develoPment of microSatellite marKerS for the  
american SPecieS vachellia aroma (fabaceae,  
caeSalPinodeae)  
deSarrollo de marcadoreS microSatéliteS Para la eSPecie  
americana vachellia aroma (fabaceae, caeSalPinodeae)  
Carolina L. Pometti , Cecilia F. Bessega , Mauricio Ewens  
& Beatriz O. Saidman  
Juan C. Vilardi  
Summary  
Background and aims:There are currently no microsatellite markers available for any  
American species of Vachellia, and particularly, for V. aroma. Then the aims of this  
study were to develop SSR markers specific for V. aroma, for the first time, and test  
its amplification in a close related species.  
M&M: For the development of the SSR in V. aroma, total genomic DNA was extracted  
and it was sequenced in a one-fourth run on a Roche 454 GS FLX+ platform. The  
study area included two Argentinean populations: San José and Robles, Santiago  
del Estero province.  
Results: We detected 422 sequences containing SSR loci. A set of 39 primer pairs  
presented amplified products in V. aroma and V. caven, but 12 revealed clear,  
replicable and polymorphic loci in V. aroma.  
Conclusions: The results of this work indicate that a new set of SSR markers  
was developed for V. aroma and their transferability to V. caven was assessed.  
The analysis of variability, showed that these 12 polymorphic markers are highly  
informative, and a powerful tool to investigate population genetics parameters in V.  
aroma and related species.  
1
. Laboratorio de Genética,  
Departamento de Ecología,  
Genética y Evolución, Instituto  
IEGEBA (CONICET- UBA), Facultad  
de Ciencias Exactas y Naturales,  
Universidad de Buenos Aires,  
Buenos Aires, Argentina  
2
.
Estación Experimental  
Fernández-UCSE (Convenio  
Provincia Santiago del Estero-  
Universidad Católica Santiago  
del Estero), Santiago del Estero,  
Argentina  
KeywordS  
Citar este artículo  
POMETTI, C. L., C. F. BESSEGA,  
M. EWENS, J. C. VILARDI & B. O.  
SAIDMAN. 2024. Development  
of microsatellite markers for the  
American species Vachellia aroma  
454 pyrosequencing, polymorphic SSR, Vachellia aroma, Vachellia caven.  
reSumen  
Introducción y objetivos: Actualmente, no existen marcadores microsatélites  
disponiblesparaningunaespecieamericanadelgéneroVachellia, yparticularmente,  
para V. aroma. Por lo tanto, los objetivos de este estudio fueron desarrollar  
marcadores SSR específicos para Vachellia aroma por primera vez, y probar su  
amplificación en una especie emparentada.  
(
Fabaceae, Caesalpinodeae). Bol.  
Soc. Argent. Bot. 59: 27-32.  
M&M: Para el desarrollo de los microsatélites en V. aroma, se extrajo ADN genómico  
total de un individuo y este fue secuenciado en un cuarto de placa en una plataforma  
Roche 454 GS FLX+. El área de estudio comprendió dos poblaciones argentinas:  
San José y Robles, provincia de Santiago del Estero.  
Resultados: Detectamos 422 secuencias que contenían loci microsatélites. Un set  
de 39 pares de cebadores presentó amplificación de productos en Vachellia aroma  
y Vachellia caven, pero doce de ellos mostraron un patrón claro, reproducible y  
polimórfico en V. aroma.  
Conclusiones: Los resultados de este trabajo indican que se ha desarrollado un  
nuevo set de marcadores SSR específicos para V. aroma y su transferencia a V.  
caven fue exitosa. El análisis de variabilidad mostró que estos 12 marcadores  
polimórficos son altamente informativos, constituyendo una poderosa herramienta  
para investigar parámetros de la genética de poblaciones en V. aroma y especies  
relacionadas.  
PalabraS clave  
454 pirosecuenciación, SSR polimórficos, Vachellia aroma, Vachellia caven.  
Recibido: 24 Mar 2023  
Aceptado: 4 Mar 2024  
Publicado impreso: 31 Mar 2024  
Editora: Viviana Solis Neffa  
ISSN versión impresa 0373-580X  
ISSN versión on-line 1851-2372  
27  
Bol. Soc. Argent. Bot. 59 (1) 2024  
introduction  
species of Vachellia, and particularly, for V. aroma.  
Then, this motivated us to the aims of this study  
Vachellia aroma, synonym Acacia aroma (Gillies that were to develop, for the first time, SSR markers  
ex Hook. & Arn.) Seigler & Ebinger (Seigler & specific for Vachellia aroma, an American species,  
Ebinger, 2006), (Fabaceae, Caesalpinoideae) is a and test its amplification in a close related species.  
tree that inhabits Central and South America, and the  
Caribbean. In South America, the applications for  
this tree are several. The wood has many uses, like materialS and methodS  
charcoal and fuel, and more important, construction of  
hard structures (del Valle Perea et al., 2007). A study  
One silica gel-dried leaf sample of V. aroma  
of the properties of its wood, yielded to a hard, dense belonging to one individual from Robles, Santiago  
and durable one with the possibility of even more del Estero, Argentina (S 63°58’ 59.76”; W 28° 3’  
potential uses (Pometti et al., 2009). Furthermore, 12.78”) was used in a simple sequence repeat (SSR)  
its twigs and leaves are used in traditional medicine scan at the whole genome level. Total genomic  
as infusion to treat gastritis, liver and stomach DNA was extracted with Mini Plant DNAeasy Kit  
disorders, and as a digestive aid (Carrizo et al., 2005); (Quiagen) according to manufacturer manual. Then,  
also, the leaves have antiseptic properties, useful in it was sequenced in a one-fourth run on a Roche  
several affections of skin, throat, eyes and canker 454 GS FLX+ platform (454 Life Sciences, a Roche  
(
&
Martínez Crovetto, 1981; Cialdella, 1984; Alonso Company, Branford, Connecticut, USA) by the  
Desmarchelier, 2005; del Valle Perea et al., 2007). INDEAR, Rosario, Argentina, service.  
As regards its cultivation, it adapts to silvopastoral In order to identify microsatellite sequences  
production systems. Their fruits and leaves serve as in the contigs obtained, we used the software  
forage for goats, sheep and cattle (Demaio et al., 2002; MSATCOMMANDER v. 0.8.2 (Faircloth, 2008).  
del Valle Perea et al., 2007), but the size of the thorns We used the option Design primer, in which the  
turn the access to the higher branches very difficult. In software searches for microsatellite repeats and  
this line, several years ago, we started an improvement identifies possible primer annealing sites in one step.  
program of controlled crossings aiming to reduce Primer3 (Rozen & Skaletsky, 2000) is implemented in  
the size of the thorns in the Estación Experimental MSATCOMMANDER for primer design according  
Fernández, Santiago del Estero, Argentina.  
to the following criteria: amplification products  
The microsatellites or Simple Sequence Repeat within the size range of 100-500 bp, optimal melting  
(
SSR) are short sequences, from two to six nucleotides, temperature (range 57-62 ºC), optimal GC content of  
tandem repeated that can vary in number and sequence 50%, possession of at least 1-bp GC clamp, low levels  
across the different individuals. The main advantage of self- or pair-complementary, and maximum end  
that these markers offer for the genome analysis stability (D G) of 8.0 (Faircloth, 2008).  
is their abundance and dispersion in the DNA.  
Amplification through PCR was performed on  
Its value consists in their multialellic nature and individual loci in 50µl reactions containing 10/30  
codominat inheritance, allowing the detection of ng DNA, 0.6 mM each primer, 0.2 mM dNTPs, 0.3  
several variants in the population. The SSR can be U Taq DNA polymerase (Invitrogen, Buenos Aires,  
found in all the eukaryote organisms, they are highly Argentina), and 1.5 mM MgCl . A T21 IVEMA  
2
polymorphic, and, although they are genome-specific, thermal cycler (IVEMA, Buenos Aires, Argentina)  
they could be transferred across species, according was used for amplifications, where the cycling  
to the phylogenetic distance between them and the profile was initial denaturation at 94 ºC for 5 min;  
loci conservation (Ferreira, 2003). Therefore, these followed by 40 cycles at 94 ºC for 45s denaturation,  
markers have become a very valuable tool for the primer-specific annealing temperature (53-58 ºC;  
genetic mapping of species, diversity analyses, studies see Table 1) for 45 s, extension at 72 ºC for 45 s;  
of gene flow and differentiation between populations, and a final extension at 72 ºC for 10 min. PCR  
and genetic improvement and breeding (Contreras et products were run in a 6% (w/v) polyacrylamide gel  
al., 2020).  
containing 5 M urea in 1% TBE buffer (89 mM Tris,  
There are currently, to our knowledge, no 89 mM boric acid, 2 mM EDTA, pH 8) with a 10-bp  
microsatellite markers available for any American DNA Ladder (Invitrogen) size marker. Gels were  
28  
C. L. Pometti et al. - New SSR markers for Vachellia aroma  
Table 1. Characteristics of the polymorphic microsatellite markers developed in Vachellia aroma.  
Abbreviations= F: forward; R: reverse; Ta: annealing temperature.  
Locus  
Primer sequence (5´-3´)  
F: TGAGAGTTAGCGGTACAGGC  
R: GCCAACTCTAAGAAGCAGCG  
F: ATCCCATTCGATCCCTGAGC  
R: GTGTTGTAAGTCGCGACCTG  
F: TCCCTTTACTTCCCTTGGCC  
R: AGAGAGCAAGACAGTCCAGC  
F: CGACCCACACTTGAGAAAGC  
R: CGCCATGATTCTTCTCCTGC  
F: TCCTCCTTCAGCACTCCTTC  
R: CTCAGAAGTGCAGGGAGGAG  
F: CATGTCCGTTGTCCCTTCTC  
R: CTCTCTTTGCAGCACCTTGG  
F: CAGAAAGCCGAGCAAGAGTG  
R: TCAGGGTCAAGAAACGTTGTG  
F: TTTCTTCCCATCCAAGCGG  
R: CCTTTACACCATCACCGCAC  
F: CATCTAGAGGCTTTGCTTGGTG  
R: TGACATACTTCTGCTGGGCG  
F: GGGAGTGCGCATTAAGATCAG  
R: GATTCATGCATGTCCCACAAG  
F: GTGGCAGACTCACCTCCTAC  
R: GACGAGGAGTTCAATGTTTGTC  
F: TCGGTTGCATAATTGGAGGG  
R: TCGAAGGCCAACTGTAATATCC  
Ta (ºC)  
Motif  
Product size (bp)  
Accession  
TU03  
56  
(AATC)4  
300- 306  
OR231272  
TU04  
TU08  
56  
55  
54  
57  
53  
58  
55  
57  
57  
56  
54  
(AATG)4  
(AACTG)4  
(ATC)4  
382- 390  
385- 390  
213-222  
400- 410  
284- 294  
326- 334  
357- 362  
324- 328  
317- 325  
354- 358  
170- 180  
OR231273  
OR231274  
OR231275  
OR231276  
OR231277  
OR231278  
OR231279  
OR231280  
OR231281  
OR231282  
OR231283  
TU13  
TU39  
(AACTG)4  
(AAAAT)4  
(ACTG)4  
(AAAAG)4  
(ACGC)5  
(AAAG)5  
(AAAT)5  
TU61  
TU80  
TU114  
TU123  
TU131  
TU134  
TU154  
(AAAGG)4  
stained with silver nitrate. For all the polymorphic Argentinean populations (10 from San José (SJ): S  
loci that generated clear and reproducible patterns, 63°49’54.90”; W 27°52’52.92” and 10 from Robles  
we calculated observed, expected, and unbiased (RO): S 63°58’59.76”; W 28° 3’12.78”, Santiago  
expected heterozygosity, the effective number of del Estero province). The primers were also assayed  
alleles, Nei’s genetic distance (Nei, 1978), Wright in two individuals of Vachellia caven (Molina)  
(
1978) fixation indices (F or inbreeding coefficient Seigler & Ebinger, a related species, to test cross  
IS  
and FST that estimates the genetic differentiation amplification.  
between populations) and Chi-Square Hardy-  
Weinberg equilibrium test using GenAlEx 6.5  
(
Peakall & Smouse, 2012) and the polymorphism reSultS and diScuSSion  
information content (PIC) using MolMarker  
Jahnke et al., 2022). The PIC index describes  
(
The 454 sequencing of V. aroma was assembled  
diversity within populations and characterizes the into 9449 contigs where we detected 422 sequences  
degree of polymorphism at each locus (Botstein et containing SSR loci; 239 (56.7%) di-, 113 (26.8%)  
al., 1980). In order to calculate all these indices, tri-, 15 (3.5%) tetra-, 27 (6.4%) penta-, 12 (2.8%)  
we used 20 individuals in total, belonging to two hexanucletide and 16 (3.8%) with complex motifs.  
29  
Bol. Soc. Argent. Bot. 59 (1) 2024  
The most frequent number of tandem repeats  
Across the sample size, we found between two  
within dinucleotide motifs was 8, in the case to four alleles (A), with an average of 2.417 and  
of trinucleotides and tetranucleotides the most 2.5 alleles in San José and Robles, respectively.  
frequent configuration included 5 repeats, and In all cases, Ne is lower than A, the mean number  
finally, 4 times was most frequent for penta- and of effective alleles (Ne) was 1.787 and 1.911 in  
hexanucleotides.  
San José and Robles respectively, ranging from  
A set of 39 primer pairs was selected according 1.308 to 2.916 for the two populations. Mean  
to ascending order on primer pair penalty value to heterozygosity was 0.336/0.425, 0.412/0.463  
test the amplification success. All these primers and 0.433/0.488, in San José/Robles (Observed  
presented amplified products in V. aroma and V. Heterozygosity [H ], Expected Heterozygosity  
O
caven with the same intensity, but only 12 revealed [He] and Expected and Unbiased Heterozygosity  
clear and polymorphic loci in V. aroma (Table [uHe], respectively) (Table 2). All these estimates  
1
) (the polymorphism was not tested in V. caven are similar to those calculated for the SSRs of  
because we only tested the cross amplification). Acacia nilotica ssp. indica (synonym Vachellia  
Table 2. Descriptive statistics for polymorphic microsatellites in Vachellia aroma. Abbreviations= N: Sample size;  
A: Number of different alleles; Ne: Number of effective alleles, 1 / (Sum pi^2); Ho: Observed heterozygosity, No.  
of Hets / N; He: Expected heterozygosity, 1 - Sum pi^2; uHe: Unbiased expected heterozygosity, (2N / (2N-1)) *  
He; F : Fixation index; P H-W test: P value for the Hardy-Weinberg equilibrium test (the asterisks show the level  
is  
of significance for Hardy-Weinberg equilibrium test: *P< 0.05, **P<0.01); PIC: Polymorphic information content;  
SE: Standard error; 95% Confidence interval of F between square brackets.  
is  
Population Locus  
N
A
3
3
2
3
3
2
2
2
3
2
2
2
Ne  
Ho  
He  
UHe  
Fis  
P H-W test PIC  
San José  
TU13  
TU61  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
1,847 0,545 0,459 0,481  
2,180 0,091 0,541 0,567  
1,862 0,182 0,463 0,485  
2,916 0,455 0,657 0,688  
1,322 0,273 0,244 0,255  
1,308 0,273 0,236 0,247  
1,342 0,100 0,255 0,268  
1,541 0,455 0,351 0,368  
-0,189  
0,832  
0,607  
0,308  
-0,119  
-0,158  
0,608  
-0,294  
0,175  
-0,429  
0,214  
0,200  
0,300  
0,011*  
0,044*  
0,427  
0,965  
0,601  
0,055  
0,329  
0,445  
0,175  
0,477  
0,527  
0,387  
0,539  
0,356  
0,598  
0,228  
0,208  
0,222  
0,290  
0,409  
0,332  
0,356  
0,305  
0,445  
0,260  
0,556  
0,379  
0,351  
0,247  
0,462  
0,365  
0,332  
0,305  
0,485  
0,365  
0,372  
0,372  
0,383  
0,083  
TU123  
TU131  
TU80  
TU39  
TU154  
TU03  
TU04  
1,942 0,400 0,485  
0,511  
TU08  
1,724 0,600 0,420 0,442  
1,862 0,364 0,463 0,485  
1,600 0,300 0,375 0,395  
TU134  
TU114  
Mean 10,000 2,417 1,787 0,336 0,412 0,433 0,146 [-0,078/0,371]  
SE  
0,000 0,149 0,129 0,047 0,037 0,039  
0,114  
-0,311  
0,753  
0,341  
0,623  
-0,359  
0,167  
0,524  
-0,333  
-0,062  
-0,250  
-0,414  
0,798*  
Robles  
TU13  
TU61  
TU123  
TU131  
TU80  
TU39  
TU154  
TU03  
TU04  
TU08  
TU134  
TU114  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
4
3
2
3
3
2
2
2
3
2
2
2
2,564 0,800 0,610 0,642  
1,681 0,100 0,405 0,426  
1,835 0,300 0,455 0,479  
1,361 0,100 0,265 0,279  
2,062 0,700 0,515 0,542  
1,923 0,400 0,480 0,505  
1,724 0,200 0,420 0,442  
1,600 0,500 0,375 0,395  
2,299 0,600 0,565 0,595  
1,923 0,600 0,480 0,505  
1,980 0,700 0,495 0,521  
1,980 0,100 0,495 0,521  
0,844  
0,004**  
0,281  
0,018*  
0,407  
0,598  
0,098  
0,292  
0,963  
0,429  
0,190  
0,012*  
Mean 10,000 2,500 1,911 0,425 0,463 0,488 0,123 [-0,142/0,387]  
SE 0,000 0,195 0,091 0,075 0,026 0,027 0,135  
30  
C. L. Pometti et al. - New SSR markers for Vachellia aroma  
nilotica) (Number of alleles between 2-3, Ho concluSionS  
ranging from 0- 0.493, He ranging from 0.139-  
. 493), an African species that also belongs to  
0
The results of this work indicate that a set of SSR  
the genus Vachellia (Wardill et al., 2004). The markers was developed, for the first time, for V.  
values of heterozygosity, particularly He, were aroma, an American species of the genus Vachellia  
larger than that estimated from 401 AFLP loci and their transferability to V. caven was assessed.  
in six Argentinean populations of V. aroma (He= The analysis of variability, shows that these 12  
0
.2) (Pometti et al., 2018). The Hardy-Weinberg polymorphic markers are highly informative, and  
equilibrium was tested locus by locus, and a powerful tool to investigate population genetics  
showed that two out of twelve loci were not at the parameters in V. aroma and related species.  
equilibrium for San José and three out of twelve  
In conclusion, the present SSR markers could be  
were not for Robles (Table 2). In those cases, used for estimating genetic variability and structure,  
where the loci are not in equilibrium, a possible include in developing breeding programs, and in  
cause could be the excess of homozygotes for each population studies where informative markers are  
locus. This could be concluded because of the Fis needed, with the potential transferability across the  
values (Table 2). However, the fixation index Fis genus Vachellia.  
(
or inbreeding coefficient) was also estimated  
in the two populations and the mean value was  
0
.146 and 0.123 for SJ and RO, respectively, authorS contributionS  
indicating that although the estimates are positive  
suggesting some amount of inbreeding, both  
Conceptualization: CLP; Formal analysis:  
populations are in Hardy-Weinberg equilibrium CLP, CFB; Funding acquisition: CLP, CFB;  
because its 95% confidence interval contains Investigation: CLP, CFB, ME; Methodology: CLP;  
the 0, P>0.05 in both cases (Table 2). Estimates Project administration: CLP, CFB; Supervision:  
of Nei’s genetic distance (0.091) and Wright’s CLP; Visualization: CLP, CFB, ME, JCV, BOS;  
FST (0.051) between populations showed an Writing-original draft: CLP, CFB, JCV, BOS  
appreciable differentiation between them with  
the SSR markers, and were also consistent with  
previous estimates for the same populations acKnowledgmentS  
with AFLP markers (Pometti et al., 2018). In  
V. aroma, the PIC ranged from 0.208 to 0.598  
in San José and from 0.247 to 0.556 in Robles the following funding: Consejo Nacional de  
Table 2). PIC values lower than 0.25 indicate Investigaciones Científicas y Técnicas (CONICET)  
low polymorphism, values between 0.25 and PIP 11220200100477CO to CLP; ANPCyT PICT-  
.5 indicate average polymorphism and values 2021-00307 to CLP and PICT 2020-1402 to  
The present work was conducted thanks to  
(
0
higher than 0.5 indicate high polymorphism. CFB; Universidad de Buenos Aires, UBACYT  
Two loci were highly polymorphic for SJ (TU61 20020190200106BA to CFB.  
and TU131) and three for RO (TU13, TU80  
and TU04), the remaining ones were average Competing interests  
polymorphic for both populations. Although,  
The authors have declared that no competing  
these results could be biased by the use of interests exist.  
polyacrylamide high resolution gels instead of  
automatic sequencer, which could underestimate  
the parameters of genetic diversity, here the data bibliograPhy  
set can be considered useful and can in the future  
replace other more laborious markers. In future ALONSO, J., & C. DESMARCHELIER. 2005. Plantas  
works, a sub-sample of these 12 loci could be  
used for population-genetics studies, based in  
the higher A and He, for example TU03, TU04,  
TU08, TU13, TU80 and TU 131.  
medicinales autóctonas de la Argentina. Bases  
científicas para su aplicación en atención primaria  
de la salud, pp. 136-139. Ed. L.O.L.A., Buenos  
Aires.  
31  
Bol. Soc. Argent. Bot. 59 (1) 2024  
BOTSTEIN, D., R. D. WHITE, M. SKOLNICK, & R.  
W. DAVIS. 1980. Construction of a genetic linkage  
map in man using restriction fragment length  
polymorphisms. Am. J. Hum. Genet. 32: 314-331.  
CARRIZO, E. DEL V., M. O. PALACIO, & L. D.  
ROIC (ex aequo). 2005. Uso medicinal de algunas  
especies nativas en Santiago del Estero (República  
Argentina). Dominguezia 21: 25-32.  
MARTÍNEZ CROVETTO, R. 1981. Las plantas  
utilizadas en medicina popular en el noroeste de  
Corrientes. Miscelánea Fundación Miguel Lillo 69:  
7-139.  
NEI, M. 1978. Estimation of average heterozygosity and  
genetic distance from a small number of individuals.  
Genetics 89: 583-90.  
PEAKALL, R., & P. E. SMOUSE. 2012. GenAlEx 6.5.  
CIALDELLA, A. M. 1984. El género Acacia  
(
5
Leguminosae) en la Argentina. Darwiniana 25:  
9-111.  
POMETTI, C. L., B. PIZZO, M. BRUNETTI, N.  
MACCHIONI, … & B. O. SAIDMAN. 2009.  
Argentinean native woods species: Physical and  
mechanical characterization of some Prosopis  
species and Acacia aroma (Leguminosae;  
POMETTI, C., C. BESSEGA, A. CIALDELLA, M.  
EWENS, … & J. VILARDI. 2018. Spatial genetic  
structure within populations and management  
implications of the South American species Acacia  
ROZEN, S. & H. J. SKALETSKY. 2000. Primer3  
on the WWW for general users and for biologist  
programmers. In: MISENER, S. & S. A. KRAWETZ  
(eds.), Methods in molecular biology, vol. 132:  
Bioinformatics methods and protocols, 365-386.  
CONTRERAS, R., F. S. CAREVIC, V. PORCILE &  
M. ARIAS. 2020. Development of SSR loci in  
Prosopis tamarugo Phillipi and assessment of  
their transferability to species of the Strombocarpa  
section. Forest Systems 29: 10.  
DEL VALLE PEREA, M., G. PEDRAZA, & J. DEL  
VALLE LUCEROS. 2007. Relevamiento de la flora  
arbórea autóctona en la provincia de Catamarca,  
pp. 38-40. Consejo Federal de Inversiones, Buenos  
Aires.  
DEMAIO, P., U.O. KARLIN, & M. MEDINA. 2002.  
Árboles nativos del centro de Argentina, Ed.  
L.O.L.A., Buenos Aires.  
FAIRCLOTH, B. C. 2008. MSATCOMMANDER:  
Detection of microsatellite repeat arrays and  
automated, locus-specific primer design. Mol. Ecol.  
FERREIRA, M. A. J. da F. 2003. Utilizaçao das  
técnicas de marcadores moleculares na genética  
de populaçoes, na genética quantitativa e no  
melhoramento de plantas. Embrapa Roraima, Boa  
Vista.  
JAHNKE, G., J. SMIDLA, & P. POCZAI. 2022.  
MolMarker: A Simple Tool for DNA Fingerprinting  
Studies and Polymorphic Information Content  
WARDILL, T. J., K. D. SCOTT, G. C. GRAHAM, & M.  
P. ZALUCKI. 2004. Isolation and characterization of  
microsatellite loci from Acacia nilotica ssp. indica  
WRIGHT, S. 1978. Evolution and the genetics of  
populations variability within and among natural  
populations, vol. 4. University of Chicago Press,  
Chicago.  
32