentina and Chile constitute the southernmost  
forests on Earth and one of the most particular  
bio-geographical formations of South America materialS and methodS  
(Hueck, 1978; Cabrera & Willink, 1980; Donoso  
Zegers, 1993). Its biota is historically related  
Small pieces of bark were taken off from  
with that of Australia and New Zealand, and is living plants of Lophozonia obliqua, L. alpina, N.  
characterized by great biodiversity and high rates antarctica, N. dombeyi and N. pumilio; and also  
of endemism (Bertonatti & Corcuera, 2000). The from logs of N. pumilio deposited in the sawmill  
dominant plant family is Nothofagaceae (Crisci “Aserradero Pelech S.A.” Survey was done in  
et al., 1991), which was considered monogeneric protected areas from the Andean Patagonian forests  
until Heannan and Smissen (2013) reassessed its of Argentina: Parque Nacional Lanín, Parque  
classification and rearranged the species in four Nacional Los Alerces, Parque Nacional Nahuel  
genera: Fuscospora (R. S. Hill & J. Read) Heenan Huapi and Parque Provincial Lago Baggilt. A total  
&
Smissen, Lophozonia Turcz., Nothofagus Blume, of 148 samples were examined. Sections of fungal  
and Trisyngyne Baill. In Argentina, two species of materials were freehand made under a Leica EZ4  
Lophozonia (L. alpina (Poepp. & Endl.) Heenan & stereomicroscope and mounted in water or 5%  
Smissen and L. obliqua (Mirb.) Heenan & Smissen) KOH with phloxine. Microscopic observations  
and four of Nothofagus (N. antarctica (G. Forst.) and photographs were made with a Leica DM2000  
Oerst., N. betuloides (Mirb.) Oerst., N. dombeyi microscope with a Samsung NV10 digital camera.  
(Mirb.) Oerst., and N. pumilio (Poepp. & Endl.) To measure diagnostic structures, material was  
Krasser) are present. All of them are also present in mounted in tap water and, at least, 10 measurements  
Chile along with four more species, endemic from were taken; M represents the average values.  
that country.  
For scanning electron microscopy, reproductive  
ThefungalbiodiversityofPatagonianNothofagus structures were dehydrated (15 minutes in each  
forests have been intensively studied, but despite step) in a graded acetone series (10%-90%, 95%),  
many efforts, its Funga is still far from being as followed by three changes in absolute acetone.  
well-known as the Flora and the Fauna are, in this After critical point-drying, the specimens were  
region. Pioneers like Dusén, Müller, Nylander mounted on aluminum stubs, sputter coated with  
and Spegazzini, were followed in the middle of gold-palladium, and viewed with a LEO EVO 40  
th  
the 20 century by Gamundí, Horak, Singer and Scanning Electron Microscope (SEM). Vouchers  
Wright and, more closely, we could mention the were air dried and deposited in BBB Herbarium  
contributions of Rajchenberg, collaborators and of the Universidad Nacional del Sur. Isolates were  
disciples. Some groups, like several among the tried in traditional culture media as MA, OA, PDA  
macromycetes, are much better known than others, (Waller et al., 2001) or in Nothofagus Agar (NA)  
such as most of the ascomycetes, particularly those or Nothofagus Glucose Agar (NGA), which were  
with tiny reproductive structures.  
prepared from a decoction of Nothofagus dombeyi  
With the aim of expanding the knowledge on bark, by boiling 7 g of bark in small pieces, in 200  
these fungi, a survey of micromycetes on native ml of distilled water for 15 minutes. Then both  
plants of the Andean Patagonian forest was media were made as follows: -NA: 170 ml of filtered  
initiated in the early 2000s. Since then, several N. dombeyi decoction, 10 g agar and distilled water  
new species and new records of Ascomycota to reach 500 ml in volume; pH 5 and 20 minutes  
have been published (Bianchinotti et al., 2002; of sterilization at 1 atmosphere, -NGA: 170 ml of  
Bianchinotti & Rajchenberg, 2004; Sánchez & filtered N. dombeyi decoction, glucose 5 g, agar 10  
Bianchinotti, 2007, 2010, 2015; Sánchez et al., g and distilled water to reach 500 ml in volume; pH  
2
012, 2018, 2019).  
Here, new records of some genera and species of The authors of the species are listed following Index  
mitosporic ascomycetes are presented for Argentina Fungorum (www. indexfungorum.org).  
6 and 20 minutes of sterilization at 1 atmosphere.  
492  
R. M. Sánchez & M. V. Bianchinotti - Ascomycetes on Nothofagaceae of Patagonia  
reSultS  
Material examined. ARGENTINA. Prov.  
Chubut: Parque Nacional Los Alerces, ca. 12 km  
Six species of mitosporic ascomycetes were on the way to Lago Baggilt (43° 15′ 59.76″ S, 71°  
identified: Avettaea salvadorae (Petr.) Abbas 39′ 2.52″ W), 1079 m alt., on bark of N. pumilio, 15-  
&
B. Sutton, Bactrodesmium atrum M.B. Ellis, V-2007, Bianchinotti & Sánchez 545 (BBB).  
Dwiroopa ramya Subram. & Muthumary,  
Gilmaniella multiporosa Moustafa & Ezz-Eldin, 2. Bactrodesmium atrum M. B. Ellis, Mycol. Pap.  
Monodictys paradoxa (Corda) S. Hughes and 72: 9. 1959. Fig. 1G-J.  
Pycnopeziza quisquiliaris (Ellis & Everh.) W.L.  
White & Whetzel.  
Conidiomata sporodochial, scattered, punctiform  
or irregular, bright black, superficial, sometimes  
1
. Avettaea salvadorae (Petr.) Abbas & B. Sutton, effuse colonies. Mycelium immersed, branched,  
Trans. Br. Mycol. Soc. 90: 491. 1988. Fig. 1A-F.  
hyaline to pale brown, formed by cylindrical cells,  
thin-walled, smooth, 6-21 × 4-5 µm (M = 13.9  
Conidiomata pycnidial, spheroidal, × 4.8). Conidiophores cylindrical, unbranched,  
subperidermic, dark brown to black, ca. 158 pale brown, ca. 7-10 × 2 µm. Conidiogenous  
µm diam., 132-138 µm high (M = 134.9); cells cylindrical, widening towards the apex,  
peridium of textura epidermoidea, ca. 20 µm monoblastic, integrated, determinate, terminal,  
thick. Conidiophores absent or represented by a smooth, pale brown, ca. 3-7 × 6 µm. Conidial  
cylindrical to quadrangular subhyaline cell, ca. secession rhexolytic. Conidia solitary, obovoid, 2-6  
5
µm high. Conidiogenous cells ampulliform, septate, mostly smooth, sometimes punctate, apical  
enteroblastic, annelidic, with a small collarette, cells black, basally pale brown to subhyaline, 32-68  
discrete or integrated, percurrent, smooth, hyaline, × 20-38 µm (M = 49 × 28.4; n = 52).  
9
-15 × 2-5 µm (M = 10.9 × 2.9). Conidia slightly  
obovoid, enclosed by mucilaginous sheath (0.5-2  
µm wide), aseptate, smooth, hyaline, 9-16 × 7-12 of Lophozonia obliqua in Nothofagaceae forest  
Distribution and habitat. Growing on bark  
µm (M = 12.6 × 9.8; n = 20).  
in Argentina; on rotten branches of unidentified  
tree from China (Zhao et al., 2009), on bark of  
Distribution and habitat. Growing on twigs deciduous trees of England including Betula sp.  
of Geoffroea decorticans (Gillies ex Hook. & and Fagus sylvatica L. (Ellis, 1959); on F. crenata  
Arn.) Burkart (Bianchinotti, 1993) and on bark of Blume in Japan (Matsushima, 1975); on stems of  
Nothofagus pumilio in Argentina. On Salvadora Phragmites australis (Cav.) Steud., in a brackish  
oleoides Decne. and S. persica L. in India and tidal marsh of the river Scheldt in the Netherlands  
Pakistan (Abbas & Sutton, 1988).  
(Van Ryckegem & Verbeken, 2005); on Agathis  
australis (D. Don) Lindl., Beilschmiedia tarairi  
Comments. The specimen described here is Kirk, Corynocarpus laevigatus J.R. Forst. & G.  
assigned to A. salvadorae because of the presence Forst., Elaeocarpus dentatus (J.R. Forst. & G.  
of enteroblastic conidiogenous cells and the size of Forst.) Vahl, Laurelia novae-zelandiae A. Cunn.,  
conidia, which are the biggest in the genus (8-21.5 Leptospermum scoparium J.R. Forst. & G. Forst.,  
×
9-17.5 µm). The species is easily distinguishable Rhopalostylis sapida H. Wendl. & Drude and  
from the other two in the genus, A. alcornii Sivan. Rhopalostylis sp. from New Zealand (Hughes,  
B. Sutton and A. philippinensis Petr. & Syd., 1978); on unidentified dead wood from Spain  
&
because the first has holoblastic conidiogenous (Silvera-Simón et al., 2009); on Elaeis guineensis  
cells (4.5-7 µm high) and smaller (9-11 µm diam.), Jacq. in Tanzania (Pirozynski, 1972).  
spherical, verrucose conidia, with a very thin,  
persistent mucilaginous sheath (less than 1 µm).  
Comments. The material is fully consistent in all  
The second, which is the type species, differs its features with the originally described growing  
because conidia, of less size, are ellipsoidal to ovoid on Fagus sylvatica and Betula sp. in England (Ellis,  
(6-10 × 4.5-5.5 µm) and are devoid of conidial 1959). It only differs in having thicker hyphae than  
sheath when mature. that (1.5-4 µm wide). Three species have been  
493  
Bol. Soc. Argent. Bot. 58 (4) 2023  
Fig. 1. Avettaea salvadorae. A: Pycnidial conidioma on substrate. B: Vertical section of a pycnidial  
conidioma. C: Conidiogenous cell. D: Conidiogenous cell with two annelidic percurrences. E: Conidium  
before liberation from conidiogenous cell. F: Conidia. Bactrodesmium atrum. G: Sporodochial conidioma  
on substrate. H: Conidium detached from conidiogenous cell and view of the conidiophore. I: Conidium 6  
septate, septa visible by constrictions. J: Conidium with ornamented wall. Abbreviations: cg: conidiogenous  
cell; sh: sheath; sp: septa. Scale bars= A, G: 100 µm; B: 40 µm; C-D: 2 µm; E: 5 µm; F: 10 µm; H-J: 20 µm.  
earlier found growing on Nothofagaceae hosts. clavate, 3 to 9 septate conidia (Hughes, 1983). The  
One of them, B. biformatum (Hönh.) S. Hughes second one is B. traversoanum (Peyronel) M.B.  
found on corticated branches of Nothofagus sp. in Ellis which differs from B. atrum in the length of  
New Zealand, differs from B. atrum in the paler the conidiophores (up to 35 µm) and in the shape  
and smaller (18-40 × 7-9.4 µm), ellipsoidal to (clavate to ellipsoidal) of the smaller conidia  
494  
R. M. Sánchez & M. V. Bianchinotti - Ascomycetes on Nothofagaceae of Patagonia  
(20-37 × 8-12 µm) (Ellis, 1959). The third one, Lythrum salicaria L. from the USA and D. punica  
B. nothofagi J.A. Cooper, has paler and smaller K.V. Xavier, A.N. Kc, J.Z. Groenew., Vallad &  
conidia (47-55 × 18-25 μm) with more septa (5-8) Crous which is pathogenic to Punica granatum  
(Cooper, 2005).  
L. in the USA. The macroconidia of D. ramya are  
the longest in the genus (up to 30 μm), in D. lythri  
Material examined. ARGENTINA. Neuquén: they are subglobose to ellipsoidal (up to 19 μm)  
Parque Nacional Lanín, ascent path to the Cascada and in D. punica broadly ellipsoid (up to 20 μm)  
Chachín waterfall (40° 8′ 25.29 ″S, 71° 40′ 3.84″ (Subramanian & Muthumary, 1986).  
W), 757 m alt., 15-V-2007, on bark of Lophozonia  
obliqua, Bianchinotti & Sánchez 591 (BBB).  
Material examined: ARGENTINA. Chubut:  
Parque Nacional Los Alerces, Huemules forest  
3
. Dwiroopa ramya Subram. & Muthumary, Proc. (42º 47’ 27.7” S, 71º 28’ 15.5” W), 1137 m alt.,  
Indian Acad. Sci., Pl. Sci. 96: 196. 1986. Fig. 2A-D. on fallen branches of N. pumilio, 20-XI-2003,  
Rajchenberg 12131 (BBB); Esquel, Aserradero  
Conidiomata stromatic immersed, erumpent Pelech Hnos., 8-V-2006; on logs of N. pumilio  
through the bark, gelatinous and dark brown (from Parque Nacional Los Alerces, Huemules  
when wet, carbonaceous and black when dry, 3-9 forest), Bianchinotti 67, 68 (BBB).  
×
3-7 mm (M = 6.1 × 4.3); plurilocular, locules  
oval to pyriform, separated by cells in textura 4. Gilmaniella multiporosa Moustafa & Ezz-  
porrecta, cylindrical, smooth, hyaline, 5-18 × Eldin., Mycol. Res. 92: 502. 1989. Fig. 2E-I.  
2
-8 μm (M = 11.2 × 5.6). Conidiogenous cells of  
two types: a) holoblastic, discrete, cylindrical,  
Colonies sporodochial, punctiform, irregular,  
smooth, hyaline; those producing macroconidia gregarious, sometimes confluent, dark brown,  
measure 5-17 × 2-7 μm (M = 10.3 × 3.6), while bright. Mycelium immerse, ramified, pale brown,  
mesoconidia producing cells are 12-26 × 2-4 individual cells cylindrical to reniform, smooth,  
μm (M = 16.7 × 2.4); b) enteroblastic phialidic, 4-10 × 3-4 µm (M = 6.9 × 3.3). Conidiophores  
cylindrical, smooth, hyaline, 4-15 × 1-3 μm (M = macronematous, cylindrical, septate, pale brown,  
9
.7 × 2), these cells are integrated on cylindrical, 33-93 × 2-3 µm (M = 60.4 × 2.9). Conidiogenous  
branched, smooth, hyaline conidiophores, ca. 27- cells mono or polyblastic, clavate, discrete, terminal  
9 × 2 μm. Macroconidia unicellular, ellipsoidal, or intercalar, smooth, pale brown, 6-18 × 3-7 µm  
3
dark brown, 1-2 longitudinal germ slits, smooth (M = 9.9 × 4.7). Conidia holoblastic, in chains of up  
with SEM, 11-29 × 8-12 μm (M = 19.6 × 9.7; n = to 8 conidia, subspherical, smooth, pale brown, 6-9  
5
1). Macroconidia germinates through the slits to × 4-7 µm (M = 7.7 × 6.3; n = 23), surface with many  
produce a septate, hyaline mycelium. Mesoconidia scars or pores, from which new lateral chains may  
unicellular, ellipsoidal, smooth, hyaline to pale be produced; terminal conidia globose, smooth,  
brown, 6-15 × 2-8 μm (M = 11.2 × 5.1; n = 28). dark brown, 9-17 × 9-14 (M = 13.8 × 12; n = 31).  
Microconidia unicellular, ellipsoidal, apical end  
rounded, base truncate, smooth, hyaline, 2-10 × 1-3  
μm (M = 6.4 × 2.5; n = 31).  
Distribution and habitat. Growing on bark of N.  
antarctica in Argentina and in saline soil in Egypt  
(Moustafa & Ezz-Eldin, 1989).  
Distribution and habitat. Growing on bark of  
fallen branches and logs of N. pumilio in Argentina  
Comments.ThespecimenfoundinPatagoniacould  
and on an indeterminate host in India (Subramanian not be isolated, however diagnostic morphological  
&
Muthumary, 1986).  
features such as shape and size of conidiogenous  
cells and conidia fit well with those materials isolated  
Comments. The material on Nothofagus fully from the soil of a salt marsh at north of Sinai (Egypt).  
agrees with the original description of the species. The patagonian collection differs only in possessing  
Besides the species reported here, the genus conidiophores and having longer conidial chains  
contains two other ones: D. lythri (D.F. Farr & (up to 8 conidia) than in Egyptian specimens (2-3  
Rossman) D.F. Farr & Rossman on leaves of conidia) (Moustafa & Ezz-Eldin, 1989).  
495  
Bol. Soc. Argent. Bot. 58 (4) 2023  
Fig. 2. Dwiroopa ramya. A: Stromatic conidioma on decorticated wood. B: Two microconidia surrounded  
by macroconidia. C: View of the longitudinal germ slits of macroconidia. D: Conidium germinating through  
the longitudinal slit. Gilmaniella multiporosa. E: Sporodochial conidioma on substrate. F: Conidiophore. G:  
Conidiogenous cell. H: Conidia in chains. I: Terminal conidia showing multiple scars. Monodictys paradoxa. J:  
Conidioma on substrate. K: Conidium detached from the conidiogenous cell which narrows towards the apex.  
L: Conidium showing the lighter basal cells and a rest of the conidiogenous cell. M: Germinating conidium and  
formation of a new one. N: Different shapes and sizes of conidia. Pycnopeziza quisquiliaris. O: Vertical section  
of a conidioma. P: Chain of two conidia (phloxine stain). Q: Conidia attached to conidiogenous cells (phloxine  
stain). R: Conidiophore. Abbreviations= cg: conidiogenous cell; cp: conidiophore; mc: microconidia; s: scars; sl:  
germ slits. Scale bars= A: 1 mm; B–I, L–N, P: 15 µm; K, Q–R: 10 µm; O: 50 µm.  
496  
R. M. Sánchez & M. V. Bianchinotti - Ascomycetes on Nothofagaceae of Patagonia  
Material examined. ARGENTINA. Neuquén wood and bark from Malawi (Sutton, 1993); on  
Prov.: Parque Nacional Nahuel Huapi, National different parts of Rubus gracilis J. Presl & C. Presl  
Route 40, going from Villa La Angostura to Villa and Rubus sp. and bark of Sizyngium cumini (L.)  
Traful, 1 km before to the provincial access Route Skeels in Pakistan (Abbas & Sobia, 2008); on B.  
6
2
5 (40° 37’ 1.358” S, 71° 38’ 48.098” W), 16-V- pendula and Quercus sp. in Poland (Kieruczenko,  
007, on bark of N. Antarctica, Bianchinotti and 1976); on stems of Chrysanthemum coreanum (H.  
Sánchez 564 (BBB).  
Lév. & Vaniot) Nakai ex T. Mori. and cuttings of  
Rhododendron sp. and branches of R. dauricum L.  
5
. Monodictys paradoxa (Corda) S. Hughes, and R. sichotense Pojark. from Russia (Melnik &  
Canad. J. Bot. 36: 786. 1958. Fig. 2J-N.  
Papushoi, 1992; Melnik 2000; Pavlyuk, 2009); on  
unidentified twigs in Taiwan (Matsushima, 1980);  
Colonies superficial, discrete, punctate, on B. pendula in Scotland, Ukraine and United  
irregular, dark brown, bright. Mycelium scarce, Kingdom (Hughes, 1951; Hayova, 2011); on  
immerse, hyphae cylindrical, short, flexuous, wood of Acer saccharum Marshall and Lonicera  
thick walled, smooth, brown. Conidiophores canadensis Bartram & W. Bartram ex Marshall  
semi-macronematous, cylindrical, long, smooth, in the USA (Barr, 1978; Mack, 2022), and on  
hyaline, ca. 3 µm diam. Conidiogenous cells Glycyrrhiza glabra L. in Uzbekistan (Gafforov,  
monoblastic, integrated, terminal, cylindrical, 2017).  
short, sometimes narrowing to the apex, smooth,  
brown, 5-19 × 4-8 (M = 11.4 × 5.6). Conidia  
Comments. The specimen found in Patagonia  
irregular, globose, clavate or pyriform, smooth, agrees well with the original, just for a slight  
dark reddish brown, constricted at the thick difference in the size of conidiogenous cells.  
septa, 21-49 × 14-36 µm (M = 33.2 × 22.2; n = Species of Monodictys are widely spread around  
4
7), individual cells globose, guttulate, often 2–4 the world. When compared with the only three  
basal cells lighter. Monosporic isolates were done species previously recorded in South America, M.  
on NA, NGA and PDA following Goh (1999) paradoxa is distinct from M. castaneae (Wallr.)  
and placing groups of conidia over small pieces S. Hughes, found on leaves of Eucalyptus spp.  
of sterilized Nothofagus wood. Sporulation was in Brazil, because this latter has conidia formed  
observed at 7 days and formation of yellow by a few cells, with verrucose walls and truncate  
crystals appeared in some 4 months old cultures.  
base (Wellbaum et al., 1999). It differs from M.  
glauca (Cooke & Harkn.) S. Hughes, recorded  
Distribution and habitat. Growing on the bark on bark of Nothofagus betuloides in Tierra del  
of stems of Lophozonia alpina and L. obliqua Fuego (Argentina), due to its smaller conidia  
in Argentina; on bark of a dead branch of fallen (7-14 × 5-10 µm) (Godeas & Arambarri, 2007).  
Sorbus aucuparia L. tree in Belarus (Yurchenko, Lastly it could be distinguished from M. pelagica  
2
001); on Betula papyrifera Marshall and Betula (T. Johnson) E.B.G. Jones, recorded on bark  
sp. from Canada (Hughes, 1960, 1987); on standing of an indeterminate plant in Chile, for having  
senescent culms of Bambusa sp. and Miscanthus undifferentiated conidiophores and conidiogenous  
floridulus (Labill.) Warb. ex K. Schum. & Lauterb. cells, and slightly smaller conidia that when  
in China (Wong & Hyde, 2001); on Betula sp. mature they turn completely black so septa are not  
in Czech Republic (Corda, 1938); on Nectandra visible (34-44 × 17-31 µm) (Hughes & Chamut,  
sp. in Cuba (Mercado Sierra, 1981); on bark 1971).  
of Eucalyptus tereticornis Sm. and Eucalyptus  
sp. in India (Prasher & Verma, 2016); Prunus  
Material examined. ARGENTINA. Neuquén:  
yedoensis Matsum. in Japan (Matsushima, 1975); Parque Nacional Lanín, on the way to Lago Hui  
on indeterminate bark, twig and decayed wood Hui; 17-V-2007, on bark of L. alpine, Bianchinotti  
from Mexico (Heredia-Abarca, 1998); on dead and Sánchez 574 (BBB); ibid., in the path of ascent  
wood of Betula pendula Roth and Quercus robur to Cascada Chachín (40° 8′ 25.29″ S, 71° 40′ 3.84″  
L. in Lithuania (Treigiené & Markovskaja, 2003; W), 757 m alt., 17-V-2007, on bark of L. obliqua,  
Markovskaja & Treigiené 2005); on unidentified Bianchinotti and Sánchez 592 (BBB).  
497  
Bol. Soc. Argent. Bot. 58 (4) 2023  
6. Pycnopeziza quisquiliaris (Ellis & Everh.) W.L. usually considered a good expression of diversity in  
White & Whetzel, Mycologia 30: 192. 1938. Fig. a particular ecosystem (Bermudez & Lindemann-  
2O-R.  
Matthies, 2020). When the diversity of ascomycetes  
related to Nothofagus forests is compared between  
Conidiomata pycnidial, subperidermic, globose to our continent and Oceania, the greater specific  
obpiriform, dark brown when wet, black when dried, richness is registered in South America, both regions  
80-225 × 100-188 µm (M = 193 × 138); ostiolum share a few number of genera (less than 20) (Grandi  
1
star-shaped. Conidiophores cylindrical, subhyaline & Silva, 2006; Iturriaga & Minter, 2006; Minter &  
to pale brown, ca. 5-10 × 3 µm. Conidiogenous Peredo López, 2006; Minter & Silva, 2007; Biota of  
hyphae cylindrical, holothallic, discrete, determinate, New Zealand, 2023; Farr et al., 2023).  
smooth-walled, subhyaline to pale brown, ca. 10-26  
The mitosporic fungi reported here are rare  
×
3 µm (M = 14.4 × 3). Conidia cylindrical with species, mostly of them belong to genera poorly  
rounded ends, sometimes curved, centrally 1-septate, known. The species of the coelomycete genus  
constricted, guttulate, hyaline, 11-17 × 2-4 µm (M = Avettaea Petr. & Syd. are infrequently collected, and  
14 × 3; n = 34), forming chains of up to 3 conidia.  
no sequence data are available, thus their taxonomic  
placement remains uncertain (Wijayawardene et  
Distribution and habitat. Growing on decorticated al., 2016). This genus was first referred to South  
branches of Nothofagus antarctica in Argentina, on America by Bianchinotti (1993) who recorded the  
buds of Acer rubrum L. and on buds, leaves and same species, A. salvadorae, on bark of a native  
petioles of an undetermined herbaceous species, both leguminosae shrub, and so far, there has been no  
from the USA (White & Whetzel, 1938).  
other record of any species in the continent (Farr,  
973; Iturriaga & Minter, 2006; Minter & Peredo  
1
Comments. Pycnopeziza quisquilaris is the only López, 2006; Minter & Silva, 2007). In the material  
species in the genus with conidia deprived of described here, conidia are hyaline, probably because  
appendages. The patagonian material agrees well they are immature. Although the typical paraphyses  
with the originally described, which differs for its of A. salvadorae were not observed here, these could  
bigger conidiomata (400-1000 µm diameter) and be absent in some collections (Bianchinotti, 1993).  
longer chains of up to 16-20 conidia (White & This last feature, along with others such as the much  
Whetzel, 1938).  
smaller conidiomata, raises the question of whether  
it is a new species. Unlikely the scarce quantity of  
Material examined. ARGENTINA. Chubut: conidiomata found and the frustrated cultivation  
Parque Nacional Los Alerces, on the way to attempts have prevented the possibility to obtain  
Huemules forest, (42° 47’ 27.769’’ S, 71° 28’ molecular sequences. Additional material needs  
15.466’’W), 1137 m alt., 28-X-2006, on decorticated to be examined to perform a definite assignment.  
branches of N. antarctica, Bianchinotti and Sánchez The record of this uncommon species is important  
335 (BBB).  
because the original host species are endangered  
because of habitat loss.  
BactrodesmiumatrumisfirstrecordedinArgentina,  
and on a nothofagaceous host. Bactrodesmium  
Cooke constitutes a well-resolved lineage in the  
diScuSSion  
From the species of ascomycetes presented here, Savoryellales (Sordariomycetes) (Réblová et al.,  
five are recorded for the first time in the country, 2020). Four species have been previously registered  
while three of them are also cited in South America in SouthAmerica considering the old circumscription  
for the first time. All of them are first cited associated of the genus: B. aspidospermatis Bat., Peres & R.  
to a nothofagaceous host, adding to the ca. 200 Garnier in Brazil on Aspidosperma sp. (Batista et  
species mentioned by Farr et al. (2023) in relation al., 1965), B. microleucurum (Speg.) M.E. Ellis in  
to this plant family in South America. From these, Chile on Chusquea cumingii (Spegazzini, 1921;  
1
7
23 species have been recorded in Argentina and Ellis, 1965), B. peruvianum B. Sutton in Perú on  
6 in Chile, but just a few number of species (11) dead fallen leaves of Eucalyptus spp. (Sutton, 1977)  
are shared by both countries. Number of species are and B. traversoanum in Argentina on litter of N.  
498  
R. M. Sánchez & M. V. Bianchinotti - Ascomycetes on Nothofagaceae of Patagonia  
dombeyi (Gamundí et al., 1979). However, only  
This is the first record of Monodictys paradoxa  
two of them were included and accepted in the in South America. This species was originally  
updated circumscription proposed by Réblová et al. described by Corda (1838) as Sporidesmium  
(2020): B. peruvianum and B. traversoanum (as B. paradoxum Corda and then transferred by Hughes  
traversianum). On the contrary, B. aspidospermatis (1958) to Monodictys as M. paradoxa (Corda)  
is not mentioned and B. microleucurum is excluded S. Hughes. This species has been registered  
because of its effuse colonies and different septation many times in Asia and Europe, mainly on  
of conidia.  
bark and wood of different trees, and also on  
Dwiroopa Subram. & Muthumary, another submerged wood in salt water from mangroves  
coelomycete, is also considered an odd genus. Close (Ellis, 1971; Matsushima, 1975; Yurchenko, 2001;  
to Harknessia Cooke, the major morphological Jones & Vrijmoed, 2003; Abbas & Sobia, 2008).  
differences between both genera lie in conidial Other species of the genus have been previously  
features. According to phylogenetic studies (Xavier recorded in the continent in Argentina (Godeas  
et al., 2019), Dwiroopa stands as the only member & Arambarri, 2007), in Brazil (Wellbaum et al.,  
of the family Dwiroopaceae (Diaporthales). From 1999) and in Chile (Minter & Peredo López,  
the three known species in the genus, two are 2006).  
pathogens (D. lythri and D. punicae), while that  
reported here, D. ramya, is considered a saprophyte species constitutes another infrequent record, as  
Farr & Rossman, 2003; Xavier et al., 2019). Taking these have been described and, up to now, just  
Finally, the finding of a mitosporic Pycnopeziza  
(
into account that as D. lythri, D. ramya had been known from the northern hemisphere. No species  
previously found only once, this constitutes the had been previously recorded in the southern  
second world record of the species. The range of hemisphere nor from a woody substratum (Farr,  
distribution of the genus is thus expanded to South 1973; Iturriaga & Minter, 2006; Minter & Peredo  
America on a newly recorded host.  
López, 2006; Minter & Silva, 2007), so far this is  
Although considered cosmopolite, the the first record of the genus for the Neotropical  
hyphomycete Gilmaniella G.L. Barron seems to region and on wood. Most of Pycnopeziza species  
be rare in South America, being known only from grow on herbaceous substrata (buds, petioles and  
Argentina and Brazil. Godeas et al. (1977) isolated decaying leaves), just one species was described  
G. humicola G.L. Barron from soil, Mendes et al. as parasitic on lichens from Canada (Ihlen, 1998).  
(
1998) reported an indeterminate species of the genus However, without giving an explanation, Johnston  
on Glycine max L. and Pseudobombax munguba et al. (2014) doubt the belonging of this species  
Mart. & Zucc.) Dugand and now, with the finding in the genus. When the principle “one fungus  
(
of G. multiporosa, these are the unique published one name” was accepted and sanctioned in the  
records for the continent (Farr, 1973; Grandi & Code of Nomenclature (Turland et al., 2018),  
Silva, 2006; Iturriaga & Minter, 2006; Minter the separate naming of mitosporic and sexual  
&
Peredo López, 2006; Minter & Silva, 2007). states ended. Several changes were necessarily  
Initially monospecific, the genus now comprises introduced and several fungal names changed.  
eight species: G. bambuseae Umali, Goh & K. D. The specimen here described represents a good  
Hyde from bamboo, G. indica R.K. Dubey, A.N. example for this subject. It is a mitosporic state,  
Rai, S. Shrivast. & N.K. Verma on living leaves which in the past was named Acarosporium Bubák  
of Anogeissus acuminata (Roxb. ex DC.) Wall. ex & Vleugel. That genus comprised four species, all  
Guill. & Perr., G. multiporosa, G. nyukfahii Goh, considered to represent the anamorphic state of  
L.L. Lee & K.C. Teo from dung, G. subornata Pycnopeziza. Although the name of the anamorph  
Morinaga, Minoura & Udagawa from soil, G. had priority since it was introduced earlier,  
thermophila M. Qureshi & J.H. Mirza from dung, Johnston et al. (2014) proposed Pycnopeziza to be  
G. humicola (type species) on dung and soil and G. protected against Acarosporium, and synonymized  
punctiformis Sivan. & B. Sutton from burned leaves Acarosporium under Pycnopeziza because this  
(
Barron, 1964; Morinaga et al., 1978; Qureshi & last has available sequence data and the name  
Mizra, 1983; Sivanesan & Sutton, 1985; Umali et al., was widely used (Holst-Jensen et al., 1997, 2004;  
998; Dubey et al., 2011; Goh et al., 2013). Pärtel et al., 2017; Wijayawardene et al., 2017).  
1
499  
Bol. Soc. Argent. Bot. 58 (4) 2023  
However, lacking molecular sequences for the bibliograPhy  
asexual morph, the relationship of these two  
genera still remains uncertain. Currently the genus ABBAS, S. & M. SOBIA. 2008. Addition to mycoflora  
comprises five species: P. americana (Nag Raj)  
W.J. Li & K.D. Hyde, P. pachyderma (Rehm) W.L.  
of Syzygium cumini from Pakistan. Mycopathology  
6: 57-61.  
White & Whetzel, P. quisquilaris, P. sejournei ABBAS, S. & B. SUTTON. 1988. An addition to  
(
(
Boud.) Whetzel & W.L. White and P. sympodialis  
Bubák & Vleugel ex Bubák) W.L. White &  
Avettaea (Coelomycetes) from Pakistan. Trans. Br.  
Mycol. Soc. 90: 491-494.  
Whetzel (White & Whetzel, 1938; Whetzel &  
White, 1940; Li et al., 2020).  
Numbers of species of the Kingdom Fungi are  
under constant revision, and figures could vary  
BARR, M. 1978. Herbarium-The New York Botanical  
Garden. Available in: https://sweetgum.nybg.  
org/science/vh/specimen-details/?irn=4013590  
[Accessed on: June 2023]  
among authors but there is a general consensus BARRON, G. 1964. A new genus of the Hyphomycetes  
that published species represent just a small  
from soil. Mycologia 56: 514-518.  
fraction of total fungal diversity (Phukhamsakda BATISTA, A., J. BEZERRA & G. PERES. 1965.  
et al., 2022). Even in the most explored regions,  
Vonarxella e outros novos ascomycetos. Riv. Patol.  
the addition of new records goes hand in hand with  
Veg. Pavia Ser. 4: 61-69.  
making new collections. Argentina does not escape BERMUDEZ, G. & P. LINDEMANN-MATTHIES.  
this reality, and despite having a long tradition in  
mycological studies, the immensity of its territory  
in addition to the small number of specialists in  
2020. “What matters is species richness”-high  
school students’ understanding of the components of  
biodiversity. Res. Sci. Educ. 50: 2159-2187.  
some groups conspires so knowledge of its fungal BERTONATTI, C. & J. CORCUERA. 2000. Situación  
diversity is far from being complete. It is hoped  
that all data provided here, besides being useful to  
ambiental argentina 2000. 2ª ed. Fundación Vida  
Silvestre Argentina, Buenos Aires.  
help future collectors in the identification of newly BIANCHINOTTI, M. 1993. Contribución al  
collected specimens, will stimulate to continue  
performing exploratory studies in a vast, rich and  
still understudied area.  
conocimiento de los micromicetes de la Argentina.  
Deuteromycotina en Geoffroea decorticans  
(Leguminosae). II. Coelomycetes. Bol. Soc. Argent.  
Bot. 29: 3-6.  
BIANCHINOTTI,M.,P.CROUS&M.RAJCHENBERG.  
2002. Cryptosporiopsis lomati sp. nov. on Lomatia  
hirsuta in Southern Argentina. Sydowia 54: 1-8.  
BIANCHINOTTI, M. & M. RAJCHENBERG. 2004.  
Coleophoma gevuina comb. nov., a foliar pathogen  
on Gevuina avellana (Proteaceae). Sydowia 56:  
217-221.  
acKnowledgementS  
To Mario Rajchenberg, Alina Greslebin and  
María Belén Pildaín for sharing their knowledge  
about the sampling areas and their time in every  
collection trip. Consejo Nacional de Investigaciones  
CientíficasyTecnológicasandUniversidadNacional BIOTA OF NEW ZEALAND. 2023. Manaaki Whenua.  
del Sur for financial support, and the National Parks  
Administration of Argentina (Administración de  
landcareresearch.co.nz/ [Accessed on: June 2023]  
Parques Nacionales) for allowing us to collect the CABRERA, A. & A. WILLINK. 1980. Biogeografía  
samples in protected nature reserves of the Andean  
Patagonian forests.  
de América Latina, 2ª Ed. Monografías Científicas,  
Serie Biológica N°13, Secretaría General de la OEA,  
Washington.  
CORDA, A. 1838. Icones fungorum hucusque  
cognitorum. II. J. G. Calve, Praga.  
authorS’ contributionS  
CRISCI, J., M. CIGLIANO, J. MORRONE & S.  
ROIG-JUÑENT. 1991. Historical biogeography of  
Southern South America. Syst. Zool. 40: 152-171.  
DONOSO ZEGERS, C. 1993. Bosques templados de  
Chile y Argentina. Variación, estructura y dinámica.  
The two authors were involved in the collection,  
conditioning and examination of the samples, both  
in the field and in the laboratory, and finally in the  
writing of the manuscript.  
500  
R. M. Sánchez & M. V. Bianchinotti - Ascomycetes on Nothofagaceae of Patagonia  
Editorial Universitaria, Universidad Austral de  
Chile, Santiago de Chile.  
DUBEY, R., A. RAI, S. SHRIVASTAVA & N. VERMA.  
the segregate genera Fuscospora, Lophozonia, and  
Trisyngyne (Nothofagaceae). Phytotaxa 146: 1-31.  
HEREDIA-ABARCA, G. 1998. Hongos hyphomycetes  
de los municipios centrales del estado de Veracruz.  
Instituto de Ecología. Bases de datos SNIB-  
CONOABIO, proyecto B139. Mexico.  
HOLST-JENSEN, A., L. KOHN & T. SCHUMACHER.  
1997. Nuclear rDNA phylogeny of the  
Sclerotiniaceae. Mycologia 89: 885-899.  
2
011. Two new records of hyphomycetes from India.  
Indian Phytopathol. 64: 390-391.  
ELLIS, M. 1959. Clasterosporium and some allied  
dematiaceae-phragmosporae. II. Mycol. Pap. 72:  
1
-75.  
ELLIS, M. 1965. Dematiaceous hyphomycetes VI.  
Mycol. Papers 103: 1-46.  
HOLST-JENSEN, A., T. VRALSTAD  
& T.  
ELLIS, M. 1971. Dematiaceous hyphomycetes.  
Commonwealth Mycological Institute, Kew.  
FARR, M. 1973. An annotated list of Spegazzini’s fungus  
taxa. Bibliotheca Mycologica 35: 1-1661.  
SCHUMACHER. 2004. Kohninia linnaeicola,  
a new genus and species of the Sclerotiniaceae  
pathogenic to Linnaea borealis. Mycologia 96: 135-  
142.  
FARR, D. & A. ROSSMAN. 2003. Dwiroopa, a  
coelomycetous genus with two species. Mycoscience  
HUECK, K. 1978. Los bosques de Sudamérica: Ecología,  
composición e importancia económica. Sociedad  
Alemana de Cooperación Técnica, Eschborn.  
HUGHES, S. 1951. Studies on Microfungi. IV. Two fungi  
of Betula periderm. Mycolog. Pap. 37: 1-17.  
HUGHES, S. 1958. Revisiones Hyphomycetum aliquot  
cum appendice de nominibus rejiciendis. Canad. J.  
Bot. 36: 727-836.  
4
4: 443-446.  
FARR, D., A. ROSSMAN & L. CASTLEBURY. 2023.  
Fungal Databases, U.S. National Fungus Collections,  
[Accessed on: June 2023].  
GAFFOROV, Y. 2017. A preliminary checklist of  
Ascomycetous microfungi from Southern  
Uzbekistan. Mycosphere 8: 660-696.  
HUGHES, S. 1960. Canadian National Mycological  
Herbarium [online]. Available in: https://www.  
mycoportal.org/portal/collections/index.php  
[accessed: July 2023]  
GAMUNDÍ, I., A. ARAMBARRI & M. BUCSINSZKY.  
1
979. Micoflora de Nothofagus dombeyi, II.  
HUGHES, S. 1978. New Zealand fungi 25.  
Miscellaneous species. New Zealand J. Bot. 16:  
311-370  
HUGHES, S. 1987. Canadian National Mycological  
Herbarium [online]. Available in: https://www.  
mycoportal.org/portal/collections/index.php  
[accessed: July 2023]  
HUGHES, S. 1983. Bactrodesmium biformatum. Fungi  
Canadenses 258: 1-2.  
HUGHES, S. & P. CHAMUT. 1971. Lignicolous marine  
fungi from southern Chile, including a review of  
distributions in the southern hemisphere. Can. J.  
Bot. 41: 1-11.  
Darwiniana 22: 189-216.  
GODEAS, A. & A. ARAMBARRI. 2007. Hifomicetes  
lignícolas de Tierra del Fuego (Fungi, Fungi  
Imperfecti, Hyphomycetales). Bol. Soc. Argent. Bot.  
4
2: 59-69.  
GODEAS, A., S. MARCHAND & M. BERTONI. 1977.  
Micoflora del suelo de la Argentina VI. Algunos  
hongos imperfectos hallados frecuentemente en el  
suelo de la Pcia. de Bs. As. Bol. Soc. Argent. Bot.  
1
8: 33-35.  
GOH, T. 1999. Single-spore isolation using a hand-made  
glass needle. Fungal Div. 2: 47-63.  
GOH, T., L. LEE & K. TEO. 2013. A new coprophilous  
Gilmaniella species from Malaysia. Mycotaxon 125:  
IHLEN, P. 1998. The lichenicolous fungi on species of  
the genera Baeomyces, Dibaeis, and Icmadophila in  
Norway. Lichenologist 30: 27-57.  
2
35-241. http://dx.doi.org/10.5248/125.235  
GRANDI, R. & T. SILVA. 2006. Fungos anamorfos  
decompositores do folhedo de Caesalpinia echinata  
Lam. Rev. Bras. Botanica 29: 275-287.  
ITURRIAGA, T. & D. MINTER. 2006. Hongos de  
HAYOVA, V. 2011. New for Ukraine records of fungi  
JOHNSTON, P., K. SEIFERT, J. STONE,A. ROSSMAN  
& L. MARVANOVÁ. 2014. Recommendations on  
generic names competing for use in Leotiomycetes  
(Ascomycota). IMA Fungus 5: 91-120.  
(Ascomycota) from the Gorgany Nature Reserve.  
Ukr. Bot. J. 68: 865-873.  
HEANNAN, P. & R. SMISSEN. 2013. Revised  
circumscription of Nothofagus and recognition of  
https://doi.org/10.5598/imafungus.2014.05.01.11  
501  
Bol. Soc. Argent. Bot. 58 (4) 2023  
JONES, E. & L. VRIJMOED. 2003. Biodiversity  
of marine fungi in Hong Kong coastal waters.  
In: MORTON, B. (ed.), Perspectives on marine  
environment change in Hong Kong and Southern  
China 1977-2001, pp. 75-92. Hong Kong.  
KIERUCZENKO, K. 1976. Herbarium Universitatis  
PÄRTEL, K., O. BARAL, H. TAMM & K. PÕLDMAA.  
2017. Evidence for the polyphyly of Encoelia and  
Encoelioideae with reconsideration of respective  
families in Leotiomycetes. Fungal Div. 82: 183-219.  
PAVLYUK, N. 2009. Mycobiota of ornamental plants of  
the Botanical Garden-Institute FEB RAS. Doctoral  
Thesis. Russian Academy of Science, Vladivostok.  
PHUKHAMSAKDA, C., R. NILSSON, C. BHUNJUN,  
A. DE FARIAS, … & K. HYDE. 2022. The numbers  
of fungi: Contributions from traditional taxonomic  
studies and challenges of metabarcoding. Fungal  
Divers. 114: 327-386.  
PIROZYNSKI, K. 1972. Microfungi of Tanzania.  
I. Miscellaneous fungi on oil palm. II. New  
hyphomycetes. Mycol. Pap. 129: 1-64.  
PRASHER, I. & R. VERMA. 2016. The genus  
Monodictys from Himachal Pradesh. Kavaka 47:  
138-142.  
QURESHI, M. & J. MIRZA. 1983. Gilmaniella  
thermophila Qureshi & Mirza, sp. nov. a new  
thermophilic fungus from Pakistan. Biologia 29:  
341-342.  
RÉBLOVÁ, M., M. HERNÁNDEZ-RESTREPO, J.  
FOURNIER & J. NEKVINDOVÁ. 2020. New  
insights into the systematics of Bactrodesmium and  
its allies and introducing new genera, species and  
morphological patterns in the Pleurotheciales and  
Savoryellales (Sordariomycetes). Stud. Mycol. 95:  
415-466.  
https://doi.org/10.1016/j.simyco.2020.02.002  
SÁNCHEZ, R. & M. BIANCHINOTTI. 2007.  
Dothiorina: taxonomic concepts and comments on  
its conidiogenesis. Mycotaxon 102: 395-402.  
SÁNCHEZ, R. & M. BIANCHINOTTI. 2010. New  
records in the Tubeufiaceae fromAndean Patagonian  
forests of Argentina. Mycotaxon 111: 131-141.  
SÁNCHEZ, R. & M. BIANCHINOTTI. 2015. Nuevos  
registros de Dothideomycetes (Ascomycota) no  
liquenizantes de los bosques andino patagónicos de  
Argentina. Darwiniana 3: 216-226.  
[
accessed: July 2023]  
LI, W., E. MCKENZIE, J-K. LIU, D. BHAT, … & K.  
HYDE. 2020. Taxonomy and phylogeny of hyaline-  
spored coelomycetes. Fungal Div. 100: 279-801.  
MACK, J. 2022. The biodiversity of microfungi isolated  
from the bark of the Sugar Maple (Acer saccharum).  
Master Thesis. Carleton University, Canada.  
MARKOVSKAJA, S. & A. TREIGIENÉ. 2005.  
Microscopic Fungi of Viesvilé Strict Nature  
Reserve. Preliminary studies. Bot. Lithuan. 11:  
1
67-178.  
MATSUSHIMA, T. 1975. Icones microfungorum a  
Matsushima lectorum. Matsushima, Kobe.  
MATSUSHIMA, T. 1980. Saprophytic microfungi from  
Taiwan Part 1. Matsushima Mycol. Mem. 1: 1-82.  
MENDES, M., V. DA SILVA, J. DIANESE, M.  
FERREIRA, … & C. CASTRO. 1998. Fungos  
em Plantas no Brasil. Embrapa-SPI/Embrapa-  
Cenargen, Brasilia.  
MELNIK, V. 2000. Fam. Dematiaceae (Definitorium  
fungorum Rossiae. Classis Hyphomycetes. Fasc. 1).  
Nauka, St. Petersburg.  
MELNIK, V., I. PAPUSHOI. 1992. Imperfect fungi  
on trees and shrubs: An illustrated handbook.  
Shtiintsa, Kishinev.  
MERCADO SIERRA, A. 1981. Lista preliminar de  
hifomicestes dematiaceos de la Estación Ecológica  
de Sierra del Rosario y Zonas adyacentes. Acta Bot.  
Cub. 6: 1-6.  
SÁNCHEZ,R.,C.CARMARÁN&M.BIANCHINOTTI.  
2018. Ostreichnion (Dothideomycetes, Ascomycota)  
en los bosques andino patagónicos (Argentina).  
Darwiniana 6: 47-57.  
MINTER, D. & M. SILVA. 2007. Fungi of Brazil.  
MORINAGA, T., K. MINOURA & S. UDAGAWA.  
https://doi.org/10.14522/darwiniana.2018.61.774  
SÁNCHEZ, R., A. MILLER & M. BIANCHINOTTI.  
2012.AnewspeciesofAcanthostigma(Tubeufiaceae,  
Dothideomycetes) from the Southern Hemisphere.  
Mycologia 104: 223-231.  
1
978. New species of microfungi, from South East  
Asian soil. Trans. Mycol. Soc. Japan 19: 135-148.  
MOUSTAFA, A. & E. EZZ-ELDIN. 1989. Gilmaniella  
multiporosa, a new dematiaceous hyphomycete from  
Egyptian soils. Mycol. Res. 92: 502-505.  
https://doi.org/10.3852/11-105  
502  
R. M. Sánchez & M. V. Bianchinotti - Ascomycetes on Nothofagaceae of Patagonia  
SÁNCHEZ, R., A. MILLER & M. BIANCHINOTTI.  
019. New species of Capronia (Herpotrichiellaceae,  
WALLER, J., J. LENNÉ & S. WALLER. 2001. Plant  
Pathologist’s Pocketbook. 3rd edition. CABI  
Publishing, Wallingford.  
WELLBAUM, C., I-H. SCHOENLEIN-CRUSIUS & V.  
BARRO DOS SANTOS. 1999. Fungos filamentosos  
em folhas do ambiente terrestre e aquático da Ilha  
dos Eucaliptos, Represa do Guarapiranga, São  
Paulo, SP. Rev. Bras. Bot. 22: 69-74.  
WHETZEL, H., W. WHITE. 1940. Mollisia tetrica,  
Peziza sojournei, and the genera Phaeociboria and  
Pycnopeziza. Mycologia 32: 609-620.  
WHITE, W. & H. WHETZEL. 1938. Pleomorphic life  
cycles in a new genus of the Helotiaceae. Mycologia  
30: 187-203.  
2
Ascomycota) species from Patagonian forest,  
Argentina. Plant Fungal Syst. 64: 81-90.  
SILVERA-SIMÓN, C., J. MENA-PORTALES, J. GENÉ,  
J. CANO & J. GUARRO. 2009. Repetophragma  
calongeii sp. nov. and other interesting dematiaceous  
hyphomycetes from the North of Spain. Anales Jard.  
Bot. Madrid 66S1: 33-39.  
SIVANESAN, A. & B. SUTTON. 1985. Microfungi on  
Xanthorrhoea. Trans. British Mycol. Soc. 85: 239-255.  
SPEGAZZINI, C. 1921. Mycetes Chilensis. Bol. Acad.  
Nac. Ci. Córdoba 25: 1-124.  
SUBRAMANIAN, C. & J. MUTHUMARY. 1986.  
Dwiroopa, a new genus of the Coelomycetes. Proc.  
Indian Acad. Science (Plant Science) 96: 191-197.  
SUTTON, B. 1977. Some dematiaceous Hyphomycetes  
from Eucalyptus leaf litter. Bol. Soc. Argent. Bot.  
WIJAYAWARDENE, N., K. HYDE, D. WANASINGHE,  
M. PAPIZADEH & Y. WANG. 2016. Taxonomy and  
phylogeny of dematiaceous coelomycetes. Fungal  
Divers. 77: 1-316.  
1
8: 154-161.  
https://doi.org/10.1007/s13225-016-0360-2  
WIJAYAWARDENE, N., K. HYDE, S. TIBPROMMA,  
D. WANASINGHE, … & L. FU. 2017. Towards  
SUTTON, B. 1993. Mitosporic fungi from Malawi.  
Mycol. Pap. 167: 1-93.  
TREIGIENÉ, A. & S. MARKOVSKAJA. 2003. New  
data on anamorphic fungi on oak (Quercus) in  
Lithuania. Bot. Lithuan. 9: 285-296.  
incorporating asexual fungi in a natural  
classification: checklist and notes 2012-2016.  
Mycosphere 8: 1457-1555.  
TURLAND, N., J. WIERSEMA et al. (eds.). 2018.  
International Code of Nomenclature for algae,  
fungi, and plants (Shenzhen Code), adopted by  
the Nineteenth International Botanical Congress  
Shenzhen, China, July 2017. Regnum Vegetabile  
WONG, M. & K. HYDE. 2001. Diversity of fungi on six  
species of Gramineae and one species of Cyperaceae  
in Hong Kong. Mycol. Res. 105: 1485-1491.  
XAVIER, K., K. AN, P. CROUS, J. GROENEWALD  
& G. VALLAD. 2019. Dwiroopa punicae sp. nov.  
(Dwiroopaceae fam. nov., Diaporthales), associated  
with leaf spot and fruit rot of pomegranate (Punica  
granatum). Fungal Syst. Evol. 4: 33-41.  
YURCHENKO, E. 2001. On some wood-inhabiting  
dematiaceous hyphomycetes with remarkable  
conidia in Belarus. Mycena 1: 32-54.  
ZHAO, G., X. LIU, X. XIE & A. CAO. 2009. Saprobic  
dematiaceous hyphomycetes from Shennongjia  
region, China. Nova Hedwigia 88: 217-227.  
1
59. Koeltz Scientific Books, Glashütten.  
https://doi.org/10.12705/Code.2018  
UMALI, T., T. GOH & K. HYDE. 1998. A new species  
of Gilmaniella from Hong Kong. Mycol. Res. 102:  
4
35-438.  
VAN RYCKEGEM, G. & A. VERBEKEN. 2005. Fungal  
ecology and succession on Phragmites australis  
in a brackish tidal marsh. II. Stems. Fung. Div. 20:  
2
09-233.  
503