Floral nectary Structure, nectar PreSentation and  
morPho-anatomical analySiS oF male-Fertile and male-  
Sterile antherS in onion (allium cePa, amaryllidaceae)  
eStructura del nectario Floral, PreSentación del néctar y  
análiSiS morFo-anatómico de anteraS de líneaS androFértileS y  
androeStérileS en cebolla (allium cePa, amaryllidaceae)  
1
Ana M. Gonzalez * , Irma B. Maldonado , Claudio R. Galmarini  
Iris E. Peralta  
Summary  
Background and aims:The onion (Allium cepa var. cepa) is an allogamous species in  
which male-sterile lines have been developed. However, the structure of the flower  
and floral nectaries have only been briefly described. The objective of this study is  
to update the floral anatomy data, comparing the gynoecium and androecium of  
male-fertile and male-sterile lines, and to analyze the three-dimensional structure  
of the floral nectary.  
M&M: Conventional optical and scanning electron microscopy techniques were used.  
Results: Fertile and sterile male flowers have the same structural organization. The  
septal or gynopleural nectary is organized in three zones: 1) production area formed  
by the glandular tissue arranged radially in the septa of the ovary, 2) discharge  
zone: a small channel at the apex connects the nectariferous tissue with the pocket  
formed between the ovary wall and the overlying ridge, and 3) presentation and  
harvest zone, where the excreted nectar accumulates, formed between the widened  
base of the inner staminal filaments opposite the ovary.  
1
. Facultad de Ciencias Agrarias,  
Universidad Nacional del  
Nordeste; IBONE (UNNE-CONICET).  
Corrientes, Argentina  
2
. Instituto Nacional de Tecnología  
Agropecuaria, AER Formosa,  
Argentina  
3
. Instituto Nacional de Tecnología  
Agropecuaria, EEA La Consulta;  
Facultad de Ciencias Agrarias,  
Universidad Nacional de Cuyo;  
CONICET. Mendoza, Argentina  
4
. Facultad de Ciencias Agrarias,  
Universidad Nacional de Cuyo,  
IADIZA (CONICET). Mendoza,  
Argentina  
Conclusions: The only anatomical differences in the flowers sterile male lines are  
the lack of pollen production and the absence of dehiscence, despite having a  
normal stomium and anther wall. The floral nectaries of onion are a clear example  
of secondary presentation of nectar.  
Key wordS  
Citar este artículo  
GONZALEZ, A. M., I. B.  
MALDONADO, C. R. GALMARINI &  
I. E. PERALTA. 2023. Floral nectary  
structure, nectar presentation  
and morpho-anatomical analysis  
of male-fertile and male-sterile  
anthers in onion (Allium cepa,  
Amaryllidaceae). Bol. Soc. Argent.  
Bot. 58: 477-489.  
Anther, dehiscence, gynopleural nectary, nectary pocket, onion, septal nectary.  
reSumen  
Introducción y objetivos: La cebolla (Allium cepa var. cepa) es una especie alógama,  
donde se han desarrollado líneas androestériles. La estructura floral y la de sus  
nectarios florales ha sido descrita de manera somera e incompleta. El objetivo del  
presente trabajo es actualizar los datos de la anatomía floral comparando líneas  
fértiles y androestériles y analizar la estructura tridimensional del nectario floral.  
M&M: Se utilizaron técnicas convencionales de microscopía óptica y electrónica de  
barrido.  
Resultados: Las flores fértiles y androestériles presentan la misma organización  
estructural. El nectario septal o ginopleural se organiza en tres zonas: 1) área  
productora formada por el tejido glandular dispuesto radialmente en los septos  
del ovario, 2) zona de descarga: un pequeño canal en el ápice conecta el tejido  
nectarífero con el bolsillo formado entre la pared del ovario y la cresta que los  
cubre, y 3) zona de presentación y cosecha, donde el néctar excretado se acumula,  
formada entre la base ensanchada de los filamentos estaminales internos y la base  
del ovario.  
Conclusiones: Las únicas diferencias anatómicas en las flores de las líneas  
androestériles y las fértiles radican en la falta de producción de granos de polen y  
la ausencia de dehiscencia, pese a presentar estomio y pared de anteras normales.  
Los nectarios florales de la cebolla son un claro ejemplo de presentación secundaria  
del néctar.  
Recibido: 11 Abr 2023  
Aceptado: 16 Mar 2023  
PalabraS clave  
Antera, bolsillo nectarífero, cebolla, dehiscencia, nectario ginopleural, nectario septal.  
Publicado en línea: 1 Jun 2023  
Publicado impreso: 30 Sep 2023  
&
ISSN versión impresa 0373-580X  
ISSN versión on-line 1851-2372  
477  
Bol. Soc. Argent. Bot. 58 (3) 2023  
introduction  
anthers fails, and the pollen production is aborted  
Holford et al., 1991).  
Offering rewards such as nectar is one of the  
(
The onion (Allium cepa L. var. cepa) is one of  
the most cultivated horticultural species to produce plant’s resources for attracting pollinators (Fahn, 1979;  
bulbs (Galmarini, 2018). According to FAO, world Bernardello, 2007; Pacini & Nepi, 2007; Nepi et al.,  
production in 2021 was 151 million tons, covering 2012). There are numerous studies on various species  
approximately 6 million ha; in Argentina, 16,000 ha that show that the size, shape or color of different  
of onions were cultivated in 2021 with a production of floral parts are related to pollinator visits (López &  
600,000 tons (FAOSTAT, 2021). The implantation of Galetto, 2002; Pernal & Currie, 2002; Silva et al., 2003;  
the crop can be done by sowing seed or planting bulbs. Abrol, 2005; Poveda et al., 2005; Ford & Johnson,  
Argentina not only stands out for the production of 2008; Human & Nicolson, 2008; Steenhuisen et al.,  
bulbs but also for seed production, the most important 2010). The flowers of many monocotyledons present  
areas are located in central-western provinces of San gynopleural floral nectaries (GN), also called septal  
Juan and Mendoza. Fertile or open-pollinated cultivars nectaries (Van Heel, 1988; Smets et al., 2000). The  
and also first-generation hybrids (F1), produced by GN are nectar-secreting cavities consisting of the  
crossing pure or partially homozygous lines with a incomplete fusion of the carpel walls in the septal  
male-sterile line (MSL), are used for seed production. region (Smets & Cresens, 1988; Pacini & Nepi, 2007;  
Male sterility was discovered in onion in 1925 (Saini Odintsova et al., 2013; Fishchuk & Odintsova, 2020).  
&
Davis, 1969) and since then it has been a valuable Fritsch (1992) compared the position of the GN of  
resource for hybrid seed production (Havey, 2000; 160 species of Allium, including A. cepa, highlighting  
Kamenetsky & Rabinowitch, 2002; Kik, 2002; the importance of this characteristic in the confusing  
Engelke et al., 2002, 2003). Onion hybrid seeds have taxonomy of the genus Allium (Gurushidze et al., 2007).  
been extensively produced all over the world using Contrary to the scant recognition of structural studies on  
cytoplasmic–genic male sterility (CGMS) based floral nectaries of onion, there is a profuse bibliography  
systems. There are two main sources of cytoplasmic of nectar chemistry and the relationship with pollinators  
male-sterility identified as S and T, which have been (Syamasundar & Panchaksharappa, 1976; Kumar &  
genetically characterized. S type results from the Gupta, 1993; Silva et al., 2000, 2004; Soto et al., 2015;  
interaction of a cytoplasmic factor S and a single Gillespie et al., 2015, Divija et al., 2022).  
nuclear restorer gene Ms (Colombo & Galmarini,  
In many cases, the structure of the flowers is  
2017, and references therein). The system of CGMS is organized in such a way that the place of nectar  
defined as the inability to produce viable pollen grain production is different from the place of its presentation,  
in plants. The lower average seed yield in F1 hybrids i.e., where the nectar accumulates and is offered to the  
may be the result of deficient pollination and factors visitors, which is called secondary presentation (Fahn,  
related to flower morphology or nectar composition of 1979; Vogel, 1998; Pacini & Nepi, 2007). Kavitha  
the MSL (Parker, 1982; Céspedes et al., 2004; Soto et & Reddy (2018) described Allium flowers as bowl-  
al., 2013, 2015; Gatica Hernandez et al., 2019).  
shaped with the nectary hidden in the lower part of  
Onion flowers are grouped in umbels, which the ovary. The nectar produced accumulates in the  
have between 50 and 2,000 flowers (Fig 1A-B; cup located between the base of the ovary and the  
Brewster, 2001; Kavitha & Reddy, 2018). Flowers inner whorl of stamens, which have staminal filaments  
are protandric: in the fertile variety the anthers mature with a widened base (Fig. 1B). According to Brewster  
normally and pollen is released before the stigma (2001), this area is easily accessible to many types of  
becomes receptive (Currah & Ockendon, 1978). pollinating insects. It has been demonstrated that there  
The flower bears a perigonium consisting of two is variability between the fertile and male-sterile onion  
whorls of three tepals; the androecium is composed lines regarding the preference of bees to visit their  
of two whorls of three stamens, and the gynoecium flowers (Soto et al., 2013, 2015, 2021).  
is composed of three carpels fused in a superior  
The aim of the present study is to extend the  
ovary, with axillary placentation and two ovules per morpho-anatomical descriptions of Allium cepa  
locule (Gaviola, 2007). In plants that are good seed flowers, to re-evaluate the three-dimensional structure  
producers, there are usually three to four mature seeds of the gynopleural nectary in relation to the floral parts  
in each fruit. In male-sterile plants, dehiscence of the and to explain the phenomenon of secondary nectar  
478  
Ana M. Gonzalez et al. - Floral nectary and anthers anatomy of Allium cepa  
Fig. 1. Allium cepa. A: Inflorescence of fertile variety. B: Flowers, the red arrow indicates the inner stamen  
with a broad base and the blue arrow to the outer stamen with a thin staminal filament. Scales= A: 0.5 cm,  
B: 0.1 cm.  
presentation. It is also intended to determine whether series, critical-point dried using liquid CO and sputter  
2
there are differences in the structure of the nectary in coated with gold–palladium. The gold-coated samples  
fertile cultivars and male-sterile lines. In addition, the were photographed with a SEM Jeol LV5800 (JEOL  
floral anatomy will be studied in depth with emphasis Ltd., Tokyo, Japan), at 20 Kv in the Service of Electron  
on the anthers of the fertile and male-sterile lines to Microscopy facility at Universidad Nacional del  
understand the availability of pollen in the varieties Nordeste (Corrientes, Argentina).  
cultivated in Argentina.  
reSultS  
materialS and methodS  
Floral morphology and anatomy  
Four onion accessions were used, one male-  
fertile variety (FV, Valcatorce INTA; Galmarini, male-sterile lines is the same, the difference lies in the  
000) provided by INTA EEA La Consulta and pollen production. The flowers of A. cepa have two  
The morphological structure of fertile flowers and  
2
three male-sterile lines (MSL, ON.192A, ON.013A, whorls of free tepals, three outer and three inner, white  
and ON.108A) provided by the Enza Zaden Seed with a green central line on both sides (Fig. 1B).  
Company. Vouchers (fixed material) were deposited at  
The androecium consists of two whorls of three  
CTES herbarium, voucher number: Valcatorce INTA stamens each, those of the outer whorl have slender  
AMG Nº 528, ON.192A AMG Nº 529, ON.013A staminal filaments. The three inner stamens have  
AMG Nº 530, and ON.108AAMG Nº 530.  
tricuspidate staminal filaments, with basally widened  
Flowers of A. cepa were fixed in FAA tepaloid expansions finishing in two free ends and  
(formaldehyde, alcohol 70%, acetic acid, 90:5:5). a third that lengthens and supports the anther (Figs.  
The material was dehydrated through a tertiary 1B; 2A-C). The widened bases of the inner staminal  
butanol series and embedded in paraffin (Gonzalez filaments form a cup-shaped area where the floral  
&
Cristóbal, 1997; Ruzin, 1999), microtomized nectar accumulates. The anthers are bithecal, versatile,  
using a Microm HM350 rotary microtome in 12 µm and dorsifixed (Fig. 2A-C). In both FV and MSL  
transversal (TS) and longitudinal sections (LS), and flowers, a dehiscence line is visible externally on the  
finally stained in safranin and astra blue combinations anthers, but thecae of the MSL do not open or release  
(Luque et al., 1996). A Leica MZ6 light microscope pollen grains (Fig. 2B-C).  
(
LM) with a digital imaging system was used for the  
Both FV and MSL present the same anatomy  
in the anther wall and the stomium zone, the  
observations.  
For scanning electron microscopy (SEM), FAA- differences between them are due to the process of  
fixed material was dehydrated in an increasing acetone microgametogenesis (Fig. 2D-M).  
479  
Bol. Soc. Argent. Bot. 58 (3) 2023  
In mature anthers of FV, the wall of the thecae is  
The complex organization of the nectary can only  
only composed of an exothecium and endothecium be understood by analyzing the exomorphology of  
Fig. 2 D-F). The exothecium bears cells with thickened the gynoecium and its anatomy through a sequence of  
(
cellulosic walls which are covered with a finely transversal and longitudinal serial sections of the ovary  
reticulated cuticle, which lacks stomata (Fig. 2G). The (Figs. 3-4).  
endothecium is composed of a single layer of thin-  
Externally the ovary has three grooves that protrude  
walled cells with U-shaped lignified thickenings; the at the edges, which accompany the dorsal bundle of  
bars of these thickenings are free, covering the inner each carpel along its path (Figs. 3A-F, 4J-L). The carpel  
tangential wall and the side walls without reaching wall in the dorsal bundle area presents an external  
the outer tangential wall (Fig. 2H). The stomium zone groove, which is the only area of the epidermis with  
in FV has small epidermal and endothecial cells and stomata that lack a substomatal chamber.  
longitudinal dehiscence occurs through these cells (Fig.  
The lateral sides of the ovary are flat and are  
2F). In the ripe anther of FV, orbicules are observed constitutedbytwoadjacentcarpels, withoutdelimitation  
covering the inner walls of the pollen sacs. Pollen of the suture line (Fig. 3B-D). By removing the ovary  
is monosulcate and oblate in shape, with a rugulate and observing it from the base, three elongated and  
sculpture (Fig. 2I).  
pocket-shaped openings are visible; they consist of  
The anthers of FV have the same organization crests of carpellary tissue that cover the ovary laterally,  
in the anther wall and stomium zone (Fig. 2J-L) delimiting three cavities or nectar pockets (Fig. 3C-E).  
Despite having an endothecium with well-developed Each crest corresponds to two contiguous carpels (Fig.  
thickenings, there is no dehiscence. The stomium 3C).  
also has small-sized cells. The difference with fertile  
In cross-sections of the ovary it is observed that the  
anthers lies in the volume of the pollen sacs. The sacs portion of two adjacent carpels folds inwards forming  
have collapsed and there is cellular debris inside. In the septum and delimiting the axillary placentation  
MSL the anthers do not produce pollen; the remains (Figs. 3D-E; J-L). In the septum, the suture between  
of sporogenous cells or aborted microspores can be the walls of the carpels is incomplete and forms three  
observed, agglutinated by tapetal cellular residues (Fig. grooves, each corresponding to GN or septal nectaries  
2M). In the anthers of MSL, the cells of the stomium (Figs. 3D-E; H-K). In this area, the epidermal cells  
zone, endothecium, and epidermis are not affected, they are arranged in a palisade (Fig. 3F-G). The epidermis  
have the same cellular conformation as in FV; however, and 1-2 layers of subepidermal parenchyma of the  
no dehiscence occurs in these anthers.  
carpel are differentiated into nectar-secreting tissue,  
The tepals and tepaloid bases of the staminal characterized by a very dense cytoplasm with a central  
filaments (in both FV and MSL) have the same nucleus and no perceptible vacuoles; the walls are  
anatomical structure: a compact parenchyma, covered cellulosic and thin (Fig. 3F-G).  
by a unistratified epidermis, without stomata (Fig. 2J).  
The rest of the septum, as well as the carpel wall, is  
The filiform portion of all the staminal filaments is thin; formed by a compact fundamental parenchyma. Inside  
the colorless and compact parenchyma is covered by the pocket, the crest has an inner longitudinal groove  
a unistratified epidermis of cells arranged in palisade, (Fig. 3E). Each crest over the GN consists of 3-4 layers  
without stomata, covered with a finely striated cuticle of ground parenchyma, covered by a unistratified  
(Fig. 2D, J).  
epidermis, without stomata; there are no secretory cells  
and they lack vascularization (Fig. 3H-J).  
Gynoecium and Nectary  
In a radial longitudinal section passing through  
There is no difference in the structural or vascular the septum and nectary, it can be seen how the apical  
organization between FV and MSL flowers. The ovary portion of GN is connected to the nectariferous pocket  
is superior, tricarpellar, trigonous, and slightly flattened. (Fig. 3H-J). The nectar produced and excreted into  
The carpels are organized in an axillary placentation the septum area thus finds a place to exit into the  
with two ovules per locule (Figs. 3C, 4). The style is nectariferous pocket and accumulates between the  
single and gynobasic, it is located in an invagination ovary and the tepaloid base of the staminal filaments.  
of the apical portion of the ovary; the stigma is an  
inconspicuous knob that completes its elongation after the carpels, in its basal portion (Fig. 3A, D, H, K). The  
the dehiscence of the anthers occurs (only in FV). ovules are campylotropous with curved nucellus (Fig.  
Each locule bears two ovules, inserted in the axils of  
480  
Ana M. Gonzalez et al. - Floral nectary and anthers anatomy of Allium cepa  
Fig. 2. Flowers of Allium cepa. A-C, J-M: SEM; D-I: LM. A-B: Longitudinal section of fertile variety (FV)  
flower. C: Androecium and tepals in male-sterile line (MSL) flowers; asterisks in B-C indicate tricuspidate  
tepaloid expansions of staminal filaments. D-I: FV anther. D: Transversal section of almost dehiscing  
anther. E: Detail of anther wall showing endothecial cells with fibrous thickenings and pollen grains. F:  
Stomium zone. G: Superficial view of anther epidermis. H: Paradermal section showing endothecium with  
fibrous thickenings. I: Pollen and inner face of tapetal membranes. J-M: MSL anther. J: Tepals and anther  
with collapsed pollen sacs. K: Detail of anther and collapsed pollen sac. L: Indehiscent stomium zone.  
M: Abortive microspores inside MSL anther. Abbreviations: ct: collapsed tissue, et: exothecium, is: inner  
stamen, it: inner tepal, np: nectary pocket, nt: endothecium, os: outer stamen, ot: outer tepal, ov: ovule, ova:  
ovary, s: stomium, sf: staminal filament, st: style. Scales= A-C: 500 µm; D, J: 200 µm; E-F, K-L: 50 µm; G-H:  
20 µm; I, M: 10 µm.  
481  
Bol. Soc. Argent. Bot. 58 (3) 2023  
Fig. 3. Gynoecium and gynopleural nectary of Allium cepa. A-F, I, K: SEM; G, H, J, L: LM. A: Longitudinal  
section of fertile variety (FV) flower; the asterisk shows the aperture for nectar exit. B: Apical view of ovary.  
C: Basal view of ovary showing the nectary pocket apertures; white lines indicate the limits between carpels,  
white arrowpoint indicate dorsal slots (in B-D). D: Transversal section (TS) of ovary. E-F: False color in SEM  
images: pink = cytoplasm, blue = nucleus. E: Detail of the ovary in TS showing the gynopleural nectary (GN:  
pink cells) and nectary pocket covered by flat crest. F-G: Glandular epidermis of GN. H: Longitudinal section  
of male-sterile line (MSL) flower indicating an ovule in the left lobe and the nectary to the right, covered by a  
crest (arrow), the nectar accumulation area between ovary and anther is indicated by an asterisk. I: Nectary  
pocket and crest in detail. J: Detail of H showing GN; arrow indicates the apical opening for nectar exit to the  
nectary pocket (asterisk). K-L: Ovule. Abbreviations: cr: crest, gn: gynopleural nectary, it: inner integument,  
np: nectary pocket, ob: obturator, ot: outer integument, ov: ovule, st: style. Scales= A-D: 500 µm; E, H, J:  
200 µm; I, K-L: 100 µm; F-G: 20 µm.  
482  
Ana M. Gonzalez et al. - Floral nectary and anthers anatomy of Allium cepa  
3K-L). Both integuments have between 6-8 layers of  
In the longitudinal section of the gynoecium, the  
thickness, which are multiplied in the micropyle. The style is inserted in the center of the ovary, almost at  
external epidermis of the inner integument presents the base, due to the invagination of the carpellary wall  
cells arranged in a short palisade. The nucellus is (Fig. 3A, H). The style is hollow, the central channel  
inconspicuous, only one layer of cells separates the is covered with cells whose radial walls are loosely  
embryo sac from the endostome. The chalaza has arranged; the entire inner part of this epithelium and the  
small cells of dense cytoplasm, with the appearance spaces between the walls are filled with mucilage. The  
of hypostasis; this tissue even reaches the vascular stigma is lined by cells with convex outer walls and,  
bundle. The epidermis of the placenta is differentiated consequently, has a papillose surface.  
in secretory tissue, constituting a placental obturator  
Fig. 3L).  
Floral vascularization (Fig. 4): the flower peduncle  
is innervated by 6-9 vascular bundles, which are united  
(
Fig. 4. Allium cepa floral vascularization and gynopleural nectary (GN) position. A: Longitudinal section of ovary  
showing different levels of transverse sections in diagrams B-L: (glandular tissue shaded, vascular bundle in  
black) and transversal sections (M-R). A-D: Peduncle region. E-F: Receptacle. G-J: Ovary and staminal filaments,  
tepals were not drawn. K-L: Ovary. M-R: LM of gynopleural nectary transection; nectary pocket is indicated with  
asterisk. Abbreviations: cr: crest, cs: nectar accumulation area, dc: dorsal carpellary vascular bundle, fis: broad  
base of inner staminal filament, fos: thin outer staminal filament, gn: gynopleural nectary, it: inner tepal, ot: outer  
tepal, np: nectary pocket, ov: ovule, ova: ovary, st: style. Scales= A-L: 1 mm; M-R: 0.5 mm.  
483  
Bol. Soc. Argent. Bot. 58 (3) 2023  
forming a hexagonal ring in the receptacle (Fig. 4A-D). which a dehiscence line is recognized externally;  
Six traces are detached towards the periphery, each anatomically, this region is the stomium, structurally  
one is divided periclinally, the six external traces typical with smaller cells. The endothecium of the  
vascularize the tepals and the six internal ones anthers in MSL forms thickenings identical to that  
innervate the short staminal tube (Fig. 4E-F). Each of the FV. However, despite this normal anther wall,  
stamen remains vascularized by a small bundle dehiscence of the locules does not occur.  
that runs through the staminal filament to the  
Anther dehiscence is a process that involves  
connective tissue between the anthers. The tepaloid changes in the sterile tissues (endothecium and  
projections of the staminal filaments of the inner development of ligno-cellulosic thickening,  
stamens lack vascularization other than that of the septum, and stomium defined as weakened regions  
filaments (Fig. 4G). From the central vascular ring, susceptible to lysis and rupture, general dehydration  
three traces separate and become the dorsal bundles of the anther) and sexual cells (mature pollen  
of each carpel (Fig. 4F-H). The vascular remnant swelling). This process has been widely studied  
adopts a triangular shape dividing into ventral and by several authors (Keijzer, 1987, 1999; Bonner  
placental bundles that will innerve the ovules (Fig. & Dickinson, 1989; Scott et al., 2004; Wilson  
4
G-L). The style lacks a vascular supply.  
In the series of sections in Fig. 4A, M-R, the been put into genetic and molecular studies to  
relative positions of the gynopleural nectary and understand the process of cytoplasmic male sterility  
et al., 2011). In Allium cepa a great effort has  
the nectariferous pocket can be observed.  
and its contributions to future breeding programs  
Ahmad et al., 2020; Manjunathagowda et al.,  
021; Yu & Kim, 2021). However, none of these  
(
2
diScuSSion and concluSionS  
studies took into account the development of the  
exothecium or the cells of the stomium zone. Only  
The anatomical study of the flower showed García et al. (2006) studied the mechanism of  
that there are no differences between the male- anther opening, but in Allium triquetrum L., and  
fertile and male-sterile lines involving the floral they associated it with the variation in moisture  
structure in general or the gynoecium or nectary content and consequent dehydration, considering  
structure in particular. The fundamental difference that dehiscence is a phenomenon temporarily  
between FV and MSL lines is the interruption of independent of the opening of the stomium. Our  
male gametogenesis and the process of anther study, which included fertile and male-sterile lines,  
dehiscence. The timing of abortion is concentrated shows that, as both types of flowers have the same  
in the late stages of microsporogenesis when the anther wall and stomium structures, it is the swelling  
callose dissolves and microspores are released into of pollen in the later stages of maturation and the  
the anther locules. In the present study, the presence pressure exerted on the thecal walls that contribute  
of collapsed microspores was observed among to the dehiscence of fertile anthers. The absence of  
cellular remains presumably of tapetal origin. This mature pollen in the MSL prevents dehiscence of  
is consistent with previous embryological and the anthers, despite having a structurally normal  
anatomical studies in which it was observed that, stomium and endothecium. This anther opening  
although meiosis occurred normally, male sterility mechanism is the same as that described for rice by  
is produced by hypertrophy of the tapetal cells Matsui et al. (1999).  
and/or pollen degeneration (in onion: Monosmith,  
Studies carried out on floral exomorphology that  
928; Saini & Davis, 1969; Tchórzewska et al., influence seed production of hybrid onions, showed  
017; in garlic: Shemesh-Mayer et al., 2015; in that there was a high and consistent correlation  
1
2
chives: Engelke et al., 2002). The wall structure of among some floral morphometric characters, bee  
fertile and sterile anthers was not analyzed in the visits and seed production; the most interesting  
aforementioned studies. In onion, the programmed being the surface of the external anther and the  
cell death of the sexual cells does not affect the length of the style (Soto et al., 2018). The length of  
development of the anther wall, septum and stomium the style is the morphometric character that allows  
zone, which present a normal structure. With respect differentiation among open-pollinated and male-  
to anther dehiscence, the MSLs show anthers in sterile plants, as well as between different MSLs in  
484  
Ana M. Gonzalez et al. - Floral nectary and anthers anatomy of Allium cepa  
their ability to attract bees. The length of the inner of the gynoecium. Allium fistulosum does not  
tepals presented a negative and highly significant develop a crest and pocket like A. cepa.  
correlation with the length of the style; the former  
Fritsch (1992) analyzed the shape, position, and  
floral character is easier to measure than the length excretory canals of GN in 160 species of Allium,  
of the style and could facilitate the selection of highlighting the importance of this character in  
lines with greater potential for seed production taxonomic research. This author mentioned that  
(
Maldonado, 2014; Soto et al., 2018).  
in sect. Cepa (in which A. cepa is included) “the  
canal consists of an inner, tube-like part, which  
opens from the radial outer side into a pocket-like,  
Gynopleural nectaries  
Unfortunately, nectaries have not received much tangentially widened outer part ending in the lower  
attention in studies of onions. Jones & Emsweller third of the ovary”, this being a unique feature in  
(
1936) studied the ontogenetic development of the genus Allium. Unfortunately, he showed this in  
flowers, focusing on the macrogametophyte, but a diagram of the longitudinal section of the ovary,  
they did not pay attention to the nectaries, despite in which it is difficult to understand the actual  
their excellent drawings showing the ovary and the three-dimensional structure of this description.  
position of the ovules in three dimensions.  
The same type of descriptions and drawings can  
Septal nectaries, correctly called gynopleurals be found in Di Fulvio (1973). Recently, Fishchuk  
(
Smets & Cresens, 1988), are present in most (2022) published the vascularization of the flowers  
monocotyledon orders (except Liliales) and of A. cepa and established three vertical zones in  
thus in many families, such as Amaryllidaceae, the gynoecium: 1) a synascidiate zone at the locule  
Asparagaceae, Asphodelaceae, and Iridaceae, base, 2) a symplicate structural zone, which contains  
among others (Weberling, 1992; Vogel, 1998; the ovules, and 3) a hemisymplicate zone, which  
Smets et al., 2000; Rudall, 2002; Bernardello, 2007; occupies the upper part of the locule; our results  
Odintsova et al., 2013: Fishchuk & Odintsova, agree with these observations in both FV and MSL.  
2
020, 2021).  
In the genus Allium, there is variation in the the production, secretion, and presentation of nectar  
form of the gynoecium and also in the presence are organized in three well-defined regions:  
or lack of appendages or ovarian processes Nectar-producing zone: located in the three  
Fritsch, 2001; Choi et al., 2011, 2012). These interlocular septa, radially arranged and separating  
The onion flower has a complex organization and  
(
processes may be either absent (naked ovary) or the locules of the ovary. The glandular tissue  
present, in which case they can be of two types: is composed of the epidermis and subdermal  
apical crest-like (characteristic of northern North parenchyma, in the area formed by the incomplete  
American species) or basal hood-like processes suture line between carpels. This area is the site of  
(
in northeastern Asian species, subgenus Cepa, nectar secretion and the septal (GN) nectary itself.  
in which A. cepa is included). Choi et al. (2011, The nectar outlet is in the apical zone and is hidden  
012) stated that the septal nectary opening and by the flat crest.  
development of ovarian processes have taxonomic Nectar-discharge zone: constituted by the three  
2
importance; however, despite the importance of nectary pockets, covered by a flat crest consisting  
this feature it has not received attention in other of the walls of adjacent carpels that cover the lateral  
structural and anatomical studies.  
walls of the ovary. The interior of this pocket - both  
In particular, in A. cepa the structure of GN was the ridge tissue and the walls of the ovary - lack  
first analyzed by Syamasundar & Panchaksharappa nectar-secreting tissue. Each pocket connects to the  
(
1976). Based on nectary histochemistry, these production area in a short section located at the top  
authors only mentioned the existence of three septa of the secretory area. This second zone opens to the  
with nectariferous tissue. Heel (1988) analyzed the outside at the base of the ovary, through three large  
ontogeny of the pistil in several monocotyledons openings or pockets.  
with septal nectaries, including Allium fistulosum  
Accumulation and harvest zone: nectar produced  
L. In this species, the GN opening is narrow and in the GN and expelled through the apical opening  
only covered by a small ovarian process (called an passes through pockets and accumulates in a third  
epidermal flap), which formed late in the ontogeny collecting zone. These areas are composed by the  
485  
Bol. Soc. Argent. Bot. 58 (3) 2023  
widened base of the three inner stamens, opposed manuscript. IM, CG & IP: collected field material  
to the aperture of the nectaries. In this area, the and reviewed the text.  
excreted nectar can be collected by insects that visit  
the flower.  
The vertical zoning of the GN was described in Primary data availability  
the flowers of Dracaena fragrans (L.) Ker Gawl.,  
Sansevieria parva N.E. Br. and S. trifasciata Prain  
The primary research data are available in  
(Asparagaceae) by Odintsova et al. (2013). These CONICET's institutional repository: https://  
authors also recognize three zones: 1) the distinct ri.conicet.gov.ar/handle/11336/193050.  
nectary formed by three cavities at the base of the  
ovary, 2) the zone of common nectary in the ovary  
center where the cavities join, and 3) the external bibliograPhy  
nectary zone, that corresponds to the upper part of  
the ovary where the septal grooves fuse with the ABROL, D. 2005. Pollination Energetics. J. Asia Pac.  
nectariferous cavities and nectary splits opened to  
Entomol. 8: 3-14.  
the exterior. Unlike A. cepa, in these species there is  
https://doi.org/10.1016/S1226-8615(08)60066-7  
no accumulation area and harvest zone, since the GN AHMAD, R., M. U. HASSAN, G. B. AKHTAR, S.,  
of Dracaena and Sansevieria species lack crests and  
pockets. Onion floral nectaries are a clear example  
of secondary presentation of nectar, it is produced  
in one place (in the ovarian septa) and offered in  
a different place (cavities between broad staminal  
filaments and the ovary). In the onion, there is also  
SAEED, S. A. KHAN, M. K. N. SHAH & N.  
KHAN. 2020. Identification and characterization of  
important sterile and maintainer lines from various  
genotypes for advanced breeding programmes of  
onion (Allium cepa). Plant Breed. 139: 988-995.  
https://doi.org/10.1111/pbr.12844  
another area dedicated to the transport between BERNARDELLO, G. 2007. A systematic survey of floral  
the place of production and the accumulation and  
harvesting area. A point that would be interesting for  
further research, by means of an ontogenetic study,  
is the origin of the crests that cover the nectary  
nectaries. In: NICOLSON, S. W., M. NEPI & E.  
PACINI (eds.), Nectaries and nectar, pp. 19-128.  
Springer, Dordrecht.  
https://doi.org/10.1007/978-1-4020-5937-7_2  
pockets. The correlation found in some floral and BONNER, L. & H. DICKINSON. 1989. Anther  
chemical traits with onion seed yield reported in  
other studies may be a great contribution for onion  
breeders, who could select lines that have promising  
traits for pollinator attraction and, consequently,  
seed yields. Further studies are also required  
concerning the heritability of floral traits.  
dehiscence in Lycopersicon esculentum Mill. New  
Phytol. 113: 97-115.  
https://doi.org/10.1111/j.1469-8137.1989.tb02399.x  
BREWSTER, J. L. 2001. Las cebollas y otros alliums.  
Editorial Acribia, Zaragoza.  
CESPEDES, M., I. PERALTA & C. R. GALMARINI.  
2
004. Relación entre la morfología de la flor  
acKnowledgmentS  
de cebolla y la frecuencia de visitas de abejas  
polinizadoras. Horticultura Argentina 23: 65.  
To INTA EEA La Consulta (Mendoza, Argentina) CHOI, H. J., A. R. DAVIS & J. H. COTA-SÁNCHEZ.  
and Enza Zaden Seed Company for supplying us  
with the botanical material. This research was partly  
supported by the Universidad Nacional del Nordeste  
to AMG (Grants Nº 16A003 and 20P001, SGCyT-  
UNNE).  
2011. Comparative floral structure of four new  
world Allium (Amaryllidaceae) species. Syst. Bot.  
36: 870-882.  
https://doi.org/10.1600/036364411X604895  
CHOI, H. J., L. M. GIUSSANI, C. G. JANG, B. U.  
OH & J. H. COTA-SÁNCHEZ. 2012. Systematics  
of disjunct northeastern Asian and northern North  
American Allium (Amaryllidaceae). Botany 90: 491-  
author contributionS  
5
08. https://doi.org/10.1139/b2012-031  
AMG: performed the slides, interpreted the COLOMBO, N. & C. R. GALMARINI. 2017. The use  
anatomic analysis, made up the figures and wrote the  
of genetic, manual and chemical methods to control  
486  
Ana M. Gonzalez et al. - Floral nectary and anthers anatomy of Allium cepa  
pollination in vegetable hybrid seed production: a  
review. Plant Breed. 136: 87-299.  
https://doi.org/10.1111/pbr.12473  
KNUPFFER (eds.), The genus Allium-taxonomic  
problems and genetic resources, pp. 77-85. Proceedings  
of an International Symposium, Held at Gatersleben,  
Germany, June 11-13. 1991. Institut für Pflanzengenetik  
und Kulturpflanzenforschung, Gatersleben.  
CURRAH, L. & D. J. OCKENDON. 1978. Protandry and  
the sequence of lower opening in the onion (Allium  
cepa L.). New Phytol. 81: 419-428.  
https://doi.org/10.1111/j.1469-8137.1978.tb02647.x  
DI FULVIO, T. E. 1973. Sobre el gineceo de Allium y  
Nothoscordum. Kurtziana 7: 241-253.  
DIVIJA, S. D. & P. D. KAMALA JAYANTHI. 2022.  
Pollination efficiency and foraging behaviour of  
honey bees and flies to onion Allium cepa L. J.  
Apicult. Res. 61: 688-694.  
https://doi.org/10.1080/00218839.2022.2096305  
ENGELKE, T., S. HÜLSMANN & T. TATLIOGLU.  
FRITSCH, R. M. 2001. Taxonomy of the genus Allium:  
contribution from IPK Gatersleben. Herbertia 56:  
19-50.  
GALMARINI, C. R. 2000. Onion cultivars released by  
La Consulta Experiment Station, INTA, Argentina.  
HortScience 35: 1360-1362.  
GALMARINI, C. R. 2018. Economic and academic  
importance. In: SHIGYO, M., A. KHAR & M.  
ABDELRAHMAN (eds.), The Allium Genomes.  
Compendium of Plant Genomes, pp.1-9. Springer,  
Cham. https://doi.org/10.1007/978-3-319-95825-5_1  
GARCÍA, C. C., M. NEPI & E. PACINI. 2006. Structural  
aspects and ecophysiology of anther opening in Allium  
triquetrum. Ann. Bot. 97: 521-527.  
2
002. A comparative study of microsporogenesis  
and anther wall development in different types of  
genic and cytoplasmic male sterilities in chives.  
Plant Breed. 121: 254-258.  
https://doi.org/10.1046/j.1439-0523.2002.00704.x  
ENGELKE, T., D. TEREFE & T. TATLIOGLU. 2003.  
A PCR-based marker system monitoring CMS-(S),  
CMS-(T) and (N)-cytoplasm in the onion (Allium  
cepa L.). Theor. Appl. Genet. 107: 162-167.  
https://doi.org/10.1007/s00122-003-1230-3  
FAHN, A. 1979. Secretory tissues in plants. Academic  
Press, London.  
FAOSTAT. Food andAgriculture Organization of the United  
Nations [on line]. Available from: http://www.fao.org/  
faostat. [Accessed: December 2022].  
FISHCHUK, O. 2022. Comparative flower morphology in  
Allium cepa L. (Amaryllidaceae J.St.-Hil.). Notes in  
Current Biology 1: 36-41.  
https://doi.org/10.1093/aob/mcl015  
GATICA HERNÁNDEZ, I., F. PALOTTINI, I. MACRI, C.  
R. GALMARINI & W. M. FARINA. 2019. Appetitive  
behavior of the honey bee Apis mellifera in response to  
phenolic compounds naturally found in nectars. J. Exp.  
Biol. 222: jeb189910.  
https://doi.org/10.1242/jeb.189910  
GAVIOLA, J. 2007. Ficha técnica, producción de semilla  
de cebolla (Allium cepa L.). INTA-EEA La Consulta,  
1-18.  
GILLESPIE, S., R. LONG & N. WILLIAMS. 2015.  
Indirect effects of field management on pollination  
service and seed set in hybrid onion seed production. J.  
Econ. Entomol. 108: 2511-2517.  
https://doi.org/10.29038/2617-4723-2022-1-1-6  
FISHCHUK, O. S. & A. V. ODINTSOVA, 2020.  
Micromorphology and anatomy of the flowers  
of Galanthus nivalis and Leucojum vernum  
https://doi.org/10.1093/jee/tov225  
GONZALEZ,A. M. & C. L. CRISTOBAL. 1997.Anatomía  
y ontogenia de semillas de Helicteres lhotzkyana  
(Sterculiaceae). Bonplandia 9: 287-294. https://doi.  
org/10.30972/bon.93-41497  
GURUSHIDZE, M., S. MASHAYEKHI, F. R. BLATTNER,  
N. FRIESEN & R. M. FRITSCH. 2007. Phylogenetic  
relationships of wild and cultivated species of Allium  
section Cepa inferred by nuclear rDNA ITS sequence  
analysis. Plant Systemat. Evol. 269: 259-269.  
https://doi.org/10.1007/s00606-007-0596-0  
(
Amaryllidaceae). Regul. Mech. Biosyst. 11: 463-468.  
https://doi.org/10.15421/022071  
FISHCHUK, O. A. ODINTSOVA, 2021.  
&
Micromorphology and anatomy of the flowers in  
Clivia spp. and Scadoxus multiflorus (Haemantheae,  
Amaryllidaceae). Acta Agrobotanica 74: 7417. https://  
doi.org/10.5586/aa.7417  
FORD, C. & S. JOHNSON. 2008. Floral traits, pollinators  
and breeding systems in Syncolostemon (Lamiaceae).  
Plant Syst. Evol. 275: 257-264.  
HAVEY, M. J. 2000. Diversity among male-sterility-  
inducing and male-fertile cytoplasms of onion. Theor.  
Appl. Genet. 101:778-782.  
https://doi.org/10.1007/s00606-008-0016-0  
https://doi.org/10.1007/s001220051543  
FRITSCH, R. M. 1992. Septal nectaries in the genus  
Allium. In: HANELT, P., K. HAMMER & H.  
HEEL, W. A. VAN. 1988. On the development of some  
gynoecia with septal nectaries. Blumea 33: 477-504.  
487  
Bol. Soc. Argent. Bot. 58 (3) 2023  
HOLFORD, P., J. CROFT & H. J. NEWBURY. 1991.  
Structural studies of microsporogenesis in fertile and  
male-sterile onions (Allium cepa L.) containing the  
cms-S cytoplasm. Theor. Appl. Genet. 82: 745. https://  
doi.org/10.1007/BF00227320  
HUMAN, H. & S. NICOLSON. 2008. Flower structure  
and nectar availability in Aloe greatheadii var.  
davyana: an evaluation of a winter nectar source for  
honeybees. Int. J. Plant Sci. 169: 263-269.  
Bras. 10: 199-212.  
https://doi.org/10.1590/S0102-33061996000200001  
MALDONADO, I. B. 2014. Influencia de caracteres  
florales y factores ambientales sobre la atracción  
de las abejas y la producción de semilla híbrida de  
cebolla. Tesis Magister. Universidad Nacional de  
Cuyo, Argentina.  
https://orcid.org/0000-0001-6830-2927  
MANJUNATHAGOWDA, D. C., P. MUTHUKUMAR,  
J. GOPAL, M. PRAKASH, ... & M. ANJANAPPA.  
2021. Male sterility in onion (Allium cepa L.): origin,  
evolutionary status, and their prospectus. Genet.  
Resour. Crop. Evol. 68: 421-439.  
https://doi.org/10.1086/524113  
JONES, H. A. & S. L. EMSWELLER. 1936. Development  
of the flower and macrogametophyte of Allium cepa.  
Hilgardia 10: 415-428.  
https://doi.org/10.3733/hilg.v10n11p415  
https://doi.org/10.1007/s10722-020-01077-1  
MATSUI, T., K. OMASA& T. HORIE. 1999. Mechanism  
of anther dehiscence in rice (Oryza sativa L.). Ann.  
Bot. 84: 501-506.  
KAMENETSKY, R. & H. D. RABINOWITCH. 2002.  
Florogenesis. In: RABINOWITCH, H. D. & L.  
CURRAH (eds.), Allium crop sciences: recent  
advances, pp 31-57. CABI, Wallingford.  
https://doi.org/10.1006/anbo.1999.0943  
https://doi.org/10.1079/9780851995106.0031  
KAVITHA, S. J. & P. R. REDDY. 2018. Floral biology  
and pollination ecology of onion (Allium cepa L.). J.  
Pharmacogn. Phytochem. 7: 2081-2084.  
KEIJZER, C. 1987. The processes of anther dehiscence  
and pollen dispersal. I. The opening mechanism of  
longitudinally dehiscing anthers. New Phytol. 105:  
MONOSMITH, H. R. 1928. Male sterility in Allium  
cepa. Ph.D. Thesis. University of California. United  
States.  
NEPI, M., P. VON ADERKAS & E. PACINI. 2012.  
Sugary exudates in plant pollination. In: BALUŠKA,  
F. & J. VIVANCO (eds.), Secretions and Exudates in  
Biological Systems, pp. 155-186. Springer-Verlag,  
Berlin Heidelberg.  
487-489.  
https://doi.org/10.1111/j.1469-8137.1987.tb00886.x  
KEIJZER, C. J. 1999. Mechanisms of Angiosperm anther  
dehiscence, a historical review. In: CLEMENT, C., E.  
PACINI & J. C. AUDRAN (eds.), Anther and pollen:  
from biology to biotechnology, pp. 55-68. Springer-  
Verlag, Berlin Heidelberg.  
https://doi.org/10.1007/978-3-642-23047-9_8  
ODINTSOVA, A., O. FISHCHUK & A. SULBORSKA.  
2013. The gynoecium structure in Dracaena fragrans  
(L.) Ker Gawl., Sansevieria parva N.E. Brown and  
S. trifasciata Prain (Asparagaceae) with special  
emphasis on the structure of the septal nectary. Acta  
Agrobotanica 66: 55-64.  
https://doi.org/10.1007/978-3-642-59985-9_6  
KIK, C. 2002. Exploitationofwildrelativesforthebreeding  
of cultivated Allium species. In: RABINOWITCH,  
H. D. & L. CURRAH (eds.), Allium crop sciences:  
recent advances, pp. 81-100. CABI, Wallingford.  
https://doi.org/10.1079/9780851995106.0081  
https://doi.org/10.5586/aa.2013.051  
PACINI, E., M. NEPI & J. L. VESPRINI. 2003. Nectar  
biodiversity: a short review. Plant Syst. Evol. 238:  
7-21. https://doi.org/10.1007/s00606-002-0277-y  
PACINI, E. & M. NEPI. 2007. Nectar production and  
presentation. In: NICOLSON, S. W., M. NEPI & E.  
PACINI (eds.), Nectaries and nectar, pp. 167-214.  
Springer, Dordrecht.  
KUMAR, J. & J. K. GUPTA. 1993. Nectar sugar production  
and honeybee foraging activity in 3 species of onion  
(Allium species). Apidologie 24: 391-396. https://doi.  
org/10.1051/apido:19930405  
LÓPEZ, H. & L. GALETTO. 2002. Flower structure  
and reproductive biology of Bougainvillea stipitata  
https://doi.org/10.1007/978-1-4020-5937-7_4  
PARKER, F. D. 1982. Efficiency of bees in pollinating  
onion flowers. Kans. Entomol. Soc. 55: 171-176.  
PERNAL, S. & R. CURRIE. 2002. Discrimination and  
preferences for pollen bassed cues by foraging  
honeybees, Apis mellifera L. Anim. Behav. 63: 369-  
390. https://doi.org/10.1006/anbe.2001.1904  
POVEDA, K., I. STEFFAN-DEWENTERA, S. SCHEUB  
&T.TSCHARNTKE. 2005. Floraltraitexpressionand  
(Nyctaginaceae). Plant Biol. 4: 508-514.  
https://doi.org/10.1055/s-2002-34134  
LUQUE, R., H. C. SOUSA & J. E. KRAUS. 1996.  
MétodosdecoloraçãodeRoeser(1972)-modificado-  
e Kropp (1972) visando a substituição do azul de  
astra por azul de alcião 8 GS ou 8 GX. Acta Bot.  
488  
Ana M. Gonzalez et al. - Floral nectary and anthers anatomy of Allium cepa  
plant fitness in response to below- and aboveground  
Crop Sci. 61: 3529-3537.  
plant-animal interactions. Perspect. Plant Ecol. Evol.  
Syst. 7: 77-83.  
https://doi.org/10.1016/j.ppees.2005.02.002  
RUDALL, P. J. 2002. Homologies of inferior ovaries and  
septal nectaries in monocotyledons. Int. J. Plant Sci.  
https://doi.org/10.1002/csc2.20597  
SOTO, V. C., I. B. MALDONADO, R. A. GIL, I. E.  
PERALTA, M. F. SILVA & C. R. GALMARINI.  
2013. Nectar and flower traits of different onion male  
sterile lines related to pollination efficiency and seed  
yield of F1 hybrids. J. Econ. Entomol. 106: 1386-  
1394. https://doi.org/10.1603/EC13096  
SOTO, V. C., I. B. MALDONADO, V. P. JOFRÉ, C. R.  
GALMARINI & M. F. SILVA. 2015. Direct analysis of  
nectar and floral volatile organic compounds in hybrid  
onions by HS-SPME/GC-MS: Relationship with  
pollination and seed production. Microchem. J. 122:  
110-118. https://doi.org/10.1016/j.microc.2015.04.017  
STEENHUISEN, S., R. R. AGUSO, A. JÜRGENS & S.  
JOHNSON. 2010. Variation in scent emission among  
floral parts and inflorescence developmental stages in  
beetle-pollinated Protea species (Proteaceae). S. Afr.  
J. Bot. 76: 779-787.  
163: 261-276. https://doi.org/10.1086/338323  
RUZIN, S. E. 1999. Plant microtechnique and microscopy.  
Oxford University Press, Oxford.  
SAINI, S. S. & G. N. DAVIS. 1969. Male sterility in  
Allium cepa and some species hybrids. Econ. Bot.  
23:37-49. https://doi.org/10.1007/BF02862970  
SCOTT, R. J., M. SPIELMAN & H. G. DICKINSON.  
2004. Stamen structure and function. The Plant Cell  
16: S46-S60. https://doi.org/10.1105/tpc.017012  
SHEMESH-MAYER, E., T. BEN-MICHAEL, N.  
ROTEM, H. D. RABINOWITCH, A. DORON-  
FAIGENBOIM, … & R. KAMENETSKY. 2015.  
Garlic (Allium sativum L.) fertility: transcriptome and  
proteome analyses provide insight into flower and  
pollen development. Front. Plant Sci. 6: 271. https://  
doi.org/10.3389/fpls.2015.00271  
https://doi.org/10.1016/j.sajb.2010.08.008  
SYAMASUNDAR, J. & M. G. PANCHAKSHARAPPA.  
1976. A histochemical study of floral nectaries  
in Dipcadi montanum Dalz. and Allium cepa L.  
Cytologia 41: 453-457.  
SILVA, E. M. & B. DEAN. 2000. Effect of nectar  
composition and nectar concentration on honey bee  
(Hymenoptera: Apidae) visitation to hybrid onion  
https://doi.org/10.1508/cytologia.41.453  
flowers. J. Econ. Entomol. 93: 1216-1221.  
https://doi.org/10.1603/0022-0493-93.4.1216  
SILVA, E., B. DEAN & L. HILLER. 2003. Honey bee  
TCHÓRZEWSKA, D., K. L. DERYŁO & K.  
WINIARCZYK. 2017. Cytological and biophysical  
comparative analysis of cell structures at the  
microsporogenesis stage in sterile and fertile Allium  
species. Planta 245: 137-150.  
https://doi.org/10.1007/s00425-016-2597-0  
VAN HEEL, W. A. 1988. On the development of some  
gynoecia with septal nectaries. Blumea 33: 477-504.  
VOGEL, S. 1998. Remarkable nectaries: structure,  
ecology, organophyletic perspectives III. Nectarioles.  
Flora 193: 113-131.  
(
Hymenoptera: Apidae) foraging in response to  
preconditioning with onion flower scent compounds.  
J. Econ. Entomol. 96: 1510-1513.  
https://doi.org/10.1093/jee/96.5.1510  
SILVA, E. M., B. B. DEAN & L. HILLER. 2004. Patterns  
of floral nectar production of onion (Allium cepa L.)  
and the effects of environmental conditions. J. Am.  
Soc. Hortic. 129: 299-302.  
https://doi.org/10.21273/JASHS.129.3.0299  
SMETS, E. F. & E. M. CRESENS. 1988. Types of floral  
nectaries and the concepts ‘character’ and ‘character-  
state’- A reconsideration. Acta Bot. Neerl. 37: 121-  
https://doi.org/10.1016/S0367-2530(17)30812-5  
WEBERLING, F. 1992. Morphology of flowers and  
inflorescences. Cambridge University Press,  
Cambridge.  
1
28.  
WILSON, Z.A., J. SONG, B. TAYLOR & C. YANG. 2011.  
The final split: the regulation of anther dehiscence. J.  
Exp. Bot. 62: 1633-1649.  
https://doi.org/10.1111/j.1438-8677.1988.tb01586.x  
SMETS, E. F., L. P. RONSE DECRAENE, P. CARIS & P. J.  
RUDALL. 2000. Floral nectaries in Monocotyledons:  
distribution and evolution. In: WILSON, K. L. & D.  
A. MORRISON (eds.), Monocots: Systematics and  
Evolution, pp. 230-239. CSIRO, Melbourne.  
https://doi.org/10.1093/jxb/err014  
YU, N. & S. KIM. 2021. Identification of Ms2, a  
novel locus controlling male-fertility restoration of  
cytoplasmic male-sterility in onion (Allium cepa L.),  
and development of tightly linked molecular markers.  
Euphytica 217: 191.  
SOTO, V. C., I. J. G. GATICA & C. R. GALMARINI.  
2021. Onion (Allium cepa L.) hybrid seed production:  
Sugar content variation during the flowering period.  
https://doi.org/10.1007/s10681-021-02927-4  
489