classification and Phylogeny of amaRyllidaceae, the  
modeRn synthesis and the Road ahead: a Review  
clasificación y filogenia de amaRyllidaceae, la síntesis modeRna y  
el camino PoR RecoRReR: una Revisión  
Alan W. Meerow  
Resumen  
La clasificación y la historia filogenética de las Amaryllidaceae se revisa desde el  
Arizona State University, School  
amanecer de la sistemática molecular en la década de 1990. Actualmente, se  
reconoce que la familia comprende tres subfamilias: Agapanthoideae, Allioideae y  
Amaryllidoideae, de las cuales la última es la más grande. La familia probablemente  
se originó en Gondwana, en lo que ahora es África. Agapanthoideae es monotípica,  
endémica de Sudáfrica y la primera rama del árbol genealógico de la vida de la  
familia; Allioidieae es hermana de Amaryllidoideae. Se reconocen cuatro tribus en  
Allioideae: Allieae (monotípica, con casi 1000 especies de Allium en el hemisferio  
norte), Gilliesieae (5-7 géneros del sur de América del Sur), Leucocoryneae (seis  
géneros principalmente en el sur de América del Sur) y Tulbaghieae (monotípica,  
con unas 30 especies endémicas de Sudáfrica). Amaryllidoideae es cosmopolita,  
pero en su mayoría pantropical, y consta de 13 tribus. Los centros de diversidad  
se encuentran en Sudáfrica, América del Sur y la región del Mediterráneo. El clado  
americano es hermano del clado euroasiático (tribus Galantheae, Lycorideae,  
Narcisseae y Pancratieae) de la subfamilia. Las Amaryllidoideae americanas se  
resuelven en dos grupos monofiléticos, 1) el clado hippeastroide (tribus Griffineae  
e Hippeastreae) y 2) el clado tetraploide andino (tribus Clinantheae, Eucharideae,  
Eustephieae e Hymenocallideae). Se revisan los análisis moleculares para cada  
clado principal de la familia, junto con los cambios taxonómicos resultantes. Se  
discuten brevemente las direcciones para futuros estudios.  
of Life Sciences, Tempe, AZ USA,  
and Montgomery Botanical Center,  
Coral Gables, FL, USA  
*ameerow@asu.edu  
Citar este artículo  
MEEROW, A. W. 2023. Classification  
and phylogeny of Amaryllidaceae,  
the modern synthesis and the road  
ahead: a review. Bol. Soc. Argent.  
Bot. 58: 355-373.  
PalabRas clave  
Geófitos, monocotiledóneas, sistemática, secuencias de ADN, taxonomía.  
summaRy  
The classification and phylogenetic history of the Amaryllidaceae is reviewed since  
the dawn of molecular systematics in the 1990’s. The family is now recognized as  
comprising three subfamilies: Agapanthoideae, Allioideae, and Amaryllidoideae, of  
which the latter is the largest. The family likely had a Gondwanaland origin in what  
is now Africa. Agapanthoideae is monotypic, endemic to South Africa, and the first  
branch in the family tree of life; Allioidieae is sister to Amaryllidoideae. Four tribes  
are recognized in Allioideae: Allieae (monotypic, with nearly 1000 species of Allium  
acrosstheNorthernHemisphere),Gilliesieae(5-7generainsouthernSouthAmerica),  
Leucocoryneae (six genera mostly in southern South America), and Tulbaghieae  
(monotypic, with ca. 30 species endemic to South Africa). Amaryllidoideae is  
cosmopolitan, but mostly pantropical, consisting of 13 tribes. Centers of diversity  
occur in South Africa, South America and the Mediterranean region. The American  
clade is sister to the Eurasian clade (tribes Galantheae, Lycorideae, Narcisseae  
and Pancratieae) of the subfamily. The American Amaryllidoideae resolves as two  
monophyletic groups, 1) the hippeastroid clade (tribes Griffineae and Hippeastreae)  
and 2) the Andean tetraploid clade (tribes Clinantheae, Eucharideae, Eustephieae,  
and Hymenocallideae). Molecular analyses are reviewed for each main clade of the  
family, along with the resultant taxonomic changes. Directions for future studies are  
briefly discussed.  
Recibido: 27 Ene 2023  
Aceptado: 7 Abr 2023  
Publicado en línea: 30 Jul 2023  
Publicado impreso: 30 Sep 2023  
Editores: Nicolás García Berguecio  
Key woRds  
DNA sequences, geophytes, monocots, systematics, taxonomy.  
&
ISSN versión impresa 0373-580X  
ISSN versión on-line 1851-2372  
355  
Bol. Soc. Argent. Bot. 58 (3) 2023  
intRoduction  
has Allioideae Herb. and Amaryllidoideae Burnett  
as sister groups, and Agapanthoideae sister to both  
Our understanding of angiosperm phylogeny (Baker et al., 2022).  
has undergone a revolution over the past three  
Basedonthecladisticrelationshipsofchloroplast  
decades, largely due to two spectacular advances DNA sequences (Ito et al., 1999; Meerow et al.,  
in the science of systematic botany (Judd et al., 1999) all three subfamilies originated in Africa  
2
015). With the advent of polymerase chain (Gondwanaland) and infrafamilial relationships  
reaction (PCR) technology (Saiki et al., 1988), are resolved along biogeographic lines (Fig. 1).  
direct comparison of the nucleotide sequences Subfamily Amaryllidoideae, the largest in number  
of organismal DNA became possible. Secondly, of genera, has colonized all continents except  
phylogenetic analysis has become the standard Antarctica. Janssen & Bremer (2004) estimated  
methodology for testing hypotheses of phylogeny the age of the family at 87 million years before  
among organisms in systematic biology (Wiley, present (MYBP). The only fossil for the family  
1
981; Felsenstein, 2004) based upon principles is from early Eocene western North America and  
formally enumerated by Hennig (1966). To the was diagnosed as allied to Allioideae (Pigg et al.,  
parsimony method (Kitching et al., 1998) has been 2018); contested by Friesen (2022). A leaf fossil  
added both maximum likelihood (Huelsenbeck & from Colombia assigned by Wing et al. (2018) to  
Crandall, 1995) and Bayesian analysis (Beaumont, Amaryllidaceae is at best ambiguous.  
2
010), which have proven valuable in dealing with  
large DNA sequence datasets.  
Agapanthoideae  
The precise relationship of Amaryllidaceae  
The genus Agapanthus (subfamily  
J.St.-Hil. to other Asparagales remained elusive Agapanthoideae) is restricted to South Africa  
until Fay & Chase (1996) used the plastid gene and consists of six to 10 species of rhizomatous,  
rubisco (rbcL) to argue that Agapanthus L’Hér., evergreen or deciduous perennials, most with  
Alliaceae Borkh., and Amaryllidaceae form a blue flowers (Snoeijer, 2004). The flowers have  
monophyletic group (also evident in Chase et al., superior ovaries, and the genus contains saponins.  
1
995a, b), and that together they are related most To date, no molecular studies have been conducted  
closely to Hyacinthaceae Batsch ex Borkh. s.s. to estimate the species phylogeny of this relatively  
and the resurrected family Themidaceae Salisb. small genus.  
(
the former tribe Brodiaeeae of Alliaceae), both  
now classified as subfamilies within a broad Allioideae  
circumscription of Asparagaceae Juss. (APG, Allioideae is represented in Africa by the  
009). They recircumscribed Amaryllidaceae South African endemic genus Tulbaghia L., and  
2
to include Agapanthus, previously included in a single species of Allium L., but is most diverse  
Alliaceae, as subfamily Agapanthoideae Endl. generically in southern South America (Chile and  
Subsequent analyses of multiple DNA sequences Argentina). Three tribes were recognized by some  
from both the chloroplast and nuclear genomes (Chase et al., 2009; Escobar et al., 2020): Allieae  
have shown quite strongly that Agapanthus, Dumort., Gilliesieae Baker and Tulbaghieae  
Amaryllidaceae, and Alliaceae represent a distinct Endl. ex Meisn. Leucocoryneae Ravenna is now  
lineage within the monocot order Asparagales accepted as a fourth distinct tribe (Sassone et  
Link (Meerow et al., 1999; Fay et al., 2000), al., 2018), of which the first and third consist of  
but the exact relationships among the three only a single genus, Allium and Tulbaghia (the  
groups have been difficult to resolve with finality monotypic genus Prototulbaghia Vosa appears  
(
Graham et al., 2006); APG II (APG, 2003) nested within Tulbaghia (Stafford et al., 2016)).  
recommended treating all three as a single family, The subfamily is characterized by solid  
Alliaceae (which had nomenclatural priority at styles, superior ovaries and the unique allyl  
that time), and more emphatically in APG III sulfide chemistry that gives many members their  
(
APG, 2009), but as Amaryllidaceae, reflecting the characteristic garlic odor. Monotypic Allieae is  
successful proposal for superconservation of the the largest tribe, entirely due to the speciose genus  
name (Meerow et al., 2007). Current consensus Allium (Friesen, 2022; Li et al., 2010).  
356  
A. W. Meerow - Classification and phylogeny of Amaryllidaceae  
Tulbaghieae  
(Mill.) Prokh: Gurushidze et al., 2007, origins of  
The South African endemic genus Tulbaghia A. ampeloprasum L. horticultural races and section  
consists of 20-30 species and is badly in need Allium: Hirschegger et al., 2010). Other molecular  
of a thorough taxonomic revision. Vosa (2007) phylogenetic investigations have been concerned  
recognized a monotypic segregate genus with the origins of economically important Allium  
Prototulbaghia that in a recent molecular study crops (e.g. Friesen & Klaas, 1998; Friesen et al.,  
resolved as sister to one subclade of Tulbaghia 1999; Blattner & Friesen, 2006; Friesen, 2022).  
spp. (Stafford et al., 2016). Vosa (2009) presented a Nguyen et al. (2008) examined the phylogeny  
synoptic classification for the genus, distinguishing of the western North American species and their  
species groups (sections) primarily on the basis of adaptation to serpentine soils.  
the morphology of the staminal corona, recognizing  
Friesen et al.’s (2006) analysis of 195 species of  
2
3 species, but Stafford et al. (2016) suggest that Allium using the ITS region of nrDNA presented  
there may be as many as 30. Tulbaghieae is endemic a new subgeneric classification consisting of 15  
to South Africa and is sister to the South American monophyletic subgenera, and this is still mostly  
tribes Gilliesieae (Costa et al., 2020; Escobar et al., accepted. Earlier, Friesen et al. (2000) showed  
2
020) and Leucocoryneae (ca. six genera Sassone that the anomalous Milula Prain with a spicate  
&
Giussani, 2018).  
inflorescence was nested within the Himalayan  
species of Allium. Nectaroscordum Lindl. and  
Caloscordum Herb. are also retained within Allium.  
Allieae  
Allium contains over 900 species (Herden et Li et al. (2010) used ITS sequences along with the  
al., 2016) and is one of the largest genera of intron of the plastid gene rps16 across over 300  
monocots known. More than 50 species are used as Allium taxa and included a biogeographical analysis  
edible, medicinal and ornamental crops. Variable of the genus. Three major clades are consistently  
morphologically as well as ecologically, it has resolved (Fritsch, 2001; Fritsch & Friesen, 2002;  
spread across the Holarctic region, inhabiting dry Friesen et al., 2006; Li et al., 2010), which Xie et  
subtropics to boreal vegetation. Only a single al.’s (2020) whole plastome phylogeny supports  
species of Allium occurs outside the Holartic zone, as well. Subgenera Amerallium, Anguinum G.Don  
A. synnotia G.Don (syn. A. dregeanum Kunth), ex W.D.J.Koch) N.Friesen, Vvedenskya (Kamelin)  
native to South Africa (de Wilde-Duyfjes, 1976; R.M.Fritsch, Porphyroprason (Ekberg) R.M.Fritsch  
de Sarker et al., 1997), though Friesen (2022) and Melanocrommyum originated in eastern Asia.  
suggests that it may have been introduced by Theputativelyoldestlineageconsistsofonlybulbous  
early European colonists. An Old World center plants (subgenera Nectaroscordum, Microscordum  
of diversity encompasses the Mediterranean (Maxim.) N.Friesen and Amerallium) that only  
Basin to Central and Eastern Asia, with a second rarely produce a rhizome (Fritsch & Friesen, 2002).  
smaller one in western North America. Friesen The second clade includes subgenera Caloscordum,  
(2022), Friesen et al. (2006) and Li et al. (2010) Anguinum, Vvedenskya, Porphyroprason and  
review the infrageneric taxonomic history of this Melanocrommyum, and the third subgenera  
complex genus. Molecular studies have either Butomissa (Salisb.) N. Friesen, Cyathophora,  
addressed the phylogenetic relationships of the Rhizirideum, Allium, Cepa, Reticulatobulbosa  
entire genus (Mes et al., 1997; Dubouzet & (Kamelin) N. Friesen and Polyprason Radić. The  
Shinoda, 1999; He et al., 2000; Fritsch & Friesen, latter two contain both rhizomatous and bulbous  
2
002; Friesen et al., 2006; Li et al., 2010, 2016b; species. The third clade was the most poorly  
Xie et al., 2020) or specific subgenera and sections resolved in these analyses and includes a number  
Amerallium Traub: Samoylov et al., 1995, 1999; of non-monophyletic subgenera (Li et al., 2010),  
Cyathophora (R.M.Fritsch) R.M.Fritsch: Li et but resolution and levels of support were greatly  
al., 2016a Melanocrommyum (Webb & Berth.) increased with analysis of whole plastomes (Xie  
Rouy: Dubouzet & Shinoda, 1998; Mes et al., et al., 2020). A scenario of rapid radiation was  
1
999; Gurushidze et al., 2008, 2010; Fritsch proposed for this clade. The first two clades contain  
et al., 2010, Rhizirideum (G. Don ex Koch) both Old and New World species; almost all of the  
Wendelbo: Dubouzet et al., 1997, section Cepa western North American species are classified in  
357  
Bol. Soc. Argent. Bot. 58 (3) 2023  
subgenus Amerallium (Nguyen et al., 2008), which Gilliesia, Gethyum Phil. and Solaria Phil., and  
has sparingly extended to central and eastern North Clade II, Miersia Lindl. and Speea Loes. However,  
America. The only other North American species Gilliesia, Gethyum and Miersia were all found  
are members of subg. Anguinum (Li et al., 2010; to be paraphyletic, resulting in the recognition of  
Xie et al., 2020).  
the monotypic genus Ancrumia Harv. ex Baker.  
Costa et al. (2020) estimated the age of Schickendantziella Speg. and Trichlora Baker  
Allioideae as ca. 63 million years and hypothesized were not represented in the sampling. García et al.  
that the Indian plate rafted Allieae to the northern (2022a) resolved the same phylogenetic tree, and  
hemisphere from which the genus Allium (ca. 52 published two novel species of Miersia.  
MYBP) diversified via polyploidy and geographic  
Sassone and colleagues have studied  
spread throughout the Northern Hemisphere. Leucocoryneae extensively (Sassone & Arroyo-  
Friesen (2022) supported this hypothesis.  
Leuenberger, 2018; Sassone & Giussani, 2018;  
Sassone et al., 2013; Sassone et al., 2018), and the  
taxonomic history of the tribe is summarized in  
Gilliesieae and Leucocoryneae  
The tribes Gilliesieae and Leucocoryneae are Sassone & Giussani (2018).  
entirely restricted to the American continents  
This tribe consists of six South American genera  
and are most diverse in southern South America, with ca. 100 species (Sassone et al., 2014a):  
especially Argentina and Chile, and includes such Beauverdia Herter (four spp., Sassone et al.,  
established ornamental bulb crops as Ipheion 2014b), Ipheion (three spp., Sassone et al., 2014a),  
Raf. and Leucocoryne Lindl. Only one species of Latace Phil. (two spp., Sassone et al., 2015),  
Nothoscordum Kunth extends outside of that region, Leucocoryne (15 spp., Muñoz & Moreira, 2000),  
and may be adventive. The sister relationship of Nothoscordum (20-80 spp.), and Tristagma Poepp.  
these tribes to Tulbaghieae (Fay & Chase, 1996; (12 spp.; Arroyo-Leuenberger & Sassone, 2016).  
Fay et al., 2006) suggests an austral entry into However, both Tristagma and Nothoscordum  
South America, perhaps via Antarctica, as has resolve as biphyletic (Pellicer et al., 2017; Sassone  
been suggested for many groups showing a similar & Giussani, 2018), and Beauverdia, with both white  
biogeographic scenario (Raven & Axelrod, 1974). and yellow uniflorous species, is nested within the  
Unfortunately, generic limits within the group latter. For this reason, Pellicer et al. (2017) argued  
remain problematic, with many species having been that Beauverdia should be placed into synonomy  
variously treated as members of diverse genera with Nothoscordum. Most recently García et al.  
(Rahn, 1998; Zöllner & Arriagada, 1998; Rudall et (2022b) described a new monotypic genus in the  
al., 2002; Fay et al., 2006). Leucocoryneae, Atacamallium Nic.García, which  
The two tribes are immediately separable resolved as sister to the genus Leucocoryne.  
by the symmetry of the flowers; all Gilliesieae  
are zygomorphic, and all Leucocoryneae are Amaryllidoideae  
actinomorphic. The latter also alone possess septal  
The largest subfamily of Amaryllidaceae in  
nectaries (Rudall et al., 2002). Both tribes show number of genera is Amaryllidoideae (Fig. 1). This  
greater variability in karyotype than either Allium subfamily is also economically important, albeit for  
or Tulbaghia (Costa et al., 2020). A combination its large number of ornamental bulbs rather than any  
of plastid and ribosomal DNA sequences robustly food value. It is characterized by an inferior ovary, a  
supports the two floral morphological clades unique group of alkaloidal compounds, many with  
(Fay et al., 2006; Pellicer et al., 2017; Sassone & bioactive properties (Meerow & Snijman, 1998; He  
Giussani, 2018). Interestingly, the zygomorphic et al., 2015), and base chromosome number of x =  
flowers of Gilliesia Lindl. are hypothesized to be 11 (Meerow & Snijman, 1998).  
insect mimics with a pseudocopulatory pollination  
Tribe Amaryllideae, entirely southern African  
syndrome (Rudall et al., 2002).  
with the exception of pantropical Crinum L., is  
Escobar et al. (2020) applied ITS and plastid sister to the rest of Amaryllidaceae with very high  
rbcL and trnL-F sequences to explore generic bootstrap support in Meerow et al.’s (1999) analysis  
limits in the Gilliesieae. Two major clades were of plastid genes (Fig. 1). The remaining two African  
well-supported: Clade I comprises the genera tribes of the family, Haemantheae Hutch. (including  
358  
A. W. Meerow - Classification and phylogeny of Amaryllidaceae  
subtr. Gethyllidinae Dumort) and Cyrtantheae Strumariinae sensu D. & U. Müller-Doblies [1985,  
Traub (consisting of only Cyrtanthus Ait.), were 1996]). Meerow & Snijman (2001) analyzed  
well supported, but their position relative to the morphology and ITS sequences across the entire  
Australasian Calostemmateae D.Müll.-Doblies & tribe. Amaryllis is sister to the remaining genera,  
U.Müll.Doblies and a large clade comprising the followed by Boophone. All other genera were  
Eurasian and American genera, was not clear. Most included in two clades conforming to Snijman  
surprising, the Eurasian and American elements of & Linder’s (1996) subtribes Amaryllidinae (less  
the family were each monophyletic sister clades. Amaryllis, thus now Strumariinae) and Crininae  
Ito et al. (1999) resolved a very similar topology (less Boophone), and Carpolyza was transferred  
for a more limited sampling of Amaryllidaceae and into Strumaria (Meerow & Snijman, 2001).  
related asparagoids using plastid matK sequences.  
Plastid ndhF sequences (Meerow & Snijman, biogeographical analyses of nrDNA ITS and plastid  
006) resolved Cyrtantheae as sister to a clade of trnL-F sequences for all continental groups of the  
Meerow et al. (2003) presented phylogenetic and  
2
Calostemmataeae and Haemantheae.  
large, pantropical genus Crinum and related genera.  
Their results indicated that C. baumii Harms is  
more closely related to Ammocharis than to Crinum  
Amaryllideae  
Almost all of the generic diversity of the tribe sensu stricto (s.s.). Three clades are resolved in  
Amaryllideae is confined to South Africa (Snijman Crinum s.s. The first one unites a monophyletic  
&
Linder, 1996). Compared to other tribes in American group with tropical and North African  
Amaryllidaceae, Amaryllideae is marked by a large species. Meerow et al. (2003) hypothesized that  
number of synapomorphies (Snijman & Linder, emergent aquatic tropical African species with  
1
996; Meerow & Snijman, 1998): extensible fibers actinomorphic perianths were likely the sister group  
in the bulb tunics, bisulculate pollen with spinulose to the American species, which was shown to be  
exine, scapes with a sclerenchymatous sheath, the case by Kwembeya et al. (2007). The second  
unitegmic or ategmic ovules, and nondormant, clade included all southern African species and the  
water-rich, nonphytomelaninous seeds with Australian endemic C. flaccidum Herb. The third  
chlorophyllous embryos. A few of the genera includes monophyletic Madagascar, Australasian  
extend outside of South Africa proper, but only and Sino-Himalayan clades, with southern African  
Crinum, with seeds well suited to oceanic dispersal species. The salverform, actinomorphic perianths of  
(Koshimizu, 1930), ranges through Asia, Australia, subg. Crinum appear to have evolved several times  
and America. The tribe is the first branch within the in the genus from ancestors with zygomorphic  
subfamily (Ito et al., 1999; Meerow, 2010; Meerow perianths (subg. Codonocrinum Willd. ex  
et al., 2000; Meerow & Snijman, 2006). Snijman and Schult.f.), thus neither subgenus is monophyletic.  
Linder’s (1996) phylogenetic analysis of the tribe Biogeographical analyses place the origin of  
based on morphological, floral and seed anatomical, Crinum in southern Africa. The genus underwent  
and cytological data resulted in recognition of three major waves of radiation corresponding to  
two monophyletic subtribes: Crininae Baker the three main clades resolved in the trees. Two  
(Boophone Herb., Crinum, Ammocharis Herb., and entries into Australia of the genus were indicated,  
Cybistetes Milne-Redh. & Schweick., the latter now as were separate Sino-Himalayan and Australasian  
transferred to Ammocharis (Snijman & Williamson, dispersal events. These results were confirmed by  
1
994) and Amaryllidinae Walp. (Amaryllis L., Kwembeya et al. (2007), including the origin of  
Nerine Herb., Brunsvigia Heist., Crossyne Salisb., the endemic American species from tropical west  
Hessea Herb., Strumaria Jacq., and Carpolyza African spp.  
Salisb. Carpolyza has been transferred to Strumaria  
(Meerow & Snijman, 2001). Meerow et al.’s (1999) Calostemmateae, Cyrtantheae and Haemantheae  
incomplete sampling of this tribe for three plastid The three tribes Calostemmateae, Cyrtantheae  
sequences resolved Amaryllis as sister to the rest and Haemantheae form a clade that is sister to the  
of the tribe. Weichhardt-Kulessa et al. (2000) American and Eurasian tribes of the subfamily  
presented an analysis of internal transcribed spacer (Fig. 1; Meerow et al., 1999; Meerow & Snijman,  
(ITS) sequences for a part of the tribe (subtribe 2006), though their exact relationships to each other  
359  
Bol. Soc. Argent. Bot. 58 (3) 2023  
remain ambiguous (Meerow & Snijman, 2006; The Eurasian clade (Lycorideae, Galantheae,  
Bay-Schmidt et al., 2010).  
Narcisseae, and Pancratieae)  
Calostemmateae consists of two Australasian  
The Eurasian clade of the Amaryllidaceae (Fig.  
genera (Proiphys Herb., pseudopetiolate forest 1) contains the members of the family that have  
understory herbs of Malaysia, Indonesia, the adapted to the highest latitudes in the Northern  
Philippines and tropical Australia; and Calostemma Hemisphere, and also those with the greatest  
R. Br., endemic to Australia). The indehiscent economic value as spring flowering temperate  
capsules of both genera are similar in appearance zone garden plants (Narcissus L., Galanthus  
to the unripe berry-fruits of Scadoxus Raf. and L., Leucojum L.). The clade was only recently  
Haemanthus L. (Haemantheae), but early in the recognized as a monophyletic group, resolved as  
development of the seed, the embryo germinates sister to the endemic American genera by plastid  
precociously, and a bulbil forms within the capsule DNA sequences (Ito et al., 1999; Meerow et al.,  
and functions as the mature propagule (Rendle, 1999). The Eurasian clade encompasses four  
1
901). A reasonable hypothesis is that the lineage tribes that were previously recognized (Meerow  
represents an early entry into Australia directly & Snijman, 1998): Galantheae Parl., Lycorideae  
from Africa. Herb., Narcisseae Lam. & DC., and Pancratieae  
Cyrtantheae consists of a single genus. Dumort., the overall relationships of which were  
Cyrtanthus is endemic to sub-Saharan Africa, with obscured by their diversity of chromosome number  
well over 90% of its species concentrated in South and morphology (Traub, 1963). Müller-Doblies &  
Africa (Dyer, 1939; Reid & Dyer, 1984). With Müller-Doblies (1978a) earlier observed similarities  
about 55 species it is the largest genus of southern between the internal bulb morphology of Ungernia  
Africa’s Amaryllidaceae (Snijman & Archer, Bunge (Lycorideae) and Sternbergia Waldst. & Kit.  
2
003) and one of the largest in the family overall (Narcisseae). With the exception of the Central and  
(
Snijman & Meerow, 2010). The genus exhibits a East Asian Lycorideae, the clade is centered within  
high level of floral morphological diversity which the Mediterranean region (Meerow & Snijman,  
is unparalleled in any other genus of the family. 1998; Lledó et al., 2004). There are 11 genera in the  
Conversely, the genus shows great consistency in clade, comprising ca. 120 spp., with Lycoris Herb.  
chromosome number, with 2n = 16 characteristic (ca. 20 spp.) and Narcissus L. (40 spp.) the largest  
of most, if not all, of the species (Wilsenach, genera (Meerow & Snijman, 1998).  
1
963; Ising, 1970; Strydom et al., 2007). It is  
Lledó et al. (2004) presented a cladistic analysis  
also the only African genus with the flattened, of the clade that focused on the relationships of  
winged, phytomelaninous seed, so common in the Leucojum and Galanthus using plastid matK,  
American clade of the family (Meerow & Snijman, nuclear ribosomal ITS sequences, and morphology.  
1
998). Snijman & Meerow (2010) explored the Leucojum was revealed as paraphyletic, and the  
phylogeny of the genus in the context of floral genus Acis Salisb. was resurrected to accommodate  
and ecological adaptation using plastid ndhF and the linear-leaved Mediterranean Leucojum species  
nuclear ribosomal DNA.  
with solid scapes. While their sampling within these  
Haemantheae is the only group of three genera was extensive, only a single species  
Amaryllidaceae that have evolved a baccate fruit each of the genera Pancratium L., Sternbergia,  
(
Meerow et al., 1999; Meerow & Clayton, 2004). It Narcissus, and Vagaria Herb., along with the  
is entirely African, and like Cyrtanthus, most of its monotypic Lapiedra Lag., were used as outgroups.  
diversity is in South Africa (Meerow & Snijman, Hannonia Braun-Blanq. & Maire was not included.  
1
998). Meerow & Clayton (2004) analyzed plastid Consequently, the phylogenetic relationships of  
trnL-F and nrDNA ITS sequences across the tribe. the entire clade were not explicitly examined in  
Two main clades are resolved, one comprising the their analyses. A similar case holds for Graham  
monophyletic rhizomatous genera Clivia Lindl. & Barrett’s (2004) study of floral evolution in  
and Cryptostephanus Welw. ex Baker, and a Narcissus using plastid ndhF and trnL-F sequences,  
larger clade that unites Haemanthus and Scadoxus which included only Lapiedra and one species  
as sister to an Apodolirion Baker/Gethyllis L. each of Galanthus, Leucojum, and Sternbergia as  
subclade.  
outgroups in their analyses.  
360  
A. W. Meerow - Classification and phylogeny of Amaryllidaceae  
Meerow et al. (2006) analyzed the clade using x = 7. He recognized 10 sections (Apodanthae [as  
plastid ndhF and rDNAITS sequences for 33 and 29 Apodanthi] A. Fernandes, Aurelia (J. Gay) Baker,  
taxa, respectively; all genera were represented by at Bulbocodii DC., Ganymedes (Haw.) Schult f.,  
least one species. Both sequence matrices resolve Jonquilla DC., Narcissus, Pseudonarcissus DC.,  
the Central and East Asian tribe Lycorideae as sister Serotini Parl., Tapeinanthus (Herb.) Traub and  
to the Mediterranean-centered genera of the clade, Tazettae DC.) based on his decades of karyotypic  
and two large subclades were recognized within studies in the genus (summarized in Fernandes,  
the greater Mediterranean region: Galantheae, 1967, 1968a, b, 1975). Pérez-Barrales et al.,  
consisting of Acis, Galanthus and Leucojum; (2003) used the short plastid intergenic spacer  
and Narcisseae (sister genera Narcissus and between trnL and trnF across a small sampling of  
Sternbergia, and Pancratium). However, there were Narcissus species and did not get much resolution  
areas of incongruence between the two markers, beyond the two recognized subgenera. Graham  
which disappeared when three predominantly & Barrett (2004) provided phylogenetic analyses  
monotypic genera, Hannonia, Lapiedra, and of the plastid trnL-F and ndhF regions sequenced  
Vagaria, centered in North Africa, were removed from 32 Narcissus species representing all 10  
from the alignments. The authors hypothesized sections recognized by Fernandes (1975) and  
that incomplete lineage sorting took place after Blanchard (1990). This report strongly supported  
the divergence of Galantheae and Narcisseae/ monophyletic subgenera Hermione and Narcissus,  
Pancratium from a common ancestor, with the three but not of all sections. Only section Apodanthae  
small or monotypic genera retaining a mosaic of the was clearly monophyletic, but several clades  
ancestral haplotypes. After the vicariant divergence corresponded approximately to recognized sections  
of the Asian Lycorideae, North Africa and the (Graham & Barrett, 2004). The most robust study is  
Iberian Peninsula are the most likely areas of origin that of Marques et al. (2017) who utilized plastid,  
for the rest of the clade (Meerow et al., 2006). A mitochondrial and nrDNA (ITS) across a large  
new genus, Shoubiaonia W.H.Qin, W.Q.Meng & sampling of species with multiple accessions. She  
Kun Liu, was recently described in Lycorideae and uncovered striking incongruence between trees  
is sister to Lycoris and Ungernia (Qin et al., 2021).  
supported by the cytoplasmic versus the nuclear  
Narcissus is the most important genus of sequences, which she attributed to widescale  
temperate zone spring flowering bulbs in the hybridization throughout the evolutionary history  
Amaryllidaceae. The genus is taxonomically very of the genus. Tests for recombination in the ITS  
complex (Fernandes, 1968a; Webb, 1980; Mathew, alignments supported this hypothesis. Again, only  
2
002), no doubt in part due to its propensity to few of Fernandes’ (1968a) sections were found to  
hybridize in nature (Marques, 2010), and the many be monophyletic. Könyves et al. (2019) concluded  
horticultural hybrids and selections (Mathew, much the same in their study of Narcissus section  
2
002). Consequently, the number of species varies Bulbocodii.  
considerably in different studies. For example, The sister genus to Narcissus is Sternbergia  
Webb (1980) recognized 26 species; Fernandes (Meerow et al., 2006), a small genus of ca.  
1968a) accepted 63. Blanchard (1990) favored eight dwarf white or yellow cup-shaped flowered  
(
Fernandes’ (1968a) treatment. The genus is most species, generally appearing in autumn. The  
speciose in the Western Mediterranean area, scapes are uniflorous. It is distributed around the  
particularly the Iberian Peninsula and NW Africa. Mediterranean basin, with diversity and endemism  
This group is also fascinating biologically due highest from Greece to Israel. Two species flower in  
to the occurrence of all four major classes of spring: S. vernalis (Mill.) Gorer & J.H.Harvey and  
heterostyly, from stylar monomorphism, stigma- S. candida B.Mathew. & T.Baytop, the latter the  
height dimorphism, distyly, to tristyly (reviewed in sole white-flowered species. S. lutea (L.) Ker Gawl.  
Barrett & Harder, 2005). It is the only heterostylous ex. Spreng. has been in cultivation for millennia  
genus of Amaryllidaceae.  
and has naturalized in areas of northern Europe  
Fernandes (1968a) divided Narcissus into two (Mathew, 1983).  
subgenera, Hermione (Salisb. ex Haw.) Spach with  
Gage et al. (2011) published the most recent  
base chromosome number x = 5, and Narcissus with phylogeny of the genus and concluded that it forms  
361  
Bol. Soc. Argent. Bot. 58 (3) 2023  
two main clades: 1) S. colchiciflora Waldst. & Kit. to Turkey and eastern Caucasus. It differs from L.  
sister to S. vernalis, S. candida and S. clusiana vernum by its water-dispersed seed with a dark testa  
Boiss., and 2) S. lutea and its allies. The two spring and lack of elaiosomes.  
flowering species are closely related. In the S.  
The remaining Leucojum species are now  
lutea complex, there was insufficient resolution, classified in the genus Acis, divided into subgenus  
supporting arguments that S. sicula Tineo ex Acis or Ruminia Parl. (Lledó et al., 2004; Meerow  
Guss. and S. greuteriana Kamari & R.Artelari are et al., 2006, Larsen et al., 2010), characterized by  
conspecific with S. lutea.  
solid scapes, narrow leaves and filiform styles. The  
The relationship between Galanthus subgenera Acis and Ruminia are differentiated by  
and Leucojum sensu lato (s.l.) has long been the morphology of the epigynous staminal disc,  
recognized, as has their relationship to Narcissus six-lobed in A. subgenus Ruminia, and unlobed in  
and Sternbergia (Müller-Doblies & Müller-Doblies, A. subgenus Acis. Acis subg. Acis is the larger of the  
1
978b; Davis, 1999; 2001). Both genera share two subgenera with five species.  
pendulous, predominantly white flowers, similar  
internal bulb morphology and poricidal anthers The American clade  
(
Müller-Doblies & Müller-Doblies, 1978b). Unlike  
Narcissus, both lack a floral tube or a paraperigone endemic American genera (the entry of Crinum  
corona). Galanthus is marked by the striking onto the continent is considered a separate event)  
In the American clade, the relationships of the  
(
length differences between the inner and outer tepal were well resolved using the spacer regions of  
series, which are only subequal in Leucojum and nuclear ribosomal DNA(Meerow et al., 2000a), and  
Acis (Meerow & Snijman, 1998).  
the major relationships have also been supported by  
Galanthus consists of 18 species, mostly plastid genes and introns (Meerow et al., 1999;  
distributed in Europe, Asia Minor and the Near 2000b; Meerow & Snijman, 2006; Meerow, 2010).  
East (Davis, 1999, 2001). Stern (1956) recognized The American genera of the family form two major  
three series in Galanthus, erected primarily by subclades (Fig. 1). The first, or hippeastroid clade,  
leaf vernation: Nivales Beck (leaves flat), Plicati are diploid (2n = 22), primarily the extra-Andean  
Beck (leaves plicate) and Latifolii Stern (leaves element of the family (though several of the genera  
convolute). Davis (1999) combined series Nivales do have Andean representatives), comprising  
and Plicati into series Galanthus, and divided the Brazilian endemic tribe Griffinieae Ravenna  
series Latifolii into two subseries: Glaucaefolii (Cearanthes Ravenna, Griffinia Ker Gawl. and  
(
Kem.-Nath.) A. P. Davis and Viridifolii (Kem.- Worsleya (Watson ex Traub) Traub) sister to genera  
Nath.) A.P.Davis. Molecular phylogenetic studies treated as tribe Hippeastreae Herb. ex Sweet in  
Lledó et al., 2004; Larsen et al., 2010; Rønsted most recent classifications (Dahlgren et al. 1985;  
et al., 2013) indicate that the two subseries are not Muller-Doblies & Muller-Doblies, 1996; Meerow  
monophyletic. & Snijman, 1998; García et al., 2019). ITS resolved  
(
Leucojum s.l. originally contained 10 species monotypic Worsleya as the first branch in the  
Stern, 1956), mostly occurring in the western tribe, and monotypic Cearanthes and Griffinia  
(
Mediterranean area, from the Atlantic coast of (16 species) as sister genera (Campos-Rocha et  
Portugal and Morocco to the northern Balkans and al., 2022b). A monograph of the tribe is underway  
Crimea, but today the genus comprises only two: (Campos-Rocha et al., 2018, 2019a, b).  
L. vernum L. and L. aestivum L. (Lledó et al., 2004;  
Several genera within the hippeastroid clade  
Meerow et al., 2006; Larsen et al., 2010), both resolved as polyphyletic (Rhodophiala C. Presl.,  
broadly distributed in central and northern Europe, Zephyranthes Herb.) and the possibility of  
Turkey and the Caucasus. Leucojum is characterized reticulate evolution (i.e., early hybridization) in  
by hollow scapes, broad leaves and clavate styles. these lineages was hypothesized (Meerow et  
Both species have a base chromosome number of x al., 2000; Meerow, 2010). This was confirmed  
=
11. L. vernum, the type of the genus, is widespread with further analyses of plastome and multiple  
in central and northern Europe. Its seeds have a pale nuclear gene sequences (García et al., 2014, 2017).  
outer testa and elaiosomes. L. aestivum is found Hippeastreae constitutes two main clades, the  
throughout the Mediterranean and central Europe subtribe HippeastrinaeWalp. and the mostly Chilean  
362  
A. W. Meerow - Classification and phylogeny of Amaryllidaceae  
endemic subtribe Traubiinae D. Müll.-Doblies & 2017), using whole plastomes and multiple nuclear  
U. Müll.-Doblies (García et al., 2014, 2017). In genes on a larger sampling of species, confirmed  
contrast to the Hippeastrinae, the Traubiinae exhibit this. Hippeastrum reticulatum Herb., with unusual  
a mostly tree-like pattern of evolution (García et fruit and seed morphology was sister to all other  
al., 2017). García et al. (2019) presented a new species of subg. Hippeastrum, recently displaced  
classification scheme for Hippeastreae that reflects by the morphologically unusual H. velloziflorum  
its reticulate phylogeny. Within Hippeastriinae, Campos-Rocha & Meerow (Campos-Rocha et al.,  
only two genera are recognized, Hippeastrum 2022b). The low rates of base substitution in both  
Herb. (two subgenera, H. subg. Hippeastrum and plastid and nrDNA sequences, and the consistent  
H. subg. Tocantinia (Ravenna) Nic.García) and interfertility of species -well-mined by bulb  
Zephyranthes (five subgenera, Z. subg. Eithea breeders (Meerow, 2009)- suggest that the genus  
(Ravenna) Nic.García, Z. subg. Habranthus (Herb.) underwent a relatively recent radiation (Oliveira,  
Nic.García, Z. subg. Myostemma (Salisb.) Nic. 2012). Many of the species seem to intergrade with  
García (= core Rhodophiala clade), Z. subg. one another. Traub & Moldenke (1949) attempted  
Neorhodophiala Nic.García & Meerow subg. a formal subgeneric classification of the genus  
nov., and Z. subg. Zephyranthes). One species, Z. (as Amaryllis) based on floral morphology, but  
pedunculosa (Herb.) Nic.García & S.C.Arroyo, was most of their infrageneric taxa do not appear to  
designated as incertae sedis.  
be monophyletic (Meerow & Snijman, 1998). The  
In the second subtribe, Traubiinae, García et al. newly described H. velloziflorum resolves with ITS  
2019) and García & Meerow (2020) recognized as sister to the rest of subgenus Hippeastrum. Lara  
(
four genera, the first two monotypic Traubia et al. (2021) presented a revision of the Bolivian  
Moldenke and Paposoa Nic.García, Phycella Lindl. species, recognizing 34 native to that country,  
(including Placea Miers), 12 or more species all but but there was no attempt to place the taxa into a  
one endemic to Chile, and the alpine Rhodolirium phylogenetic context. Oliveira (2012) recognized  
Phil. with two spp., both found in Chile and 27 species (now 35) as occurring in Brazil and  
adjacent Argentina. There has been a great deal of documented with sequence data and network  
cytogenetic work for the subtribe (Baeza & Macaya, analysis significant reticulation. New Brazilian  
2
020; Baeza et al., 2009a, 2009b, 2012, 2017).  
The economically most important genus 2013, 2017; Campos-Rocha et al., 2022a, 2022b).  
of American Amaryllidaceae subfam. The second clade of the American  
species continue to be described (Oliveira et al.,  
Amaryllidoideae, Hippeastrum, is still not very Amaryllidoideae constitutes the tetraploid-derived  
well understood taxonomically. Hippeastrum (x = 23) Andean-centered tribes (Fig. 1). All,  
consists of 70-100 entirely New World species, or at least some, members of each tribe have  
though one species, H. reginae Herb. appears 2n = 46 chromosomes. The Andean clade is  
to have been introduced to Africa. No modern characterized by three consistent deletions, two  
revision of the genus has appeared since that in the ITS1 and one in the ITS2 regions (Meerow  
of Traub & Moldenke (1949). The species are et al., 2000a), with the exception of Eustephieae  
concentrated in two main areas of diversity, one Hutch. which lacks the indel in ITS2. The first  
in eastern Brazil, and the other in the central branch of the clade is the tribe Eustephieae. The  
southern Andes of Peru, Bolivia, and Argentina, tribes Hymenocallideae Small and its sister tribe  
on the eastern slopes and adjacent foothills. A Clinantheae Meerow were recognized. A petiolate-  
few species extend north to Mexico and the West leafed Andean subclade, containing elements of  
Indies. Meerow et al. (2000a) included seven both Eucharideae Hutch. and Stenomesseae Traub  
species in their molecular phylogenetic analysis of (tribe Eucharideae) was also resolved. Interestingly,  
the American genera of subfam. Amaryllidoideae, in both of the American subclades there is a small  
representative of the biogeographic range of the but diverse tribe that is sister to the rest of the  
genus. Their results suggested that the genus is group, the Eustephieae in the Andean clade, and  
robustly monophyletic and originated in Brazil. the Griffinieae in the hippeastroid clade (Fig. 1).  
Campos-Rocha et al. (2022b), using 20 spp., These two small tribes likely represent very isolated  
further supported these results. García et al. (2014; elements of their respective clades. Meerow (2010)  
363  
Bol. Soc. Argent. Bot. 58 (3) 2023  
concluded that the genus Pyrolirion Herb. was the has been no other application of next generation  
first branch of the Eustephieae, rather than allied DNA technology such as sequence capture using  
with Zephyranthes. Most recently, Meerow et al. anchored hybrid enrichment, also known as Hyb-  
(2020) performed a phylogenomic analysis of the Seq (Cronn et al., 2012; Lemmon et al., 2012;  
clade and applied a curated suite of 524 nuclear Lemmon & Lemmon, 2013; Weitemier et al., 2014)  
genes and a partial plastome, which yielded well- applied to the family. Sassone et al. (2021) did  
supported, fully resolved trees, with much improved apply genotyping by sequencing (GBS) to study  
species resolution. All of Meerow et al. (2000)’s the diversification of genus Ipheion in the Pampean  
tribes were robustly supported as were most region as well as to investigate the domestication  
genera, and their generic composition is as follows: history of Iphieon uniflorum (Graham) Raf.  
Clinantheae: Clinanthus Herb., Pamianthe Stapf, (Sassone et al., 2022). Hyb-Seq is clearly the future  
Paramongaia Velarde); Eucharideae: Eucrosia Ker for developing more robust phylogenetic data sets  
Gawl., Phaedranassa Herb., Plagiolirion Baker, at the species and generic levels.  
Rauhia Traub, Stenomesson Herb. and Urceolina  
There has been interest in whole plastome  
Reichb. (including Eucharis Planch. & Lind., data recently (Cheng et al., 2022; Dennehy et  
Caliphruria Herb. and Eucrosia dodsonii Meerow al., 2021; Jimenez et al., 2020; Xie et al., 2020).  
&
Dehgan); Eustephieae: Chlidanthus Herb., Whole plastome sequence data has been applied  
Eustephia Cav., Hieronymiella Pax, Pyrolirion); to recognize new species and estimate phylogeny  
and Hymenocallideae (Hymenocallis Salisb., in Lycoris (Lou et al., 2022; Zhang et al., 2021;  
Ismene Salisb., Leptochiton Sealy).  
Zhang et al., 2022) without any nuclear sequence  
The Eustephieae, with a southerly bias in data for tree comparison. There is frequently  
distribution, is always resolved as sister sizable cytonuclear discordance between phylogeny  
to the rest of the clade. The monotypic genus estimates from plastome versus nuclear data in the  
Androstephanos Fern.Casas, placed under family (Marques et al., 2017; García et al., 2017;  
synonomy of Hieronymiella argentina (Pax) Hunz. Meerow et al., 2020), which can at times signify  
&
S.C.Arroyo, appears more closely related to reticulation. To that end, one must exercise some  
Eustephia with ITS sequences (unpubl. data). caution in formalizing taxonomic inferences from  
Clinantheae and Hymenocallideae are sister tribes, plastomes alone, without corresponding trees from  
in turn sister to the Eucharideae (Fig. 1).  
the nuclear genome, especially in genera where  
Unlike the Hippeastreae, the Andean clade does hybridization has been documented.  
not appear to have experienced much reticulate  
Evolutionary development (evo-devo) compares  
evolution at the generic level (Meerow et al., 2020), the developmental processes of different organisms  
but interspecific hybridization was evident within to infer how such evolved, using molecular data  
Hymenocallis especially, and within the rain forest generally of candidate genes that are integral to  
understory subclade of the pseudo-petiolate leafed developmental pathways (Goodman & Coughlin,  
tribe Eucharideae. As a result, Traub’s (1971) 2000) or via transcriptome data (Roux et al., 2015).  
transfer of Eucharis and Caliphruria into Urceolina Very few evo-devo studies have been conducted in  
was accepted (Meerow et al., 2020). Stenomesson is Amaryllidaceae (see Waters et al., 2013). Given the  
its sister genus. The Peruvian endemic Caliphruria degree of canalized and convergent morphological  
korsakoffii was transferred into Stenomesson, and characters in the family (Meerow, 2010), it is an  
Eucrosia dodsonii to Urceolina (Meerow et al., approach that will hopefully see greater application  
2
023).  
in the future.  
A final classification for the genera of tribes  
Gilliesiae and Leucocoryneae seems within reach,  
The Road Ahead  
The past quarter century has resulted in the most and just requires acceptance of only monophyletic  
resolute and accurate understanding of phylogenetic genera, which will then require either taxonomic  
relationships in Amaryllidaceae to date. However, lumping or splitting.  
despite such progress, there are still many questions  
The large genera Hippeastrum and Zephyranthes  
that remain to be answered. Surprisingly, outside of would benefit from a next generation sequencing  
García et al. (2017) and Meerow et al. (2020), there approach combined with whole plastome sequences  
364  
A. W. Meerow - Classification and phylogeny of Amaryllidaceae  
to unwind the obvious history of hybridization, been described from India (Sasikala & Kumari,  
aneuploidy and polyploidy. In the Andean clade, 2013; Sadasivaiah, 2018).  
wider sampling within Eustephieae would be  
Many amaryllids are relatively rare in nature  
helpful. Among the Eurasian genera, the broadly and may not flower every year. New exploration  
distributed Pancratium is badly in need of a will undoubtedly continue to uncover new species.  
comprehensive revision as well as a well-sampled I look forward to seeing the next generation of  
molecular phylogeny. New species have recently systematists working on the family.  
Fig. 1. Subfamilial and tribal level phylogeny of the Amaryllidaceae, based on García et al. 2014, 2017,  
2019, 2022a), Meerow (2010), Meerow & Snijman (2006), Meerow et al. (1999, 2000a, b, 2006, 2020), and  
Sassone & Giussani (2018).  
acKnowledgements  
grants to the author. Antonio Campos-Rocha,  
Asunción Cano, Norton Cuba, Julie Dutilh,  
Fieldwork in South America was supported by Boris Esquerre, Nicolás García, Segundo Leiva,  
USDA, and various National Science Foundation Blanca Léon, Nora Oleas, Agostina Sassone and  
365  
Bol. Soc. Argent. Bot. 58 (3) 2023  
Deirdre Snijman at various times stimulated useful  
discussions on Amaryllidaceae. I am also grateful to  
the two reviewers of the manuscript, both of whom  
helped improve it.  
BAY-SMIDT, M. G. K., A. K. JÄGER, K.  
KRYDSFELDT, A. W. MEEROW, … & N.  
RØNSTED. 2011. Phylogenetic selection of target  
species in Amaryllidaceae tribe Haemantheae for  
acetylcholinesterase inhibition and affinity to the  
serotonin reuptake transport protein. South Afr. J.  
bibliogRaPhy  
APG II. 2003. An update of the Angiosperm Phylogeny  
Group classification for the orders and families of  
flowering plants: APG II. Bot. J. Linn. Soc. 141:  
BEAUMONT, M. A. 2010. Approximate Bayesian  
computation in evolution and ecology. Ann.  
BLANCHARD, J. W. 1990. Narcissus: a guide to wild  
daffodils. Alpine Garden Society, Surrey.  
APG III. 2009. An update of the Angiosperm Phylogeny  
Group classification for the orders and families of  
flowering plants: APG III. Bot. J. Linn. Soc. 161:  
BLATTNER, F. R. & N. FRIESEN. 2006. Relationship  
between Chinese chive (Allium tuberosum) and  
its putative progenitor A. ramosum as assessed by  
random amplified polymorphic DNA (RAPD).  
In: ZEDER, M. A. et al. (eds.), Documenting  
domestication: new genetic and archaeological  
paradigms, pp. 134-142. California University  
Press, Berkeley.  
CAMPOS-ROCHA, A., A. DA SILVA MEDEIROS, A.  
W. MEEROW, P. ANDRE SANZ-VEGA & J. H.  
A. DUTILH. 2022a.A remarkable new species of  
Hippeastrum (Amaryllidaceae) from the Serra da  
CAMPOS-ROCHA, A., A. W. MEEROW & D. A.  
LIMA. 2019a. The rediscovery of Griffinia alba  
(Amaryllidaceae), a poorly known and endangered  
species. Brittonia 71: 134-143. https://doi.  
org/10.1007/s12228-018-9561-1  
CAMPOS-ROCHA, A., A. W. MEEROW, E. F. M.  
LOPES, J. SEMIR, J. L. S. MAYER & J. H. A.  
DUTILH. 2019b. New and reassessed species  
of Griffinia (Amaryllidaceae) from the Brazilian  
CAMPOS-ROCHA, A., A. W. MEEROW, R. M.  
MACHADO, J. L. MAYER, ... & J. H. DUTILH.  
2022b. Outofthemud:twonewspeciesofHippeastrum  
(Amaryllidaceae) from the Doce and Jequitinhonha  
River basins, Brazil. Pl. Syst. Evol. 308: 1-25.  
BAEZA, C. & J. MACAYA. 2020. Karyotypic analysis of  
Famatina andina (Phil.) Ravenna (Amaryllidaceae):  
first record of South American Hippeastreae with  
secondary centromeric constrictions. Gayana Bot.  
7
7: 59-61.  
BAEZA, C. M., C. MARIANGEL, E. RUIZ & M.  
NEGRITTO. 2009a. El cariotipo fundamental  
en Rhodolirium speciosum (Herb.) Ravenna y  
R. andicola (Poepp.) Ravenna (Amaryllidaceae).  
Gayana Bot. 66: 99-102.  
BAEZA, C. M., P. NOVOA, E. RUIZ & M. A.  
NEGRITTO. 2009b The fundamental karyotype in  
Traubia modesta (Phil.) Ravenna (Amaryllidaceae).  
Gayana Bot. 66: 297-300.  
BAEZA, C., E. RUIZ, F. ALMENDRAS & P.  
PENAILILLO. 2012. Comparative karyotype studies  
in species of Miltinea Ravenna, Phycella Lindl. and  
Rhodophiala C. Presl (Amaryllidaceae) from Chile.  
Rev. Facul. Ciencias Agrarias 44: 193-205.  
BAEZA, C. M., N. GARCÍA, F. HERRERA, E. RUIZ  
&
M. ROSAS. 2017. Caracterización cromosómica  
de Rhodolirium laetum (Phil.) Ravenna  
Amaryllidaceae) a través de cariotipificación e  
hibridación in-situ de ADN ribosómico. Gayana Bot.  
4: 240-244.  
BAKER, W. J., P. BAILEY, V. BARBER,A. BARKER, …  
F. FOREST. 2022.Acomprehensive phylogenomic  
(
7
&
platform for exploring the Angiosperm Tree of Life.  
https://doi.org/10.1007/s00606-022-01805-3  
BARRETT, S. C. H. & L. D. HARDER. 2005. The  
evolution of polymorphic sexual systems in daffodils  
CAMPOS-ROCHA, A., J. SEMIR, M. PEIXOTO &  
J. H. A. DUTILH. 2018. Griffinia meerowiana, a  
remarkable new species of Amaryllidaceae from  
366  
A. W. Meerow - Classification and phylogeny of Amaryllidaceae  
Espírito Santo state, Brazil. Phytotaxa 344: 228-238.  
https://doi.org/10.11646/phytotaxa.344.3.3  
CHASE, M. W., M. R. DUVALL, H. G. HILLS, J.  
G. CONRAN, … & S. HOOT. 1995a. Molecular  
phylogenetics of Lilianae. In: RUDALL, P. J. et al.  
plastome of the South African species, Amaryllis  
belladonna L. (Amaryllidaceae). Mitochondrial DNA  
DUBOUZET, J. G. & K. SHINODA. 1998. Phylogeny of  
Allium L. subgenus Melanocrommyum (Webb et Berth.)  
Rouy based on DNA sequence analysis of the internal  
transcribed spacer region of nrDNA. Theor. Appl. Genet.  
97: 541-549. https://doi.org/10.1007/s001220050929  
DUBOUZET, J. G., K. SHINODA & N. MURATA.  
1997. Phylogeny of Allium L. subgenus Rhizirideum  
(G. Don ex Koch) Wendelbo according to dot blot  
hybridization with randomly amplified DNA probes.  
Theor. Appl. Genet. 95: 1223-1228.  
(eds.), Monocotyledons: systematics and evolution,  
vol. 1, pp. 109-137. Royal Botanic Gardens, Kew.  
CHASE, M. W., M. F. FAY, D. S. DEVEY, O. MAURIN,  
& H. S. RAI. 2006. Multi-gene analyses of  
monocot relationships: a summary. In: COLUMBUS,  
J. T. et al. (eds.), Monocots: comparative biology  
and evolution (vol. 1, excluding Poales), pp. 63-75.  
Rancho Santa Ana Botanic Garden, Claremont.  
CHASE, M. W., J. L. REVEAL & M. F. FAY. 2009.  
A subfamilial classification for the expanded  
asparagalean families Amaryllidaceae, Asparagaceae  
https://doi.org/10.1007/s001220050685  
DYER, R. A. 1939 (published 1940). Description,  
classification and phylogeny. A review of the genus  
Cyrtanthus. Herbertia 6: 65-103.  
CHASE, M. W., D. W. STEVENSON, P. WILKIN &  
P. J. RUDALL. 1995b. Monocot systematics: a  
combined analysis. In: RUDALL, P. J. et al. (eds.),  
Monocotyledons: systematics and evolution, vol. 1, pp.  
ESCOBAR, I., E. RUIZ-PONCE, P. J. RUDALL, M.  
F. FAY, … & C. M. BAEZA.2020. Phylogenetic  
relationships based on nuclear and plastid DNA  
sequences reveal recent diversification and discordant  
patterns of morphological evolution of the Chilean  
genera of Gilliesieae (Amaryllidaceae: Allioideae).  
Bot. J. Linn. Soc. 97: 541-549.  
685-730. Royal Botanic Gardens, Kew.  
CHENG, R.-Y., D.-F. XIE, X.-Y. ZHANG, X. FU, ... &  
S.-D. ZHOU. 2022. Comparative plastome analysis  
of three Amaryllidaceae subfamilies: insights into  
variation of genome characteristics, phylogeny, and  
adaptive evolution. BioMed Res. Int. 3909596: 1-20.  
https://doi.org/10.1155/2022/3909596  
COSTA, L., H. JIMENEZ, R. CARVALHO, J.  
CARVALHO-SOBRINHO, ... & G. SOUZA. 2020.  
Divide to conquer: evolutionary history of Allioideae  
tribes (Amaryllidaceae) is linked to distinct trends of  
karyotype evolution. Front. Pl. Sci. 11: 320.  
https://doi.org/10.1007/s001220050929  
FAY, M. F. & M. W. CHASE. 1996. Resurrection  
of Themidaceae for the Brodiaea alliance, and  
recircumscription of Alliaceae, Amaryllidaceae and  
FAY, M. F., P. J. RUDALL & M. W. CHASE. 2006.  
Molecular studies of subfamily Gilliesioiodeae  
(Alliaceae). In: COLUMBUS, J. T. et al. (eds.),  
Monocots: comparative biology and evolution (vol.  
1, excluding Poales), pp. 365-375. Rancho Santa Ana  
Botanic Garden, Claremont.  
https://doi.org/10.3389/fpls.2020.00320  
CRONN, R., B. J. KNAUS, A. LISTON, P. J. MAUGHAN,  
& J. UDALL. 2012. Targeted enrichment strategies  
for next-generation plant biology. Am. J. Bot. 99: 291-  
11. https://doi.org/10.3732/ajb.1100356  
DAHLGREN, R. M. T., H. T. CLIFFORD & P. F. YEO.  
985. The families of the monocotyledons: structure,  
https://doi.org/10.5642/aliso.20062201.30  
3
FAY, M. F., P. J. RUDALL, S. SULLIVAN, K. L.  
STOBART, … & M. W. CHASE. 2000. Phylogenetic  
studies of Asparagales based on four plastid DNA  
loci. In: WILSON, K. L. & D. A. MORRISON (eds.),  
Monocots-systematics and evolution, vol. 1, pp. 360-  
371. CSIRO Publishing, Collingswood.  
FELSENSTEIN, J. 2004. Inferring phylogenies. Sinaeuer  
Associates, Sutherland.  
FERNANDES, A. 1967. Contribution à la connaissance  
de la biosystématique de quelques espèces du genre  
Narcissus L. Portugaliae Acta Biol., ser. B. Sistem.,  
Ecol., Biog. Paleontol. 9: 1-44.  
1
evolution and taxonomy. Springer, Berlin.  
DAVIS, A. P. 1999. The genus Galanthus: a botanical  
magazine monograph. Timber Press Portland, Oregon.  
DAVIS, A. P. 2001. The genus Galanthus - snowdrops in  
the wild. In: BISHOP, M. et al. (eds.), A monograph  
of cultivated Galanthus. pp. 9-63. Griffin Press,  
Cheltenham.  
DENNEHY, Z., J. BILSBORROW, A. CULHAM, J.  
DAVID & K. KÖNYVES. 2021. The complete  
367  
Bol. Soc. Argent. Bot. 58 (3) 2023  
FERNANDES, A. 1968a. Keys to the identification of  
native and naturalizaed taxa of the genus Narcissus  
L. Daffodil Tulip Year Book 1968: 37-66.  
FERNANDES, A. 1968b. Improvements in the  
classification of the genus Narcissus L. Pl. Life 24:  
GAGE, E., P. WILKIN, M. W. CHASE & J. HAWKINS.  
2011. Phylogenetic systematics of Sternbergia  
(Amaryllidaceae) based on plastid and ITS sequence  
GARCÍA, N., C. CUEVAS, J. E. SEPÚLVEDA, A.  
CÁDIZ-VÉLIZ & M. J. ROMÁN. 2022a. Two new  
species of Miersia and their phylogenetic placements  
alongside the recently described M. putaendensis  
(Gilliesieae, Allioideae, Amaryllidaceae). PhytoKeys  
GARCÍA, N., R. A. FOLK., A. W. MEEROW, S.  
CHAMALA, …. & P. S. SOLTIS. 2017. Deep  
reticulation and incomplete lineage sorting  
obscure the diploid phylogeny of rain-lilies and  
allies (Amaryllidaceae tribe Hippeastreae). Mol.  
GARCÍA, N., A. W. MEEROW, S. ARROYO-  
LEUENBERGER, R. S. OLIVEIRA, … & W.  
S. JUDD. 2019. Generic classification of  
Amaryllidaceae tribe Hippeastreae. Taxon 68: 481-  
498. https://doi.org/10.1002/tax.12062  
5
1-57.  
FERNANDES A. 1975. L’évolution chez le genre  
Narcissus L. Anales Inst. Bot. A. J. Cavanilles 32:  
8
43-872.  
FRIESEN, N. 2022. Introduction to edible alliums:  
evolution, classification and domestication. In:  
RABINOWITCH, H. & B. THOMAS (eds.), Edible  
alliums:botany,productionanduses,pp.1-19.CABI,  
GB. https://doi.org/10.1079/9781789249996.0001  
FRIESEN, N., R. M. FRITSCH, S. POLLNER & F. R.  
BLATTNER. 2000. Molecular and morphological  
evidence for an origin of the aberrant genus Milula  
within Himalayan species of Allium (Alliaceae).  
FRIESEN, N., R. M. FRITSCH & F. R. BLATTNER.  
2
006. Phylogeny and new intrageneric classification  
of Allium (Alliaceae) based on nuclear ribosomal  
DNA ITS sequences. In: COLUMBUS, J. T. et  
al. (eds.), Monocots: comparative biology and  
evolution (vol. 1, excluding Poales), pp. 372-395.  
Rancho Santa Ana Botanic Garden, Claremont.  
GARCÍA, N. & A. W. MEEROW. 2020. Corrigendum  
to: GARCÍA, N., A. W. MEEROW, S. ARROYO-  
LEUENBERGER, R. S. OLIVEIRA, … & W.  
S. JUDD. 2019. Generic classification of  
Amaryllidaceae tribe Hippeastreae [in Taxon 68:  
FRIESEN, N. & M. KLAAS. 1998. Origin of some minor  
vegetatively propagated Allium crops studied with  
RAPD and GISH. Genet. Res. Crop Evol. 45: 511-  
5
23.https://doi.org/10.1023/A:1008647700251  
FRIESEN, N., S. POLLNER, K. BACHMANN & F.  
R. BLATTNER. 1999. RAPDs and noncoding  
chloroplast DNA reveal a single origin of the  
cultivated Allium fistulosum from A. altaicum  
GARCÍA, N., A. W. MEEROW, D. E. SOLTIS & P. S.  
SOLTIS. 2014. Testing deep reticulate evolution in  
Amaryllidaceae tribe Hippeastreae (Asparagales)  
GARCÍA N., A. B. SASSONE, R. PINTO & M.  
J. ROMÁN. 2022b. Atacamallium minutiflorum  
(Amaryllidaceae, Allioideae), new genus and species  
FRITSCH, R. M. 2001. Taxonomy of the genus Allium:  
contribution from IPK Gatersleben. Herbertia 56:  
1
9-50.  
FRITSCH, R. M., F. R. BLATTNER  
&
M.  
GURUSHIDZE. 2010. New classification of Allium  
L. subg. Melanocrommyum (Webb & Berthel) Rouy  
GOODMAN, C. S. & B. C. COUGHLIN, B. C. 2000.  
Special feature: The evolution of evo-devo biology.  
(Alliaceae) based on molecular and morphological  
characters. Phyton 49: 145-220.  
FRITSCH, R. M. & N. FRIESEN. 2002. Evolution,  
domestication, and taxonomy. In: RABINOWITCH,  
H. D. & L. CURRAH (eds.), Allium crop science:  
recent advances, pp. 5-30. CABI Publishing,  
Wallingford.  
GRAHAM, S. W. & S. C. H. BARRETT. 2004.  
Phylogenetic reconstruction of the evolution of stylar  
polymorphisms in Narcissus (Amaryllidaceae). Am.  
368  
A. W. Meerow - Classification and phylogeny of Amaryllidaceae  
GRAHAM, S.W., J. M. ZGURSKI, M.A. MCPHERSON,  
ISING, G. 1970. Evolution of karyotypes in Cyrtanthus.  
D, M. CHERNIAWSKY, … & H. S. RAI. 2006.  
Robust inference of monocot deep phylogeny  
using an expanded multigene plastid data set.  
In: COLUMBUS, J. T. et al. (eds.), Monocots:  
comparative biology and evolution (vol. 1, excluding  
Poales), pp. 3-21. Rancho Santa Ana Botanic  
Garden, Claremont.  
ITO, M., A. KAWAMOTO, Y. KITA, T. YUKAWA &  
S. KURITA. 1999. Phylogenetic relationships of  
Amaryllidaceae based on matK sequence data. J.  
Plant Res. 112: 207-216.  
https://doi.org/10.1007/PL00013874  
GURUSHIDZE, M., R. M. FRITSCH & F. R.  
BLATTNER. 2008. Phylogenetic analysis of Allium  
subgen. Melanocrommyum infers cryptic species  
and demands a new sectional classification. Mol.  
JANSSEN, T. & K. BREMER. 2004. The age of major  
monocot groups inferred from 800+ rbcL sequences.  
JIMENEZ, H. J., A. D. F. DA SILVA, L. S. S. MARTINS,  
R. DE CARVALHO & R. M. DE MORAES FILHO.  
2020. Comparative genomics plastomes of the  
Amaryllidaceae family species. Scientia Plena 16:  
060202.  
https://doi.org/10.14808/sci.plena.2020.060202  
JUDD, W. S., C. S. CAMPBELL, E. A. KELLOGG,  
P. F. STEVENS & D M. J. DONOGHUE. 2015.  
Plant systematics: a phylogenetic approach, 4th ed.  
Sinauer Associates, Sutherland.  
GURUSHIDZE,M.,R.M.FRITSCH&F.R.BLATTNER.  
2
010. Species level phylogeny of Allium subgenus  
Melanocrommyum-incomplete lineage sorting,  
GURUSHIDZE, M., S. MASHAYEKHI, F. R.  
BLATTNER, N. FRIESEN & R. M. FRITSCH.  
2
007. Phylogenetic relationships of wild and  
cultivated species of Allium section Cepa inferred  
by nuclear rDNA ITS sequence analysis. Plant Syst.  
Evol. 269: 259-269.  
KITCHING, I. J., P. FOREY, C. HUMPHRIES & D.  
WILLIAMS. 1998. Cladistics: the theory and  
practice of parsimony analysis (No. 11). Oxford  
University Press, Oxford.  
https://doi.org/10.1007/s00606-007-0596-0  
HE, M., C. QU, O. GAO, X. HU & X. HONG.  
KÖNYVES, K., J. DAVID & A. CULHAM. 2019.  
Jumping through the hoops: the challenges of daffodil  
KOSHIMIZU, T. 1930. Carpobiological studies of Crinum  
asiaticum L. var. japonicum Bak. Mem. Coll. Sci.,  
Kyoto Imp. Univ., Ser. B., Biology 5: 183-227.  
KWEMBEYA, E. G., C. S. BJORÅ, B. STEDJE & I.  
NORDAL. 2007. Phylogenetic relationships in the  
genus Crinum (Amaryllidaceae) with emphasis on  
tropical African species: evidence from trnL-F and  
LARA RICO, R. F., R. VÁSQUEZ CHÁVEZ & M.  
A. BURGOS. 2021. The genus Hippeastrum  
(Amaryllidaceae) in Bolivia. Pacific Bulb Society,  
Leonia.  
LARSEN, M. M., A. ADSERSEN, A. P. DAVIS, M.  
D. LLEDÓ, ... & N. RØNSTED. 2010. Using a  
phylogenetic approach to selection of target plants  
in drug discovery of acetylcholinesterase inhibiting  
alkaloids in Amaryllidaceae tribe Galantheae.  
2
015. Biological and pharmacological activities  
of amaryllidaceae alkaloids. RSC Adv. 5: 16562.  
https://doi.org/10.1039/C4RA14666B  
HE, X. J., S. GE, J. M. XU & D. Y. HONG. 2000.  
Phylogeny of Chinese Allium (Liliaceae) using  
PCR-RFLP analysis. Science in China (series C)  
4
3:454-463.  
HENNIG, W. 1966. Phylogentic systematics. University  
of Illinois Press, Urbana.  
HERDEN, T., P. HANELT & N. FRIESEN. 2016.  
Phylogeny of Allium L. subgenus Anguinum (G.  
Don. ex W.D.J. Koch) N. Friesen (Amaryllidaceae).  
HIRSCHEGGER, P., J. JAKŠE, P. TRONTELJ & B.  
BOHANEC. 2010. Origins of Allium ampeloprasum  
horticultural groups and a molecular phylogeny  
of the section Allium (Allium: Alliaceae). Mol.  
HUELSENBECK, J. P. & K. A. CRANDALL. 1997.  
Phylogeny estimation and hypothesis testing using  
maximum likelihood. Ann. Rev. Ecol. Syst. 28: 437-466.  
369  
Bol. Soc. Argent. Bot. 58 (3) 2023  
LEMMON, A. R., S. A. EMME & E. M. LEMMON.  
Narcissus (Amaryllidaceae) challenges current  
classifications and reveals multiple hybridization  
events. Taxon 66: 832-854.  
2
012. Anchored hybrid enrichment for massively  
high-throughput phylogenomics. Syst. Biol. 61: 727-  
44. http://doi.org/ 10.1093/sysbio/sys049.  
7
https://doi.org/10.12705/664.3  
LEMMON, E. M. & A. R. LEMMON. 2013. High-  
throughput genomic data in systematics and  
MATHEW, B. 1983. A review of the genus Sternbergia.  
The Plantsman 5: 1-16.  
MATHEW, B. 2002. Classification of the genus  
Narcissus. In: HANKS, G. R. (ed.), Narcissus and  
daffodil, pp. 30-52. Taylor and Francis, London.  
MEEROW, A. W. 2009. Tilting at windmills: 20 years  
of Hippeastrum breeding. Israel J. Pl. Sci. 57:  
303-313. http://doi.org/10.1560/IJPS.57.4.303  
MEEROW, A. W. 2010. Convergence or reticulation?  
Mosaic evolution in the canalized American  
Amaryllidaceae. In: SEBERG, O. et al. (eds.),  
Diversity, phylogeny and evolution in the  
monocotyledons, pp. 145-168. Aarhus University  
Press, Aarhus.  
MEEROW, A. W. & J. R. CLAYTON. 2004.  
Generic relationships among the baccate-fruited  
Amaryllidaceae (tribe Haemantheae) inferred  
from plastid and nuclear non-coding DNA  
sequences. Plant Syst. Evol. 244: 141-155.  
LI, M. J., J. B.TAN, D. F. XIE, D. Q. HUANG, … & X. J. HE.  
2016a. Revisiting the evolutionary events in Allium  
subgenus Cyathophora (Amaryllidaceae): insights  
into the effect of the Hengduan Mountains Region  
(HMR) uplift and quaternary climatic fluctuations  
to the environmental changes in the Qinghai-Tibet  
LI, Q.-Q., S.-D. ZHOU, X.-J. HE, Y. YU, ... & X.-  
Q. WEI. 2010. Phylogeny and biogeography of  
Allium (Amaryllidaceae: Allieae) based on nuclear  
ribosomal internal transcribed spacer and chloroplast  
rps16 sequences, focusing on the inclusion of  
https://doi.org/10.1007/s00606-003-0085-z  
LI, Q.-Q., S. D. ZHOU, D. Q. HUANG, X. J. HE & X. Q.  
WEI. 2016b. Molecular phylogeny, divergence time  
estimates and historical biogeography within one of  
the world’s largest monocot genera. AoB Plants 8:  
plw041. https://doi.org/10.1093/aobpla/plw041.  
LLEDÓ, M. D., A. P. DAVIS, M. B. CRESPO, M. W.  
CHASE & M. F. FAY. 2004. Phylogenetic analysis  
of Leucojum and Galanthus (Amaryllidaceae) based  
on plastid matK and nuclear ribosomal spacer (ITS)  
DNA sequences and morphology. Plant Syst. Evol.  
MEEROW, A. W., M. FAY, M. W. CHASE, C. L.  
GUY, … & S.-L. YANG. 2000. Phylogeny of  
the Amaryllidaceae: molecules and morphology.  
In: WILSON, K. L. & D. A. MORRISON (eds.),  
Monocots: systematics and evolution, pp. 368-  
382. CSIRO Publishing, Collingwood.  
MEEROW, A. W., M. F. FAY, C. L. GUY, Q.-B.  
LI, … & M. W. CHASE. 1999. Systematics of  
Amaryllidaceae based on cladistic analysis of  
MEEROW, A. W., J. FRANCISCO-ORTEGA, D. N.  
KUHN & R. J. SCHNELL. 2006. Phylogenetic  
relationships and biogeography within the  
Eurasian clade of Amaryllidaceae based on plastid  
ndhF and nrDNA ITS sequences: lineage sorting  
2
46: 223-243.  
https://doi.org/10.1007/s00606-004-0152-0  
LOU, Y.-L., D.-K. MA, Z.-T. JIN, H. WANG, ... & B.-  
B. LIU. 2022. Phylogenomic and morphological  
evidence reveal a new species of spider lily, Lycoris  
longifolia (Amaryllidaceae) from China. Phytokeys  
MARQUES, I. C. 2010. Evolutionary outcomes of  
natural hybridization in Narcissus (Amaryllidaceae):  
the case of N. × perezlarae s.l. Doctoral dissertation.  
University of Lisbon, Portugal.  
MARQUES, I., J. FUERTES AGUILAR, M. A.  
MARTINS-LOUÇAO, F. MOHARREK & H.  
N. FELINER. 2017. A three‐genome five‐gene  
comprehensive phylogeny of the bulbous genus  
MEEROW, A.W., E. M. GARDNER & K. NAKAMURA.  
2020. Phylogenomics of theAndean tetraploid clade of the  
American Amaryllidaceae (subfamily Amaryllidoideae):  
Unlocking a polyploid generic radiation abetted by  
continental geodynamics. Front. Plant Sci. 11: 582422.  
https://doi.org/10.3389/fpls.2020.582422  
MEEROW,A. W., E. M. GARDNER & K. NAKAMURA.  
2023. Corrigendum: Phylogenomics of the Andean  
370  
A. W. Meerow - Classification and phylogeny of Amaryllidaceae  
tetraploid clade of the American Amaryllidaceae  
subfamily Amaryllidoideae): Unlocking a  
polyploid generic radiation abetted by continental  
MES, T. H. M., R. M. FRITSCH, S. POLLNER & K.  
BACHMANN. 1999. Evolution of the chloroplast  
genome and polymorphic ITS regions in Allium  
(
MEEROW,A.W.,C.L.GUY,Q.-B.LI&J.R.CLAYTON.  
MÜLLER-DOBLIES, D. & U. MÜLLER-DOBLIES.  
1978a. Zum Bauplan von Ungernia, der  
einzigen endemischen Amaryllidaceen - Gattung  
Zentralasiens. Bot. Jahrb. 99: 249-263.  
MÜLLER-DOBLIES, D. & U. MÜLLER-DOBLIES.  
1978b. Studies on tribal systematics of  
Amaryllidoideae 1. The systematic position of  
Lapiedra Lag. Lagascalia 8: 13-23.  
NGUYEN, N. H., H. E. DRISCOLL & C. D. SPECHT.  
2008. A molecular phylogeny of the wild onions  
(Allium;Alliaceae) with a focus on the western North  
American center of diversity. Mol. Phylogenet. Evol.  
OLIVEIRA, R. 2012. O gênero Hippeastrum Herb.  
(Amaryllidaceae) no Brasil: evidência de evolução  
reticulada e análise de caracteres florais. PhD Thesis.  
Universidade Estadual de Campinas, Brazil.  
OLIVEIRA, R. S., J. SEMIR & J. H. A. DUTILH.  
2013. Four new endemic species of Hippeastrum  
(Amaryllidaceae) from Serra da Canastra, Minas  
2
002. Phylogeny of the tribe Hymenocallideae  
Amaryllidaceae) based on morphology and  
molecular characters. Ann. Missouri Bot. Gard. 89:  
00-413. https://doi.org/10.2307/3298600  
MEEROW, A. W., C. L. GUY, Q.-B. LI & S.-Y. YANG.  
000. Phylogeny of the American Amaryllidaceae  
based on nrDNA ITS sequences. Syst. Bot. 25: 708-  
26. https://doi.org/10.2307/2666729  
MEEROW, A. W., D. J. LEHMILLER & J. R. CLAYTON.  
003. Phylogeny and biogeography of Crinum L.  
Amaryllidaceae) inferred from nuclear and limited  
plastid non-coding DNA sequences. Bot. J. Linn. Soc.  
(
4
2
7
2
(
MEEROW, A. W., J. L. REVEAL, D. A. SNIJMAN &  
J. H. DUTILH. 2007. (1793) Proposal to conserve  
the name Amaryllidaceae against Alliaceae, a  
1
superconservation” proposal. Taxon 56: 1299-  
300.  
MEEROW, A. W. & D. A. SNIJMAN. 1998.  
Amaryllidaceae. In: KUBITZKI, K. (ed.), The  
families and genera of vascular plants III.  
Flowering plants, monocotyledons: Lilianae  
OLIVEIRA, R. S., J. D. URDAMPILLETA & J. H.  
DUTILH.2017.AnewHippeastrum(Amaryllidaceae)  
species from Brazil. Phytotaxa 307: 147-152.  
https://doi.org/10.11646/phytotaxa.307.2.6  
PELLICER, J., O. HIDALGO, J. WALKER, M. W.  
CHASE, … & M. F. FAY. 2017. Genome size  
dynamics in tribe Gilliesieae (Amaryllidaceae,  
subfamilyAllioideae)inthecontextofpolyploidyand  
unusual incidence of Robertsonian translocations.  
(
except Orchidaceae), pp. 83-110. Springer, Berlin.  
MEEROW, A. W. & D. A. SNIJMAN. 2001. Phylogeny  
of Amaryllidaceae tribe Amaryllideae based on  
MEEROW, A. W. & D. A. SNIJMAN. 2006. The never-  
ending story: multigene approaches to the phylogeny  
of Amaryllidaceae, and assessing its familial limits.  
In: COLUMBUS, J. T. et al. (eds.), Monocots:  
comparative biology and evolution, vol. 1, pp. 365-  
PÉREZ-BARRALES, R., P. VARGAS & J. ARROYO.  
2003. Convergent evolution of flower polymorphism  
in Narcissus L. (Amaryllidaceae). New Phytol. 161:  
PIGG, K. B., F. A. BRYAN & M. L. DEVORE. 2018.  
Paleoallium billgenseli gen. et sp. nov.: Fossil  
Monocot Remains from the Latest Early Eocene  
Republic Flora, Northeastern Washington State,  
MEEROW, A. W., J. VAN SCHEEPEN & J. H. A.  
DUTILH. 1997. Transfers from Amaryllis to  
Hippeastrum. (Amaryllidaceae). Taxon 46: 15-19.  
https://doi.org/10.2307/1224287  
MES, T. H. M., N. FRIESEN, R. M. FRITSCH, M.  
KLAAS & K. BACHMANN. 1997. Criteria for  
sampling in Allium based on chloroplast DNA PCR-  
RFLPs. Syst. Bot. 22: 701-712.  
https://doi.org/10.2307/2419436  
371  
Bol. Soc. Argent. Bot. 58 (3) 2023  
QIN, W. H., W. Q. MENG, D. ZHANG, Y. WANG, …  
SADASIVAIAH, B. K. & S. KARUPPUSAMY. 2018.  
Two new species of Pancratium (Amaryllidaceae)  
from India. Species 19: 132-139.  
SASIKALA, K. & M. KUMARI. 2013. Pancratium  
nairii (Amaryllidaceae)-a new species from Kerala,  
India. Indian J. For. 36: 543-544.  
SARKER, D. DE, M. A. T. JOHNSON, A. REYNOLDS  
& P. E. BRANDHAM. 1997. Cytology of the highly  
polyploid disjunct species, Allium dregeanum  
(Alliaceae), and of some Eurasian relatives. Bot. J.  
&
K. LIU. 2021. A new Amaryllidaceae genus,  
Shoubiaonia, from Yunnan Province, China. Nord. J.  
Bot. 39: e02703. https://doi.org/10.1111/njb.02703  
RAHN, K. 1998.Alliaceae,Themidaceae. In: KUBITZKI,  
K. (ed.), The families and genera of vascular plants  
III. Flowering plants, monocotyledons: Lilianae  
(except Orchidaceae), pp. 70-78. Springer, Berlin.  
RAVEN, P. H. & D. I. AXELROD. 1974. Angiosperm  
biogeography and past continental movements. Ann.  
Missouri Bot. Gard. 61: 539-673.  
https://doi.org/10.2307/2395021  
SASSONE, A. B. & S. C. ARROYO-LEUENBERGER.  
2018. Revisión taxonómica de las especies del  
género sudamericano Tristagma (Amaryllidaceae,  
SASSONE, A. B., F. R. BLATTNER, L. M. GIUSSANI  
& D. H. HOJSGAARD. 2022. First glimpse on  
spring starflower domestication. Genes 13: 243.  
https://doi.org/10.1111/mec.16009  
REID, C. & R. A. DYER. 1984. A Review of the southern  
African species of Cyrtanthus. American Plant Life  
Society, La Jolla.  
RENDLE, A. B. 1901. The bulbiform seeds of certain  
Amaryllidaceae. J. Roy. Hort. Soc. 26: 89-96.  
RØNSTED, N., D. ZUBOV, S. BRUUN-LUND & A.  
P. DAVIS. 2013. Snowdrops falling slowly into  
place: An improved phylogeny for Galanthus  
(Amaryllidaceae). Mol. Phylogenet. Evol. 69: 205-  
SASSONE, A. B. & L. M. GIUSSANI. 2018.  
Reconstructing the phylogenetic history of the  
tribe Leucocoryneae (Allioideae): Reticulate  
evolution and diversification in South America.  
SASSONE, A. B., L. M. GIUSSANI & E. R.  
GUAGLIANONE. 2013. Multivariate studies of  
Ipheion (Amaryllidaceae, Allioideae) and related  
genera. Plant Syst. Evol. 299: 1561-1575.  
https://doi.org/10.1007/s00606-013-0819-5  
SASSONE, A. B., D. H. HOJSGAARD, L. GIUSSANI,  
J. BRASSAC & F. R. BLATTNER. 2021. Genomic,  
karyological and morphological changes of South  
American garlics (Ipheion) provide insights into  
mechanisms of speciation in the Pampean region.  
Mol. Ecol. 30: 3716-3729.  
ROUX, J., M. ROSIKIEWICZ & M. ROBINSON‐  
RECHAVI. 2015. What to compare and how:  
comparative transcriptomics for evo‐devo. J. Exp.  
RUDALL, P. J., R. M. BATEMAN, M. F. FAY & A.  
EASTMAN. 2002. Floral anatomy and systematics  
of Alliaceae with particular reference to Gilliesia, a  
presumed insect mimic with strongly zygomorphic  
SAIKI, R. K., D. H. GELFAND, S. STOFFEL, S. J.  
SCHARF, ... & H. A. ERLICH. 1988. Primer-  
directed enzymatic amplification of DNA with a  
https://doi.org/10.1111/mec.16009  
SAMOYLOV, A., N. FRIESEN, S. POLLNER &  
P. HANELT. 1999. Use of chloroplast DNA  
polymorphisms for the phylogenetic study of Allium  
subgenus Amerallium and subgenus Bromatorrhiza  
SASSONE, A. B., A. LÓPEZ, D. H. HOJSGAARD  
& L. M. GIUSSANI. 2018. A novel indicator of  
karyotype evolution in the tribe Leucocoryneae  
(Allioideae, Amaryllidaceae). J. Plant Res. 131:  
SNIJMAN, D. A. & R. H. ARCHER. 2003.  
Amaryllidaceae. In: GERMISHUIZEN, G. & N.  
L. MEYER (eds.), Plants of southern Africa: an  
annotated checklist (Strelitzia 14), pp. 957-967.  
National Botanical Institute, Pretoria.  
SAMOYLOV, A., M. KLAAS & P. HANELT. 1995. Use  
of chloroplast polymorphisms for the phylogenetic  
study of subgenera Amerallium and Bromatorrhiza  
372  
A. W. Meerow - Classification and phylogeny of Amaryllidaceae  
SNIJMAN, D. A. & H. P. LINDER. 1996. Phylogenetic  
WEBB, D. A. 1980. Narcissus L. In: TUTIN, T. G. et  
al. (eds.), Flora Europaea 5, pp. 78-84. Cambridge  
University Press, Cambridge.  
relationships, seed characters, and dispersal system  
evolution in Amaryllideae (Amaryllidaceae). Ann.  
Missouri Bot. Gard. 83: 362-386.  
WEICHHARDT-KULESSA, K., T. BÖRNER, J.  
https://doi.org/10.2307/2399866  
SCHMITZ, U. MÜLLER-DOBLIES & D.  
SNIJMAN, D. A. & A. W. MEEROW. 2010. Floral  
and macroecological evolution within Cyrtanthus  
MÜLLER-DOBLIES. 2000. Controversial  
taxonomy of Strumariinae (Amaryllidaceae)  
investigated by nuclear rDNA (ITS) sequences.  
Plant Syst. Evol. 223: 1-13.  
(Amaryllidaceae): inferences from combined analyses  
of plastid ndhF and nrDNA ITS sequences. S. Afr. J.  
https://doi.org/10.1007/BF00985323  
WEITEMIER, K., S. C. K. STRAUB, R. C. CRONN,  
M. FISHBEIN, … & A. LISTON. 2014. Hyb-Seq:  
combining target enrichment and genome skimming  
for plant phylogenomics. Appl. Plant Sci. 2: 1400042.  
http://doi.org/10.3732/apps.1400042.  
SNIJMAN, D. A. & G. WILLIAMSON. 1994. A  
taxonomic re-assessment of Ammocharis  
herrei and Cybistetes longifolia (Amaryllideae:  
Amaryllidaceae). Bothalia 24: 127-132.  
SNOEIJER, W. 2004. Agapanthus: a revision of the  
genus. Timber Press, Portland.  
WILDE DUYFJES, B. E. E. DE. 1976. A revision of the  
genus Allium L. (Liliaceae) in Africa. H. Veenman and  
Zonen B.V., Wageningen.  
WILEY, E. O. 1981. Phylogenetics, the theory and practice  
of phylogenetic systematics. John Wiley and Sons, New  
York.  
STAFFORD, G. I., M. J. WIKKELSØ, L. NANCKE,  
A. K. JÄGER, ... & N. RØNSTED. 2016. The  
first phylogenetic hypothesis for the southern  
African endemic genus Tulbaghia (Amaryllidaceae,  
Allioideae) based on plastid and nuclear DNA  
WILSENACH, R. 1963. A cytotaxonomic study of the  
STERN, F. C. 1956. Snowdrops and snowflakes. A study  
of the genera Galanthus and Leucojum. The Royal  
Horticultural Society, London.  
WING, S. L., F. HERRERA, C. A. JARAMILLO, C.  
GÓMEZ-NAVARRO, … & C. C. LABANDEIRA,  
2009. Late Paleocene fossils from the Cerrejón  
Formation, Colombia, are the earliest record of  
Neotropicalrainforest.Proc.Nat.Acad.Sci.106:18627-  
18632. https://doi.org/10.1073/pnas.0905130106  
XIE, D. F., J. B. TAN, Y. YU, L. J. GUI, … & X. J. HE.  
2020. Insights into phylogeny, age and evolution of  
Allium (Amaryllidaceae) based on the whole plastome  
STRYDOM, A., R. KLEYNHANS & J. J. SPIES.  
2
007. Chromosome studies on African plants. 20.  
Karyotypes of some Cyrtanthus species. Bothalia  
7: 103-108.  
3
TRAUB, H. P. 1963. Genera of the Amaryllidaceae.  
American Plant Life Society, La Jolla.  
TRAUB, H. P. & H. N. MOLDENKE. 1949.  
Amaryllidaceae: tribe Amarylleae. American  
Amaryllis Society, Stanford.  
VOSA, C. 2007. Prototulbaghia (Alliaceae), a new genus  
of the Alliaceae family from the Leolo mountains in  
Sekhukhuneland, South Africa. Caryologia 60: 273-  
ZHANG, F., N. WANG, G. CHENG, X. SHU, ... & Z.  
WANG. 2021. Comparative chloroplast genomes of  
four Lycoris species (Amaryllidaceae) provides new  
insight into interspecific relationship and phylogeny.  
278. https://doi.org/10.1080/00087114.2007.10797948  
VOSA, C. G. 2009. An updated and illustrated taxonomic  
synopsis of the genus Tulbaghia (Alliaceae).  
Herbertia 63: 208-219.  
WATERS, M. T., A. M. M. TILEY, E. M. KRAMER,  
A. W. MEEROW, … & R. W. SCOTLAND. 2013.  
The corona of the daffodil Narcissus bulbocodium  
shares stamen-like identity and is distinct from the  
ZHANG, S. Y., H. T. WANG, Y. F. HU, W. ZHANG, … &  
J. W. SHAO. 2022. Lycoris insularis (Amaryllidaceae),  
a new species from eastern China revealed by  
morphological and molecular evidence. Phytokeys  
206: 153-165.  
https://doi.org/10.3897/phytokeys.206.90720  
ZÖLLNER, O. & L. ARRIAGADA. 1998. The tribe  
Gilliesieae (Alliaceae) in Chile. Herbertia 53: 104-107.  
373