InSeCtICIdal and rePellent effeCtS of the eSSentIal  
oIlS obtaIned from argentIne aromatIC flora  
efeCto InSeCtICIda y rePelente de aCeIteS eSenCIaleS obtenIdoS de la  
flora aromátICa argentIna  
1
,2  
, Vanessa D. Brito  
María L. Peschiutta  
, Jimena M. Herrera  
, Julio A. Zygadlo  
, Carolina Merlo  
& María P. Zunino  
Pizzolitto  
Summary  
9
Global population is expected to increase to 9x10 individuals by 2050, which  
highlights the need to produce more food in a more sustainable way. The demand  
for alternatives to synthetic insecticides is reflected in the increasing amount of  
research dealing with essential oils as insecticidal and repellent compounds.  
Argentina has large regions of tropical, temperate, and cold climates, where many  
essential oil-producing plants grow and develop. In this context, the aim of the  
present study was to revise the most relevant literature about the insecticidal and  
repellent properties of essential oils fromArgentine aromatic flora. The first section of  
the present review covers those essential oils used to control insects that are affect  
human and animal health, such as mosquitoes, flies, bed bugs, and vinchucas.  
The second part addresses essential oils that could be used as insecticides and  
repellents in horticulture and agriculture, such as moths, bugs, fruit flies, different  
phloem-sap-feeding insect species that attack vegetable and fruit crops, and weevils  
and beetles that affect stored grains and food commodities. Throughout this review,  
the toxicity of the most bioactive essential oils is discussed by considering their  
chemical profile and their major pure compounds molecular features. This literature  
review highlights the enormous potential of Argentine essential oils to be included in  
repellent and insecticidal formulations.  
1
. Instituto Multidisciplinario de  
Biología Vegetal (IMBIV-CONICET),  
Avenida Vélez Sarsfield 1611,  
Córdoba, Argentina.  
2
. Instituto de Ciencia y tecnología  
de los alimentos (ICTA), Avenida  
Vélez Sarsfield 1611, Córdoba,  
Argentina.  
3
.
Universidad Nacional de  
Córdoba, Facultad de Ciencias  
Exactas, Físicas Naturales,  
y
Departamento de Química, Cátedra  
de Química Orgánica, Avenida Vélez  
Sarsfield 1611, Córdoba, Argentina  
4
. Universidad Nacional de  
Córdoba, Facultad de Ciencias  
Agropecuarias, Departamento de  
Recursos Naturales, Cátedra de  
Microbiología Agrícola, Avenida  
Ing. Agr. Félix Aldo Marrone 735,  
Córdoba, Argentina.  
Key WordS  
Argentine aromatic plants, essential oils, insecticidal effect, repellency.  
reSumen  
*fachimon@imbiv.unc.edu.ar  
9
Se espera que la población mundial sea de 9x10 de habitantes para el año 2050.  
Citar este artículo  
La demanda de alternativas al uso de insecticidas sintéticos está reflejada en la  
creciente cantidad de investigaciones sobre el efecto insecticida y repelente de  
los aceites esenciales. Argentina cuenta con grandes regiones de clima tropical,  
templado y frío, donde habitan muchas especies de plantas aromáticas. En este  
contexto, el objetivo del presente estudio fue revisar la literatura más relevante  
sobre las propiedades insecticidas y repelentes de los aceites esenciales de la  
flora aromática argentina. La primera sección de la presente revisión se enfoca  
en aceites esenciales que son utilizados para el control de insectos que afectan la  
salud humana y animal, como moscas, mosquitos y vinchucas. La segunda parte  
aborda los aceites esenciales que podrían usarse como insecticidas y repelentes  
en la horticultura y la agricultura, como polillas, moscas de la fruta, chinches y  
otros insectos chupadores en cultivos de oleaginosas, vegetales y frutas; también  
escarabajos y gorgojos que atacan granos almacenados y productos alimenticios.  
A lo largo de esta revisión, se analiza la toxicidad de los aceites esenciales más  
bioactivos considerando su perfil químico y las características moleculares de sus  
principales compuestos puros. Este trabajo de revisión resalta el gran potencial de  
los aceites esenciales obtenidos de plantas aromáticas argentinas.  
ACHIMÓN, F., M. BEATO, V. D.  
BRITO, M. L. PESCHIUTTA, J. M.  
HERRERA, R. P. PIZZOLITTO, J. A.  
ZYGADLO & M. P. ZUNINO. 2022.  
Efecto insecticida y repelente de  
aceites esenciales obtenidos de la  
flora aromática argentina. Bol. Soc.  
Argent. Bot. 57: 651-670.  
PalabraS Clave  
Aceites esenciales, efecto insecticida, plantas aromáticas argentinas, repelencia.  
Recibido: 14 Jun 2022  
Aceptado: 19 Oct 2022  
Publicado en línea: 28 Nov 2022  
Publicado impreso: 30 Dic 2022  
Editora: Ana María Gonzalez  
ISSN versión impresa 0373-580X  
ISSN versión on-line 1851-2372  
651  
Bol. Soc. Argent. Bot. 57 (4) 2022  
IntroduCtIon  
Global population is expected to increase to  
x10 individuals by 2050, which highlights the  
9
9
The excessive use of synthetic insecticides has need to produce more food in a more sustainable  
been associated with harmful effects on living way (Marrone, 2014). For this reason, several  
organisms and the environment. This situation large agrochemical companies have invested in  
has raised a general concern in global population, biopesticides, promoting the continuous growth  
leading to the development of bioactive products of biopesticide market (Marrone, 2014). In this  
from natural sources. In this context, essential context, the EOs global market is predicted to  
oils (EOs) obtained from aromatic and medicinal garner around USD 15 billion by 2028, with an  
plants have been proposed as novel insecticides annual growth of 15% (Inkwood Research, 2022).  
and repellents to overcome pest problems in human The main factors responsible for such progress  
health, veterinary, and agricultural areas (Fig. 1; are the ecological imbalance caused by synthetic  
Fierascu et al., 2021). Essential oils are hydrophobic pesticides and the increasing popularity of organic  
mixtures of volatile organic compounds (VOCs), agriculture, promoted by the growing consumer  
which are obtained from specific plants tissues and demand for healthy products.  
organs, such as flowers, stems, seeds, and roots.  
The use of biopesticides is supported by  
Some of the main constituents of EOs include the strict regulations imposed by the United  
alcohols, aldehydes, ketones, phenols, esters, States Environmental Protection Agency (EPA)  
ethers, monoterpenes and sesquiterpenes in varying and the European Union (EU). In this context,  
proportions (Pandey et al., 2017; Achimón et al., some European countries launched programs  
2
021). Pharmaceutical and agrochemical industries for the reduction of synthetic pesticides and  
are constantly exploring EOs or their pure VOCs the promotion of biopesticides, such as the  
to develop effective natural formulations that Ecophyto 2018 plan presented by France and  
guarantee consumer safety and have clearly defined Denmark (“Green Growth” program) that  
modes of action against insect pests (Fierascu et al., provides financial support for the development  
2
021).  
of alternative phytosanitary products. In Europe,  
Fig. 1. Potential applications of Argentine EOs against different species/ groups of insects: a: Nezara  
viridula; b: Aphididae; c: Planococcus ficus; d: Ceratitis capitata; e: Caterpillars; f: Spodoptera sp.; g: Plutella  
xylostella; h: Beetles (Rhyzopertha dominica, Tribolium castaneum, Tenebrio molitor); i: Beetle larvae; j:  
Plodia interpunctella; k: Sitophilus sp.; l: Alphitobius diaperinus; m: Musca domestica; n: Cimex lectularius;  
o: Triatoma infestans; p: Pediculus humanus capitis; q: Mosquitoes.  
652  
F. Achimón et al. - Bioactividad de AEs de la flora argentina  
Netherlands, France, and Germany are the leading verticillata (LC 1848.0 mg/mL), Aloysia triphylla  
5
0
exporters of EOs; in America, United States, (LC50 1279.0 mg/mL), and Schinus polygamus  
Canada, and Mexico are the major countries that (LC50 1179.0 mg/mL) were considered non-toxic  
make sizeable contributions to the production of to A. salina, while the EOs of Hyptis mutabilis  
EOs, followed by Argentina, Paraguay, Uruguay, (accepted name Cantinoa mutabilis) (LC50 30.0  
Guatemala, and Haiti (Barbieri & Borsotto, mg/mL), and Psila spartioides (accepted name:  
2
018). However, regardless of the amount of EOs Pseudobaccharis spartioides) (LC50 14.0 mg/mL)  
produced, it should be considered that Argentina exhibited high toxicity (Oliva et al., 2007). Another  
has large regions of tropical, temperate, and cold study that evaluated the toxic effects of EOs using  
climates. This is important since there are many human peripheral blood mononuclear cells (PBMC)  
phytogeographical regions (environmental factors and mice bone marrow cells showed that the EO  
and growing conditions) where many species of of M. verticillata was not cytogenotoxic in vitro  
EOs-producing plant species grow and develop.  
and did not induce cytotoxic and apoptotic effects  
This study set out to revise the most relevant in human PBMC at concentrations that ranged  
literature about the insecticidal and repellent from 100 to 1000 µg/mL (Escobar et al., 2012).  
potential of the EOs of aromatic plants from Furthermore, in in vivo assays, M. verticillata  
Argentina. Studies of the last 30 years obtained EO did not increase the frequency of micronuclei  
from the electronic databases Google Scholar, in mice bone marrow cells, and the ratio of  
Science Direct, and Scielo were included if they polychromatic/normochromatic erythrocytes was  
met the following criteria: (1) the studies evaluated not modified at concentrations between 25-500 mg/  
the insecticidal or repellent activity of EOs against kg (Escobar et al., 2012). These findings would  
insect species affecting humans, animals, crops, and indicate that M. verticillata EO is a safe substance  
fruits; and (2) the studies evaluated EOs extracted to be used as a therapeutic agent.  
from plant species native to Argentina. The first  
section of this review will focus on the use of EOs EOs used to control insects that affects human  
for the control of insects that affect human and and animal health  
animal health, and the second section will cover  
those EOs used to control insect species that affect Ectoparasites  
crops and fruits (Table 1).  
Pediculus humanus capitis (Pediculidae):  
The head louse is an obligate ectoparasite of  
humans, which is transmitted by direct host-to-  
host contact. This infestation is one of the most  
Cytotoxic Effects: Are EOs safe?  
Before using new substances for medicinal or frequent among people, especially in children and  
agricultural purposes, their potential toxicity to adolescents. Different topical chemical insecticides  
eukaryotic cells must be properly evaluated. The are currently used for the treatment against head  
brine shrimp (Artemia salina) is an ideal model lice such as permethrin, allethrin, deltamethrin, and  
organism for general toxicity assays because of malathion. However, these insecticides tend to be  
their wide geographical distribution, adaptability harmful for children due to their underdeveloped  
to different environmental conditions, capability immune system and detoxification mechanisms.  
to use several nutrient resources, and the high An additional problem is that the repeated use of  
availability of eggs that can be stored for many pediculicides leads to the emergence of resistance,  
years (Rajabi et al., 2015). For these reasons, the which highlights the need for new products based  
brine shrimp is extensively used in preliminary on natural compounds (Yones et al., 2016). One  
toxicological studies that screen a large number of of the parameters most frequently used to compare  
substances for drug discovery in medicinal plants. the toxic effects of EOs on head louse adults in  
Many aromatic plants are widely used in traditional toxicity assays is the median knockdown time  
medicine and popular infusions; but, in general, their (KT ), i.e., the time in minutes to knockdown of  
5
0
cytogenotoxic properties have not been evaluated. 50% of exposed insects of each experimental unit.  
However, among the native species tested, Aloysia The toxic effect of several native species against  
polystachya (LC 6459.0 mg/mL), Minthostachys head lice was tested in Petri dishes containing 50  
5
0
653  
Bol. Soc. Argent. Bot. 57 (4) 2022  
Table 1. Bioactivity of Argentine EOs against different species of insects.  
Plant Family  
EOs  
Effect  
Insect species Reference  
Alphitobius diaperinus Arena et al., 2018  
Aedes aegypti  
Chantraine et al., 1998  
Chu et al., 2011  
Amaranthaceae Dysphania ambrosioides  
Insecticide  
Sitophilus zeamais  
Pediculus  
humanus capitis  
Toloza et al., 2010  
Toloza et al., 2006  
Gutiérrez et al., 2016  
Pediculus  
humanus capitis  
Repellent  
Pediculus  
humanus capitis  
Schinus areira  
Insecticide  
Metopolophium  
dirhodum  
Chopa & Descamps 2012  
Wimalaratne et al., 1996  
Gutierrez et al., 2009  
Repellent  
Musca domestica  
Anacardiaceae  
Pediculus  
humanus capitis  
Insecticide  
Schinus molle  
Cimex lectularius  
Aedes aegypti  
Machado et al., 2019  
Chantraine et al., 1998  
Repellent,  
insecticide  
Schinus molle var. areira  
Rhizopertha dominica Benzi et al. 2009  
Repellent  
Insecticide  
Repellent  
Insecticide  
Triatoma infestans  
Ceratitis capitata  
Triatoma infestans  
Aedes aegypti  
Lopez et al., 2012  
Lopez et al., 2012  
López et al., 2018  
Chantraine et al., 1998  
Azorella cryptantha  
Azorella trifurcata  
Apiaceae  
Eryngium spp.  
Gymnophyton  
polycephalum  
Repellent  
Triatoma infestans  
Aedes aegypti  
Lima et al., 2011  
Acanthostyles buniifolius  
Ambrosia tenuifolia  
Artemisia mendozana  
Baccharis articulata  
Baccharis darwinii  
Insecticide  
Repellent  
Repellent  
Repellent  
Repellent  
Chantraine et al., 1998  
Tribolium castaneum Saran et al., 2019  
Triatoma infestans Lima et al., 2011  
Tribolium castaneum Saran et al., 2019  
Triatoma infestans  
Spodoptera littoralis  
Kurdela et al., 2012  
Sosa et al., 2012  
Feeding  
deterrent  
Baccharis salicifolia  
Baccharis spartioides  
Repellent  
Tribolium castaneum Saran et al., 2019  
Aedes aegypti  
Aedes aegypti  
Gillij et al., 2008  
Asteraceae  
Coreopsis fasciculata  
Eupatorium arnotii  
Insecticide  
Chantraine et al., 1998  
Ropalosiphum padi,  
Myzus persicae  
Settling inhibition  
Repellent  
Sosa et al., 2012  
Triatoma infestans  
Aedes aegypti  
Guerreiro et al., 2018  
Gleiser et al., 2011  
Trialeurodes  
vaporariorum,  
Tuta absoluta  
Insecticide  
Umpierrez et al., 2012  
Eupatorium buniifolium  
Triatoma infestans  
Guerreiro et al., 2018  
Sosa et al., 2012  
Ropalosiphum padi,  
Myzus persicae  
Settling inhibition  
654  
F. Achimón et al. - Bioactividad de AEs de la flora argentina  
Plant Family  
EOs  
Effect  
Insect species  
Reference  
Ropalosiphum padi,  
Myzus persicae  
Eupatorium inulifolium  
Settling inhibition  
Sosa et al., 2012  
Ropalosiphum padi,  
Myzus persicae  
Eupatorium viscidum  
Gutierrezia mandonii  
Settling inhibition  
Sosa et al., 2012  
Insecticide,  
development  
delay  
Ceratitis capitata  
Ceratitis capitata  
Clemente et al., 2008  
Insecticide,  
development  
delay  
Gutierrezia repens  
Clemente et al., 2008  
Helianthus petiolaris  
Senecio adenophylloides  
Senecio oreophyton  
Senecio pogonias  
Repellent  
Insecticide  
Repellent  
Repellent  
Repellent  
Insecticide  
Repellent  
Tribolium castaneum Saran et al., 2019  
Aedes aegypti  
Chantraine et al., 1998  
Lopez et al., 2018  
Lopez et al., 2018  
Triatoma infestans  
Triatoma infestans  
Senecio serratifolius  
Tagetes filifolia  
Tribolium castaneum Saran et al., 2019  
Tribolium castaneum Olmedo et al., 2015  
Aedes aegypti  
Ceratitis capitata  
Aedes aegypti  
Gillij et al., 2008  
Lopez et al., 2011  
Chantraine et al., 1998  
Asteraceae  
Insecticide  
Tagetes minuta  
Alphitobius diaperinus Arena et al., 2018  
Brevicoryne brassicae Mullo, 2011  
Acyrthosiphon pisum,  
Myzus persicae,  
Aulacorthum solani  
Reproduction  
inhibition  
Tomova et al., 2005  
Tagetes pusilla  
Insecticide  
Insecticide  
Aedes aegypti  
Chantraine et al., 1998  
López et al., 2011  
Tagetes rupestris  
Ceratitis capitata  
Repellent,  
feeding deterrent  
Sitophilus oryzae  
Stefanazzi et al., 2011  
Metopolophium  
dirhodum  
Chopa & Descamps 2012  
Sitophilus oryzae  
Stefanazzi et al., 2011  
Descamps & Sánchez  
Chopa 2019  
Tagetes terniflora  
Plutella xylostella  
Insecticide  
Pediculus  
Gutiérrez et al., 2009  
humanus capitis  
Tribolium castaneum Stefanazzi et al., 2011  
Ceratitis capitata López et al., 2011  
Brevicoryne brassicae Mullo, 2011  
Fabaceae  
Lamiaceae  
Zuccagnia punctata  
Hedeoma mandoniana  
Hedeoma multiflora  
Lepechinia floribunda  
Lepechinia meyenii  
Repellent  
Insecticide  
Insecticide  
Insecticide  
Insecticide  
Triatoma infestans  
Aedes aegypti  
López et al., 2021  
Chantraine et al., 1998  
Palacios et al., 2009  
Palacios et al., 2009  
Chantraine et al., 1998  
Musca domestica  
Musca domestica  
Aedes aegypti  
655  
Bol. Soc. Argent. Bot. 57 (4) 2022  
Plant Family  
EOs  
Effect  
Repellent  
Insect species  
Pediculus  
humanus capitis  
Reference  
Mentha pulegium  
Toloza et al., 2006  
Repellent  
Aedes aegypti  
Gillij et al., 2008  
Minthostachys mollis  
Insecticide  
Aedes aegypti  
Chantraine et al., 1998  
Palacios et al., 2009  
Musca domestica  
Herrera et al., 2014;  
Arena et al., 2017  
Minthostachys verticillata  
Insecticide  
Sitophilus zeamais  
Lamiaceae  
Planococcus ficus  
Peschiutta et al., 2017  
Gillij et al., 2008  
Repellent  
Insecticide  
Repellent  
Insecticide  
Aedes aegypti  
Rosmarinus officinalis  
Metopolophium  
dirhodum  
Sánchez Chopa &  
Descamps, 2012  
Satureja parvifolia  
Thymus vulgaris  
Triatoma infestans  
Lima et al., 2011  
Pediculus  
humanus capitis  
Toloza et al., 2010  
Pediculus  
humanus capitis  
Lauraceae  
Myrtaceae  
Cinnamomum porphyrium  
Eugenia brejoensis  
Insecticide  
Larvicide  
Toloza et al., 2010  
Da Silva et al., 2015  
Toloza et al., 2006  
Aedes aegypti  
Pediculus  
humanus capitis  
Insecticide  
Myrcianthes cisplatensis  
Myrcianthes pseudomato  
Pediculus  
humanus capitis  
Repellent  
Toloza et al., 2006  
Pediculus  
humanus capitis  
Insecticide  
Toloza et al., 2010  
Sitophilus oryzae  
Stefanazzi et al., 2011  
Repellent  
Tribolium castaneum Stefanazzi et al., 2011  
Poaceae  
Elyonorus muticus  
Feeding  
deterrent  
Sitophilus oryzae  
Stefanazzi et al., 2011  
Toloza et al., 2010  
Toloza et al., 2006  
Pediculus  
humanus capitis  
Scrophulariaceae Buddleja mendozensi  
Insecticide  
Pediculus  
humanus capitis  
Acantholippia riojana  
Repellent  
Repellent  
Acantholippia salsoloides  
Aedes aegypti  
Aedes aegypti  
Gleiser et al., 2011  
Gillij et al., 2008  
Acantholippia seriphioides Repellent  
Tribolium castaneum,  
T. confusum  
Benzi et al., 2014  
Gillij et al., 2008  
Aedes aegypti  
Repellent  
Rhizopertha dominica Benzi et al., 2009  
Nezara viridula  
Musca domestica  
Nezara viridula  
González et al., 2010  
Palacios et al., 2009  
González et al., 2010  
Verbenaceae  
Aloysia citriodora  
Tribolium castaneum,  
T. confusum  
Benzi et al., 2014  
Insecticide  
Rhizopertha dominica Benzi et al., 2009  
Descamps & Sánchez  
Plutella xylostella  
Chopa, 2019  
Sánchez Chopa &  
Diuraphis noxia  
Descamps, 2015  
656  
F. Achimón et al. - Bioactividad de AEs de la flora argentina  
Plant Family  
EOs  
Effect  
Insecticide  
Ovicide  
Insect species  
Pediculus  
humanus capitis  
Reference  
Gutiérrez et al., 2016  
Gonzalez et al., 2010  
Aloysia citriodora  
Nezara viridula  
Rhizopertha dominica Benzi et al., 2009  
Nezara viridula  
González et al., 2010  
Benzi et al., 2014  
Gleiser et al., 2011  
Repellent  
Tribolium castaneum,  
T. confusum  
Aedes aegypti  
Descamps & Sánchez  
Chopa, 2019  
Plutella xylostella  
Alphitobius diaperinus Arena et al., 2018  
Aloysia polystachya  
Sánchez Chopa &  
Diuraphis noxia  
Descamps, 2015  
Insecticide  
Rhizopertha dominica Benzi et al., 2009  
Verbenaceae  
Tribolium castaneum,  
Benzi et al., 2014  
T. confusum  
Nezara viridula  
González et al., 2010  
Pediculus  
humanus capitis  
Gutiérrez et al., 2016  
Ovicide  
Nezara viridula  
Triatoma infestans  
Aedes aegypti  
González et al., 2010  
Lima et al., 2011  
Lippia integrifolia  
Lippia junelliana  
Repellent  
Repellent  
Gleiser et al., 2011  
Culex  
quinquefasciatus  
Lippia polystachya  
Insecticide  
Gleiser & Zygadlo, 2007  
Corzo et al., 2020  
Plodia interpunctella  
Insecticide  
Culex  
quinquefasciatus  
Gleiser & Zygadlo, 2007  
Lippia turbinata  
Development  
delay  
Plodia interpunctella  
Corzo et al., 2020  
Zygophyllaceae Bulnesia sarmientoi  
Repellent  
Lutzomyia longipalpis de Arias et al., 1992  
µL of each EO (Gutiérrez et al., 2016). The most cisplatensis, and M. pseudomato, with KT50 values  
effective EO against head lice adults was Schinus of 1.1, 1.3, 4.1 min, respectively. The species C.  
areira (accepted name: Lithrea molleoides), with porphyrium is a tree from the Yungas region of  
similar KT values of 10.8 min and 12.8 min for the Argentina, and its EO has eugenol, benzyl alcohol,  
5
0
EOs obtained from fruits and leaves, respectively. and terpinen-4-ol as major VOCs. When these pure  
The species Thymus vulgaris, Aloysia. polystachya, compounds were tested alone against the head lice,  
and A. citrodora showed lower toxicity, with higher KT50 values of 60 min were obtained, indicating  
KT values of 18.3, 20.6, and 38.3 min, respectively that synergisms between the major constituents of  
5
0
(Gutiérrez et al., 2016). Other researches evaluated this EO might be responsible for the higher toxic  
the fumigant toxicity of certain Argentine EOs effects of the EO compared to the sole compounds.  
against permethrin-resistant head lice when 60 Other EOs tested against the head lice exhibited  
µL of each EO were added to a filter paper moderate toxicity, such as Schinus molle (accepted  
placed inside the Petri plate (Toloza et al., 2006; name: Lithrea molleoides), A. polystachya,  
Toloza et al., 2010). These studies revealed a Tagetes terniflora, and Buddleja mendozensi, with  
strong toxic effect of Cinnamomum porphyrium KT50 values of 12.8, 23.4, 23.4, and 28.8 min,  
(accepted name: Ocotea porphyria), Myrcianthes respectively (Gutierrez et al., 2009; Toloza et al.,  
657  
Bol. Soc. Argent. Bot. 57 (4) 2022  
2
006, Toloza et al., 2010). In addition, the EOs control AUTAN (commercial product composed of  
of M. verticillata, M. cisplatensis, Acantholippia 33% of the active principle diethyltoluamide) that  
riojana (accepted name: Aloysia riojana), and exhibited a repellent effect of 81% (de Arias et al.,  
S. areira, showed repellence activity between 1992). Another study assessed the growth inhibitory  
2
0% and 50%, while the repellency of Mentha activity of B. sarmientoi EO on promastigote forms  
pulegium EO was 75%, similar to that of the of Leishmania amazonensis at concentrations  
positive control, piperonal (Toloza et al., 2006). ranging from 30 to 500 μg/mL, and a strong anti-  
Slight differences in EO chemical composition leishmanial activity was reported with an IC50 of  
may substantially affect repellency. For example, 85.6 µg/mL, with guaiol and 2-undecanone as the  
the EOs from M. pulegium and M. verticillata have prevalent components of the EO (Andrade et al.,  
the monoterpene ketones menthone and pulegone 2016).  
as their major components, yet the EO from M.  
pulegium was 3.4-fold more repellent than that Disease vectors  
from M. verticillata (Toloza et al., 2006). These  
Mosquitoes: adult mosquitoes are important  
studies showed that EOs have the potential to be vectors of parasitic diseases such as malaria and  
used as ingredients of shampoos with pediculicidal filariasis, and several arboviral diseases such as  
properties, in many cases against lice resistant to yellowfever, Chikungunya,WestNile, denguefever,  
permethrin (Gonzalez Audino et al., 2007).  
and Zika, responsible for important health problems  
Cimex lectularius: popularly known as bed bug, in tropical and subtropical regions in the world. The  
is a nocturnal hematophagous insect that feeds mosquito life cycle consists of egg, larva, pupa,  
on human blood. The toxic effect of S. molle EO and adult stages, with the immature stages being  
against the bed bug was evaluated through a topical the target of several natural and synthetic products.  
bioassay by applying 1 µL of the EO in the dorsal In this regard, many studies have been conducted  
surface of the insect (Machado et al., 2019). A dose using different EOs of the Argentine aromatic flora  
of 125 µg EO/bug produced 50% mortality after (Chantraine et al., 1998). For example, EOs of S.  
7
days of exposure. The EO profile of S. molle molle, Eryngium spp., Baccharis spp., Coreopsis  
consisted in 39% of monoterpenes hydrocarbons fasciculata, Senecio adenophylloides (accepted  
mainly α-pinene, β-pinene, and limonene) and 30% name:Culcitiumrufescens), Tagetesminuta, Tagetes  
(
of oxygenated sesquiterpenes (mainly muurolol). pusilla (accepted name: Tagetes filifolia), produced  
rd  
The toxicity of the EOs of Baccharis punctulata 100% mortality to 3 stage Aedes aegypti larvae  
and Baccharis microdonta were tested against an at a dose of 100 mg/L (Chantraine et al., 1998).  
insecticide-resistant and a susceptible strain of C. Furthermore, the EOs of Acanthostyles buniifolius,  
lectularius through topical application assays. An Chenopodium ambrosioides (accepted name:  
aliquot of 1 µL of each EO was applied in the dorsal Dysphania ambrosioides), Hedeoma mandoniana,  
surface of the insects at 50 µg/bug, and mortality Lepechinia meyenii, and Minthostachys mollis  
was registered for 7 days after treatment. None of showed slightly lower insecticidal activities,  
the EOs exhibited high mortality to both strains between 80-95% (Chantraine et al., 1998). Another  
when applied topically. The maximum insecticidal study evaluated the toxic effect of the EO extracted  
effect occurred with B. punctulata EO at 7 days from Lippia polystachya (accepted name: Aloysia  
th  
after treatment, with 20% mortality for both strains polystachya) and Lippia turbinata on 4 stage  
(Budel et al., 2018). larvae and adults of Culex quinquefasciatus at  
Lutzomyia longipalpis: this is a species of 24 h post-treatment. At 160 ppm, the former EO  
anthropophilicsandflyofCentralandSouthAmerica produced 79.5% and 6.7% mortality, while the  
found in a wide variety of ecological conditions. latter showed 90.7% and 83.8% mortality to the  
Only adult females feed on mammal blood, serving larvae and adult, respectively (Gleiser & Zygadlo,  
as key vessels for the propagation of cutaneous 2007). Although the EOs of L. polystachya and L.  
and visceral leishmaniasis. The EO of Bulnesia turbinata have the terpene ketones α-thujone and  
sarmientoi did not show insecticidal effects, but a carvone as their main components, L. turbinata  
repellent activity of 93% at a concentration of 2.5 was also characterized by a high concentration of  
2
µg/10 cm of skin, higher than that of the positive β-caryophyllene (Gleiser & Zygadlo 2007). These  
658  
F. Achimón et al. - Bioactividad de AEs de la flora argentina  
EOs were reported to induce behavioral changes EO were camphor, limonene, and β-myrcene.  
in C. quinquefasciatus larvae at sublethal doses, The repellent properties of these monoterpenes  
such as a decrease in the ambulation speed and the tested alone against A. aegypti and other species of  
total time of ambulation (Kembro et al., 2009). mosquitoes have also been reported (Hwang et al.,  
These changes in the locomotion pattern could 1985).  
be attributed to the neurotoxic effect of α-thujone  
since it acts affecting the GABA receptors of insects their repellent potential against A. aegypti, such as  
Kembro et al., 2009). Additionally, the EO of Achyrocline satureioides, Baccharis spartioides  
Other native species have been screened for  
(
Eugenia brejoensis exhibited insecticidal activity (accepted name: Pseudobaccharis spartioides), T.  
th  
against the 4 larval stage of A. aegypti with an minuta, T. pusilla, H. mutabilis, M. mollis, Anemia  
LC50 value of 214 ppm, and β-caryophyllene and tomentosa, Acantholippia seriphioides, Aloysia  
cadinene as its major compounds (da Silva et al., citrodora, and Rosmarinus officinalis (accepted  
2
015). The larvicidal activity of β-caryophyllene name: Salvia rosmarinus) (Gillij et al., 2008). The  
was also reported against different species of repellency time was recorded as the time elapsed  
mosquitoes belonging to the genera Anopheles and between the applications of the repellent until the  
Culex, with LC values that ranged from 41 to 48 test subject received a mosquito bite. At 90% EO  
5
0
2
µg/mL (Govindarajan et al., 2016).  
concentration (7.6 µL/cm skin), A. seriphioides, A.  
Mosquito repellents: five compounds are citrodora, B. spartioides, M. mollis, R. officinalis,  
currently used as topical insect repellents: DEET and T. minuta effectively repelled mosquitoes for  
2
(
synthetic), p-menthane-3,8-diol (PMD; natural 90 min. At 12.5% (1.06 µL/cm skin), the lowest  
or synthetic), hydroxy-ethyl isobutyl piperidine concentration tested, only B. spartioides and A.  
carboxylate (Picaridin; synthetic), ethyl 3-[acetyl citrodora still showed repellency times of 90 min.  
(
butyl) amino] propanoate (IR3535; synthetic), and The analyses of the chemical composition of these  
N, N-diethylphenyl-acetamide (DEPA; synthetic) EOs suggest that limonene and camphor were the  
Bohbot et al., 2014). As consumers have become main components responsible for the repellent  
extremely health conscious, the insect repellent effects (Gillij et al., 2008).  
(
market has suffered significant growth over the  
Triatoma infestans: popularly called “vinchuca”,  
past few years. Indeed, the mosquito repellent is the most important vector of the protozoan  
market is expected to generate over $ 9,600 parasite Trypanosoma cruzi. This parasite causes  
million by 2026 (Aniket & Roshan: https://www. the Chagas disease, which currently affects more  
alliedmarketresearch.com/insect-repellent-market).  
than 5 million people in Latin America according  
The repellence of EOs of several Argentine to the Pan American Health Organization. Different  
aromatic plants against Aedes aegypti was evaluated EOs have been evaluated in an attempt to find  
by Gleiser et al. (2011). The laboratory evaluation natural compounds against this insect. The species  
of the repellent activity consisted in introducing Azorella cryptantha and Azorella trifurcata  
the forearm inside a glass cage. The forearm was have been tested as repellents against fifth instar  
protected with a latex surgical glove and a paper nymphs of T. infestans. The repellent activity  
sleeve that was previously treated with the EO. assay consisted of a filter paper disk divided into  
The RD50 values, i.e. the doses at which 50% two halves, one of a treated EOs and the other  
of the specimens are repelled, were estimated one untreated (control). The insect distribution  
for Acantholippia salsoloides (accepted name: was recorded at 1, 24, and 72 h after releasing  
Aloysia salsoloides), Aloysia catamarcensis, A. the insects. Azorella cryptantha EO showed 76%  
polystachya, Lippia integrifolia, Lippia junelliana, repellency at 1 h and reached 100% of repellency at  
Baccharis salicifolia, Eupatorium buniifolium 24 h and 72 h, equal to that showed by the positive  
(accepted name: Acanthostyles buniifolius), and T. control, tetramethrin (López et al., 2012). On the  
filifolia. The most repellent EOs were L. junelliana other hand, A. trifurcata exhibited 76% repellency  
2
with a RD value of 0.005 µL/cm skin, followed by at 24 h, with lower percentages at 1 h (López et  
5
0
A. salsoloides, A. polystachya, and E. buniifolium al., 2018). The main components of A crypantha  
2
with RD values of 0.02 µL/cm skin for the three were the terpene hydrocarbons α-thujene, α-pinene,  
5
0
species. The major components of L. junelliana and δ-cadinene whereas the major compound of  
659  
Bol. Soc. Argent. Bot. 57 (4) 2022  
A. trifurcata EO was the sesquiterpene alcohol 0.5%, with limonene, thymol, and 4-terpineol as its  
spathulenol (López et al. 2012, López et al., main constituents (Kurdelas et al., 2012). Guerreiro  
2
018). Other EOs that were evaluated against et al. (2018) evaluated the repellent effect of E.  
nymphs of T. infestans were Senecio pogonias buniifolium EO a two-choice bioassay, where two  
and Senecio oreophyton (López et al., 2018), flasks are connected with a glass tube with a hole  
showing repellency values of 60 and 68% at 24 h, in the center. In these binary choice bioassays, the  
respectively. These EOs were characterized by high EO exhibited a marked repellent activity, mostly at  
amounts of the bicyclic monoterpene α-pinene. At the concentrations of 50%. The most predominant  
5
0%, the highest concentration tested, EOs from E. compound of this EO is S,S-(−)-α-pinene, followed  
bunnifolium obtained from plants grown in different by ocimene, limonene, and 2-carene. An evaluation  
environments showed repellency values that ranged of the enantiomers of α-pinene showed that the  
from 50% to 100%. The major constituent of E. repellency against T. infenstans was higher in the  
bunnifolium EOs was also α-pinene, which was (-) enantiomer of α-pinene than in the (+) one  
reported as an effective repellent against T. infestans (Guerreiro et al., 2018). Furthermore, the authors  
nymphs. In addition, those nymphs submitted to aimed to evaluate the fumigant and topical toxicity  
this test were killed after 12 h (Guerreiro et al., of E. buniifolium EO against T. infestans. At a  
2
018). Regarding the fumigant toxicity test, the concentration of 50 µL/L air, 100% mortality was  
mortality was 100% when all EOs were tested at observed, while by topical application mortality  
0 μL EO/L air. The high volatility of the EOs is values dropped to 20% (Guerreiro et al., 2018).  
an important factor that allows them to penetrate Failures in using natural compounds as  
5
the holes and cracks of walls where T. infestans insecticides or repellents are often related to  
lives, reaching the insect respiratory system, and the rapid degradation of the active agent. For  
causing their death. The repellent effect of A. this reason, the incorporation of the compounds  
seriphioides, Artemisia mendozana, Gymnophyton of interest in polymeric systems enables their  
polycephalum, Satureja parvifolia (accepted name: controlled and sustained release. Lopez et al.  
Clinopodium gilliesii), Tagetes mendocina, and (2021) included the EO of Zuccagnia punctata  
L. integrifolia was also evaluated against nymphs in poly-(Ɛ-caprolactone) matrices and registered  
of T. infestans. Other EOs that were tested as the repellent effect from 1 h to 96 h. The average  
repellents using the same methodology were G. repellency was 89% when the EO was applied alone  
polycephalum and L. integrifolia with increasing from 1 to 72 h, significantly higher compared to  
repellence percentages from 1 h to 72 h (Lima et the polymeric matrix treatment, where repellence  
al., 2011). The main components of the essential reached the maximum value of 66% within the  
oil of G. polycephalum were hydrocarbons, mainly same time frame. However, at 96 h, the repellence  
camphene, α-phellandrene and ocimene isomers, of the EO alone decreased significantly to 40%,  
while L. integrifolia was characterized by high while the polymeric system remained at 66%,  
amounts of africanone and integrifolone (Lima which might be related to the lower volatilization  
et al., 2011). The species A. mendozana and S. of the EO when it is incorporated in a polymeric  
parvifolia presented an opposite pattern. Both system (López et al., 2021).  
EOs showed 100% repellency at 1 h, but their  
bioactivity decreased over time, particularly S. Mechanical vectors  
parvifolia, that showed only 12% repellency at  
Musca domestica: houseflies are domestic pests  
7
2 h (Lima et al., 2011). On the other hand, two of great importance in public health since they  
Senecio species from Cuyo region of Argentina, S. can fly for several kilometers carrying a wide  
pogonias and S. oreophyton showed lower repellent variety of organisms on their mouthparts, hairs,  
activity, with maximum values of 76% for S. and feces. They serve as mechanical vectors to  
pogonias and 68% at 1 h and 24 for S. oreophyton, many microorganisms and parasites responsible for  
respectively (López et al., 2018). Furthermore, the more than 100 human and animal gastrointestinal  
EO of Baccharis darwinii collected in Argentine diseases (Palacios et al., 2009).  
Patagonia showed a repellent activity of 76% at 1  
The leaves of S. molle are reported to be a  
h and raised to 100% at 24 and 72 h at a dose of traditional repellent of houseflies. The EO of S.  
660  
F. Achimón et al. - Bioactividad de AEs de la flora argentina  
molle was evaluated against M. domestica using a production. The organic certification ensures that all  
two-choice bioassay and showed 100% repellency stages of the production process are in agreement  
at 0.8 mg/ 25 µL of a sugar solution (Wimalaratne with ecological and environmental standards,  
et al., 1996). Other Argentine species that were allowing a farm to label and sell its products as  
tested as fumigant insecticides were M. verticillata organic. Different accredited certification agencies  
and Hedeoma multiflora, and showed LC50 values work successfully around the world to verify  
3
of 0.5 and 1.3 mg/dm , respectively. These LC50 and certify organic agriculture. In the USA, the  
values evidence great insecticidal properties given organic production standards are called United  
that the LC value of positive control DDVP was States Department of Agriculture- National Organic  
5
0
3
0
.5 mg/dm (Palacios et al., 2009). These EOs are Program (USDA-NOP); in the European Union  
characterized by high amounts of R - (+) – pulegone (EU) the organic certification process is conducted  
and menthone, with 69% and 12% for M. verticillata by the Ecological Certification Organization  
and 52% and 24% for H. multiflora (Palacios et al., (ECOCERT), but each European country may  
2
009). The insecticidal bioassay using these pure also have its own. Even though ECOCERT  
3
compounds reported LC values of 1.7 mg/dm for is based in Europe, it conducts inspections in  
50  
3
R - (+) – pulegone and 8.6 mg/dm for menthone. more than 80 countries, being one of the largest  
The comparison between the LC50 values of the organic certification organizations in the world.  
EOs and those of the major components suggests In Argentina, the official organism that certifies  
that the toxic effect on M. domestica could be organic agriculture is SENASA (SENASA, 2019-  
due to synergisms between the components of the 2020). The Advisor Committee on Bio-inputs for  
EOs. Other EOs result in moderate toxicity to M. Agriculture Use of Argentina (in Spanish Comité  
domestica, such as A. citrodora and Lepechinia Asesor en Bioinsumos de Uso Agropecuario -  
floribunda, requiring doses of 26.7 and 20.6 mg/ CABUA) was created by Resolution SAGyP  
3
dm to induce 50% mortality (Palacios et al., 2009). 7/2013 (National Advisory Commission on  
Insect pests in poultry farms: the darkling Agricultural Biotechnology – in Spanish Comisión  
beetle Alphitobius diaperinus is one of the most Nacional Asesora de Biotecnología Agropecuaria -  
common pests in poultry farms worldwide. This CONABIA), with the aim of providing all technical  
beetle acts as a mechanical vector favoring the information about the regulatory framework and the  
dispersion of viruses, fungi, and bacteria. In necessary requirements that bio-inputs must comply  
addition, both adults and larvae cause skin lesions to be used in the agricultural sector (Mamani &  
on birds, inducing stress. The contact toxicity of Filippone, 2018).According to CABUA, a bio-input  
Dysphania ambrosioides and T. minuta was tested is defined as “Any biological product that consists  
after 24 h of exposure (Arena et al., 2018). The of or has been produced by microorganisms or  
toxicity of the EOs was higher than that of the macroorganisms, extracts or bioactive compounds  
synthetic insecticide, cypermethrin, which showed derived from them and that is intended to be  
2
an LC50 value above 900 µg/cm . Moreover, D. applied as an input in agricultural, food, agro-  
ambrosioides was more bioactive, with an LC50 industrial or agro-energy production” (Mamani &  
2
value of 17.7 µg/cm , almost 6 times lower than Filippone, 2018). According to this definition, EOs  
the LC50 value of T. minuta (Arena et al., 2018). are considered agricultural bio-inputs.  
Another EO tested as insecticide on A. diaperinus  
was A. polystachya. This species demonstrated Oilseed, vegetable, and fruit crops  
strong insecticidal activity in both contact and  
Plutella xylostella (Lepidoptera: Plutellidae) is  
fumigant toxicity assays, with LC values of 27.3 one of the most important insect pests of Brassica  
5
0
2
μL/L of air and 0.1 μL/cm , respectively.  
napus, an oilseed with big expansion in the last  
few years (Descamps & Sánchez Chopa, 2019).  
EOs as botanical insecticides and repellents in The EOs of A. citrodora, A. polystachya, and  
organic agriculture and horticulture  
T. terniflora were evaluated against larvae of P.  
xylostella through contact toxicity assays. Aloysia  
Organic agriculture is a production system that polystachya showed 77% mortality at 10% w/v  
focuses on ecological principles as the basis for crop after 72 h of exposure, while EOs from A. citrodora  
661  
Bol. Soc. Argent. Bot. 57 (4) 2022  
and T. terniflora were less toxic, with 44% mortality oviposited by females fed with the eudesmane-  
at the same concentration (Descamps & Sánchez treated diet (100 μg/g artificial diet), while other  
Chopa, 2019).  
eudesmanes induced certain malformations in  
On the other hand, Spodoptera littoralis is a larvae (Sosa et al., 2017).  
species of moth distributed worldwide, a pest of  
The species Nezara viridula is a polyphagous  
many cultivated plants and crops. The sixth instar bug widely distributed in tropical and subtropical  
of S. littoralis larvae was fed with the EOs of regions of the world. In Argentina, it is one of the  
B. salicifolia, E. buniifolium, E. inulifolium, E. main pests that affect soybean, a very important crop  
arnotti and E. viscidum (50 µg/larva), and changes to local economy that has been expanding since its  
in the larval body weight and food consumption introduction 50 years ago. Werdin González et al.  
were evaluated. Only the EO of B. salicifolia (2010) evaluated the ovicidal activity, the contact  
reduced both larval growth and feeding, evidencing and fumigant toxicities, and the repellent effects  
post-ingestive toxicity (Sosa et al., 2012). This of the EO of A. polystachya and A. citrodora  
toxicity could be caused by the presence of the against this bug. The major constituents were  
terpene hydrocarbons α-thujene, α-phellandrene, carvone (83.5%) for A. polystachya, and citronellal  
and p-cymene in this EO. Indeed, the aromatic (51%) and sabinene (22%) for A. citrodora. In  
monoterpene p-cymene demonstrated to be a general, these EOs reported contact and fumigant  
highly toxic compound to larvae of S. littoralis, toxicity, indicating that the penetration of the toxic  
3
showing LD90 values < 100 µg/cm in fumigant compounds could occur through the tegument or the  
acute toxicity tests (Pavela, 2010). The effect of respiratory system. Furthermore, both EOs showed  
sublethal doses of M. pulegium EO was assessed on good ovicidal effects at concentrations that ranged  
th  
the fertility of S. littoralis 4 instar larvae by Pavela from 1.2 to 12.5 μg/egg when tested by topical  
(2012). While 1.1 viable larvae were obtained in the application. The lipophilicity of the EOs may allow  
control, the number of viable larvae obtained from the penetration of the active compounds through  
those treated with M. pulegium EO was 41% lower. the corion, thus affecting embryos. Additionally,  
Another work reported the high fumigant toxicity it should be considered that the LC50 values of A.  
rd  
of Artemisia absinthium EO against 3 instar larvae citrodora and A. polystachya was 13.5 μg/mL and  
of S. littoralis. This EO showed an LC50 value of 29.9 μg/mL air, respectively. On the other hand, A.  
1
0.6 μL/L air, with the bicyclic monoterpene ketone polystachya was more effective than A. citrodora  
camphor as the major constituent (Dhen et al., in contact toxicity assays, with LC values of 3.4  
5
0
2
2
014). μg/cm for the former and 8.1 μg/cm for the latter,  
The moth species Spodoptera frugiperda evidencing that certain EOs pure components exert  
2
damages and destroys a wide variety of their toxic effect more efficiently when entering the  
economically important crops, such as maize insect body by inhalation or by contact (Achimón et  
and cotton. Sosa et al. (2017) evaluated the al., 2022). Furthermore, both Aloysia species were  
insecticidal activity and sublethal effects of the repellent to the nymphal stage at concentrations of  
sesquiterpenes eudesmanes isolated from Pluchea 5.3 and 2.6 µg/mL (Werdin González et al., 2010).  
sagittalis against S. frugiperda. The antifeedant  
Ceratitis capitata, commonly known as  
choice test consisted of a tube with artificial diet the Mediterranean fruit fly, is one of the most  
treated with eudesmanes in one extreme and an destructive pests of the world since it attacks  
artificial diet without eudesmanes in the other different fruit crops, such as apple, pear, grapevine,  
(control). The isolated eudesmanes tested presented orange, and plum. The topical application of A.  
an antifeedant effect in a dose-dependent way. The cryptantha EO showed a LD50 of 2.6 µg/insect  
control artificial diet was chosen by a higher number for males and 9.5 µg/insect for females, at 72 h  
of larvae compared to the artificial diet treated with after treatment. These are encouraging results  
eudesmanes, with percentages that ranged from 50 since LD50 values were not statistically different  
to 72% larvae according to the eudesmane included from those of the positive control, cypermethrin  
in the diet. In addition to their antifeedant effects, (López et al., 2012). The bioactivity of this EO  
some eudesmanes produced significant larval and can be attributed to the sesquiterpenes δ-cadinene,  
pupal mortality against the first generation of eggs δ-cadinol, and τ-muurolol, which were reported as  
662  
F. Achimón et al. - Bioactividad de AEs de la flora argentina  
good insecticides to this pest (El-Shazly & Hussein, of the world. The EO of M. verticillata and its  
2
004).  
major components were evaluated on P. ficus.  
The EOs of different species of Tagetes were The results revealed that M. verticillata was good  
evaluated against C. capitata in topical application insecticide with 60-80% mortality at a concentration  
assays (López et al., 2011). The species evaluated of 600 µL/L. Regarding pure compounds, the α,β-  
were T. minuta, T. rupestris, and T. terniflora. unsaturated ketone pulegone showed an LC50 value  
These species have several monoterpene ketones of 39.6 μL/L, more toxic than menthofuran, the  
as their major components, such as cis-tagetone, oxidation product of pulegone, that showed LC50  
trans-tagetone, dihydrotagetone. At a dose of value of 63.9 μL/L. In addition, the monoterpene  
1
0 μg/insect, between 20 and 35% of males and epoxide 1,8-cineole had higher insecticidal effect  
between 24 and 48% of females died after 24 h than its isomer 1,4-cineole (Peschiutta et al., 2017).  
of application. A dose of 100 µg/insect caused  
between 85 and 90% mortality with no difference Phloem-sap-feeding insects  
between males and females (López et al., 2011).  
Phloem-feeding insects suck the sap from  
On the other hand, the olfactory activity of EOs plant leaves, being considered important pests of  
against C. capitata adults was tested in a Y-tube several plant and crop species. Tomato crops are  
olfactometer. The EOs of T. minuta and T. terniflora usually affected by many species, with Trialeurodes  
triggered an attractive response on C. capitata, vaporariorum and Tuta absoluta being the ones  
probably due to the presence of the monoterpene of greatest incidence. The insecticidal effect of E.  
hydrocarbons limonene and p-cymene (López et buniifolium EO was tested against T. vaporariorum  
al., 2011).  
in contact and fumigant toxicity assays. A nearly  
Other aromatic species tested against C. capitata complete mortality (LD ) of T. vaporariorum was  
99  
3
were Gutierrezia mandonii and Gutierrezia repens, obtained with 0.3 mg/cm of E. buniifolium EO  
2
which grow in the northwestern Argentina at in fumigant assays and with 0.1 mg/cm in direct  
altitudes above 1000 meters above sea level. The contact tests. On the other hand, the LD99 value of  
2
EOs of these species are characterized by high E. buniifolium against T. absoluta was 1.5 mg/cm in  
concentrations of monoterpene and sesquiterpene contact toxicity assays (Umpiérrez et al., 2012).  
hydrocarbons (Clemente et al., 2008). Essential  
Other plant species were evaluated against the  
oils were incorporated into an artificial diet to feed aphids Rhopalosiphum padi and Myzus persicae, and  
the larvae, and mortality until adult emergence percent settling inhibition (% SI) was calculated by  
was recorded. The EO of G. mandonii and G. comparing the percent of aphids present on surfaces  
repens produced 43% and 60% mortality to C. treated with the EOs and the percent of aphids  
capitata, respectively. Additionally, the required present on control surfaces. The aphid species R.  
concentration of the EOs to avoid development in padi and M. persicae were affected differently by  
5
0% of C. capitata larvae was 1138 ppm for G. the EOs tested, with R. padi being less sensitive. The  
mandonii and 248 ppm for G. repens (Clemente et species E. buniifolium exhibited 65% SI of R. padi  
al., 2008). at 10 µg/µL, with significant lower values for E.  
Several investigations have shown the presence inulifolium, E. arnotii, and E. viscidum. On the other  
of eudesmane-type sesquiterpenoids in different hand, M. persicae responded strongly to all the EOs  
genus of theAsteraceae family. Different eudesmans tested with % SI values that ranged from 66 to 83%  
isolated from P. sagittalis showed an oviposition at 10 µg/µL (Sosa et al., 2012).  
deterrence of 87% in C. capitata at a concentration  
In Argentina, the species of aphids  
2
of 30 µg/cm of artificial diet. Furthermore, Metopolophium dirhodum and Diuraphis noxia  
significant larval and pupal mortality against the are abundant in semi-arid regions and attack crops  
first generation larvae of viable eggs oviposited by such as wheat, barley, rye and oats, causing yield  
females fed with the treated diet was also observed loses of 27-30% (Sánchez Chopa & Descamps,  
(Sosa et al., 2017).  
2012). The EOs from T. terniflora, R. officinalis,  
Planococcus ficus (Pseudococcidae): commonly and S. areira (leaves and fruits) were tested in  
known as vine mealybug, this is one of the main contact toxicity assays against apterous and alate  
pests of vineyards in tropical and subtropical regions adults of M. dirhodum. The LC of apterous adults  
5
0
663  
Bol. Soc. Argent. Bot. 57 (4) 2022  
calculated at 24 h after exposure were 76.2 mg/ Insects that affect stored grains and food  
mL for T. terniflora, 15.2 mg/mL for R. officinalis, commodities  
5
8.3 mg/mL for S. areira (leaves), and 76.2 mg/  
mL for S. areira (fruits). The alate forms showed  
The weevils Sitophilus zeamais, Sitophilus  
statistically lower LC50 values: 20.2 mg/mL for oryzae, Sitophilus granarium, and Rhyzopertha  
T. terniflora, 23.7 mg/mL for R. officinalis, 7.5 dominica, and the moth Plodia interpunctella are  
mg/mL for S. areira (leaves), and 10.5 mg/mL considered to be primary pests of different cereal  
for S. areira (fruits). Additionally, all the EOs grains worldwide. These species cause significant  
produced some degrees of repellency in adults and damage to harvested stored grains, drastically  
sublethal effects on the reproduction, development, decreasing crop yields. The attack of primary pests  
longevity, survivorship, and fecundity, which may facilitate the establishment of secondary pests.  
are important parameters to achieve an effective The difference between them is that the former  
aphid management (Sánchez Chopa & Descamps, have the ability to attack whole, dry, unbroken  
2
012). Diuraphis noxia is one of the main aphid grains while the latter attack damage grains, dust,  
pest of wheat in the semiarid Pampas of Argentina. and milled products. Some of the most common  
Essential oils from leaves of A. polystachya and secondary pest to cereal grains are the weevils  
A. citrodora were used against D. noxia in contact Tribolium confusum and T. castaneum. Adults of S.  
toxicity tests, with A. polystachya EO being more zeamais were treated with EOs from Aphyllocladus  
toxic (LC = 7.4 mg/mL) to D. noxia than the EO decussatus (accepted name: Famatinanthus  
5
0
of A. citrodora at 24 h after exposure (LC = 23.7 decussatus), A. polystachya, M. verticillata, and  
50  
mg/mL) (Sánchez Chopa & Descamps, 2015).  
T. minuta in fumigant toxicity assays (Herrera et  
Brevicoryne brassicae, commonly known as the al., 2014). Minthostachys verticillata was the most  
cabbage aphid, is a destructive aphid found many toxic EO with an LC50 of 116.6 μL/L. The major  
regions of the world. This species feeds on many components of this EO were pulegone and carvone,  
members of the genus Brassica, especially broccoli. which showed LC50 values of 11.8 and 85.5 μL/L  
The EOs of T. terniflora and T. minuta were tested when tested alone (Herrera et al., 2014). As it was  
against B. brassicae adults. Pieces of broccoli of 25 mentioned before, the activity of an EO is usually  
2
cm were submerged in different concentrations of attributable to its main constituents. However, the  
EOs: 0.2, 0.4, 0.6, 0.8, and 1.0%, and the mortality insecticidal effect of an EO is not strictly correlated  
was evaluated after 24 h of exposure. The results with major components because the presence  
showed that both Tagetes species were effective at of minor constituents can lead to synergistic  
2
4 h, with 100% of mortality at 1% (Mullo, 2011). In or antagonistic effects. For these reasons, the  
addition, the EO of T. minuta was evaluated on the application of binary mixtures of EOs is a common  
reproduction of three aphid species: Acyrthosiphon strategy for pest control. In this context, Arena et  
pisum (pea aphid), Myzus persicae (peach-potato al. (2017) assessed the fumigant toxicity of binary  
aphid), and Aulacorthum solani (glasshouse and combinations of M. verticillata and A. citrodora  
potato aphid). The EO significantly reduced aphid EOs and obtained an LC50 value of 77.6 µL/L,  
reproduction, and the effect depended on EO while the LC value of A. citrodora was higher than  
5
0
concentration and the species of aphid involved. 600.0 µL/L. Another study evaluated the fumigant  
At the highest dose tested (1 µL/Petri plate), 100, toxicity of C. ambrosioides EO and its major  
9
4, and 85% decrease in offspring number was constituents, ascaridole and isoascaridole, against  
achieved after 5 days of exposure for A. pisum, M. S. zeamais (Chu et al., 2011). The LC50 values  
persicae, and A. solani, respectively. Furthermore, were 3.1 mg/L for the EO, 0.8 mg/L for ascaridole,  
the EO was fractionated by vacuum distillation, and and 2.5 mg/L for isoascaridole. As it can be seen,  
three fractions were obtained and analyzed by GC- ascaridole showed three times more activity than  
MS. The fraction characterized by a high content the crude EO and isoascaridole. Ascaridole is  
of oxygenated monoterpenes was more effective in a monoterpenoid with a peroxy group across  
restricting aphid population growth, showing 95% position 1 to 4, which could be the responsible for  
fewer offspring at day 3 and no live aphids at day 4 its bioactivity since isoascaridole is a very similar  
(Tomova et al., 2005).  
compound but lacks the internal 1,4-peroxide. The  
664  
F. Achimón et al. - Bioactividad de AEs de la flora argentina  
fumigant activity of ascaridole is comparable to On the contrary, both EOs were toxic only to T.  
that of methyl bromide, one of the currently used castaneum in contact toxicity assays, with the EO  
grains fumigants. Another study evaluated the of A. polystachya being more effective (LD = 7.4  
50  
fumigant toxicity, antifeedant effect, and repellency µg/insect) than the EO of A. citrodora (LD50 = 13.8  
of Elyonorus muticus, Cymbopogon citratus, and µg/insect). On the other hand, repellent activity was  
T. terniflora EOs against S. oryzae adults. Only stronger with A. citrodora, with mean repellency  
the EO of T. terniflora demonstrated moderate values over 70% for both species, probably due  
fumigant toxicity to S. oryzae, with an LC value to the presence of citronellal, a natural compound  
50  
2
of 322.6 µg/cm . Moreover, the EOs were repellent commonly used in commercial insect repellents  
to S. oryzae adults with an overall repellency in the (Benzi et al., 2014). Another study evaluated the  
range 73-89% at 20 g/L. Regarding the antifeedant repellent activity of five species belonging to the  
activity, the EOs had strong feeding deterrent effect, family Asteraceae: Ambrosia tenuifolia, Baccharis  
reducing the relative growth rate in S. oryzae adults articulata, B. spartioides, Helianthus petiolaris,  
(Stefanazzi et al., 2011).  
and Senecio serratifolius (accepted name: Culcitium  
Essential oils obtained from of A. polystachya, serratifolium) (Saran et al., 2019). All the tested  
A. citrodora, and S. molle var. areira (accepted EOs exhibited repellent effect against T. castaneum  
name: Lithrea molleoides) were tested against in a dose-dependent manner, with those from  
Rhizopertha dominica adults in contact, fumigant, B. spartioides and H. petiolaris being the most  
and repellence bioassays (Benzi et al., 2009). In effective, showing values over 95% of repellency.  
contact toxicity bioassays, the EOs from leaves of The repellent activity of both EOs was improved  
A. polystachya and S. molle exhibited strong effect when they were included in binary mixtures with  
against adults of R. dominica, with LD50 values Lemon EO, evidencing synergisms among the  
2
of 0.9 and 0.6 mg/cm , respectively. In fumigant pure compounds of the different EOs (Saran et al.,  
2
toxicity tests, the LC50 value was 0.2 mg/cm for 2019). Olmedo et al. (2015) assessed the fumigant  
both A. polystachya and A. citrodora EOs, while the toxicity of the EO from T. filifolia and its main  
EO from S. molle showed lower toxicity with LC of compounds, anethole and estragole, against T.  
5
0
2
0
.6 mg/cm . Additionally, A. citrodora showed 80% castaneum. The EO and anethole were the most  
of repellency at the highest concentrations, almost toxic at 24 h, with CL values of 2.4 and 2.6 μL/  
50  
two times higher than the other EOs tested (Benzi et mL water, respectively. Additional experiments  
al., 2009). demonstrated that the toxic effect may be due  
The moth Plodia interpunctella is a major to the inhibition of acetylcholinesterase activity  
economic insect pest of stored products and (Olmedo et al., 2015). The species T. terniflora  
processed food commodities found worldwide. showed moderate fumigant and contact toxicities  
2
Corzo et al. (2020) evaluated the insecticidal activity to T. castaneum with LC values of 362.8 µg/cm  
50  
2
of L. turbinata EO in P. interpunctella third-instar and 217.3 µg/cm , respectively (Stefanazzi et al.,  
larvae. The EO caused mortality in larvae in a dose‐ 2011). Furthermore, the EO produced a repellent  
dependent manner, with an LC value of 432.9 mg/L. effect that was concentration-dependent with values  
50  
Furthermore, the EO caused a delay in the pupation of approximately 90% in both larvae and adults at  
day in the surviving larvae, which was correlated with the highest doses tested. The EO from E. muticus  
a low expression of the neuropeptides responsible produced an even higher repellent effect, with 100%  
for regulating the postembryonic development in repellency at 40 g/L in larvae and 96% at 20 mg/L in  
lepidopterans (Corzo et al., 2020).  
T. castaneum adults (Stefanazzi et al., 2011).  
The flour beetles Tribolium castaneum and T.  
Mealworms are the larval stage of the mealworm  
confusum have been reported as serious secondary beetle, Tenebrio molitor, a stored grain pest.  
pests in Argentina. The EOs of A. polystachya Different sesquiterpenes were isolated from  
and A. citrodora were tested as insecticides and plants of Tessaria absinthioides growing in the  
repellents against flour beetles (Benzi et al., 2014). Cuyo region, and their contact toxicity, growth  
Both EOs showed fumigant toxicity only against T. alteration effects, and repellent activities were  
confusum, with LC values of 5.9 and 5.5 mg/L air tested (García et al., 2003). The compounds tessaric  
50  
for A. polystachya and A. citrodora, respectively. acid, ilicic aldehyde, costic aldehyde, and γ-costic  
665  
Bol. Soc. Argent. Bot. 57 (4) 2022  
acid increased pupal stage duration along with aCKnoWledgmentS  
morphological abnormalities. None of the tested  
compounds produced a significant mortality on  
This work was supported by the National  
larvae within the first 3 days of the experiment. Research Council of Argentina (CONICET;  
Regarding repellency, ilicid aldehyde and γ-costic PIP 11220200100712CO), National Ministry of  
acid showed the strongest effect, with mean Science and Technology (FONCYT-PICT 2016-  
repellency values from 86 to 93% after 30 min of 0454; FONCYT-PICT 2018-3697; FONCYT-PICT  
2
exposure at the highest concentration (80 µg/cm ) 2018-00669; FONCYT-PICT 2019-2703), and  
(
García et al., 2003).  
Universidad Nacional de Córdoba (SECYT).  
ConCluSIonS  
bIblIograPhy  
Currently, the control of insect pests relies  
heavily on synthetic insecticides. Despite the  
efficacy of these chemical substances, they are  
associated with hazardous effects on living  
organisms and the environment and can lead to  
the development of resistance. In this context, the  
application of natural compounds is among the most  
recommended management practices to overcome  
these problems. The present review has examined  
the insecticidal and repellent activities of the EOs  
of many plant species native to Argentine flora,  
showing very encouraging outcomes. In general,  
the EOs more frequently evaluated were those  
belonging to the families Asteraceae, Lamiaceae,  
and Verbenaceae. Within Asteraceae, the species  
E. buniifolium and T. minuta demonstrated to be  
the most effective EOs against several species  
of insects; within Lamiaceae, R. officinalis and  
M. verticillata were the most bioactive EOs;  
and within Verbenaceae, A. citrodora and A.  
polystachya proved to be the most toxic species.  
In several cases, the bioactivity of the EOs was  
comparable or even better than that showed by the  
synthetic insecticides that were used as positive  
controls. This work highlights the enormous  
potential of EOs to be included in repellent and  
insecticidal formulations.  
ACHIMÓN, F., BRITO, V. D., PIZZOLITTO, R. P.,  
SÁNCHEZ, A. R., GÓMEZ, E. A. & ZYGADLO,  
J.A. 2021. Chemical composition and antifungal  
properties of commercial essential oils against  
the maize phytopathogenic fungus Fusarium  
verticillioides. Rev. Argent. Microbiol. 53: 292–303.  
https://doi.org/10.1016/j.ram.2020.12.001.  
ACHIMÓN, F., LEAL, L.E., PIZZOLITTO, R.P.,  
BRITO V.D., ALARCÓN, R., OMARINI, A.B. &  
ZYGADLO, J.A. 2022. Insecticidal and antifungal  
effects of Lemon, Orange, and Grapefruit peel  
ANDRADE, M.A., AZEVEDO, C.D.S., MOTTA, F.N.,  
SANTOS, M.L.D., SILVA, C.L., SANTANA, J.M.D.  
& BASTOS, I. 2016. Essential Oils: In vitro activity  
against Leishmania amazonensis, cytotoxicity and  
chemical composition. BMC Complement Altern.  
ANIKET, K. & ROSHAN, D. En Insect repellent market  
by insect type (mosquito, bugs, fly repellent, and  
others) and product type (vaporizers, spray, cream,  
and others): Global oportunity analysis and industry  
forecast, 2019-2026 [online]. Disponible en: https://  
www.alliedmarketresearch.com/insect-repellent-  
market [Acceso: Mayo de 2022].  
ARENA, J.S., PESCHIUTTA, M.L., CALVIMONTE, H.  
&
ZYGADLO, J.A. 2017. Fumigant and repellent  
author ContrIbutIon  
activities of different essential oils alone and  
combined against the maize weevil (Sitophilus  
zeamais Motschulsky). MOJ Bioorg. Org. Chem.  
1: 1–6.  
MPZ and JAZ: Conceptualization; FA, MB,  
VDB, MLP, JMH, CM, and RPP: literature research;  
FA, MB, VDB: writing—original draft preparation.  
FA, MPZ and JAZ: writing—review and editing.  
All authors have read and agreed to the published  
version of the manuscript.  
https://dx.doi.org/10.15406/mojboc.2017.01.00043.  
ARENA, J.S., OMARINI, A.B., ZUNINO, M.P.,  
PESCHIUTTA, M.L., DEFAGÓ, M.T.  
& ZYGADLO, J.A. 2018. Essential oils from  
666  
F. Achimón et al. - Bioactividad de AEs de la flora argentina  
DysphaniaambrosioidesandTagetesminutaenhance  
the toxicity of a conventional insecticide against  
Alphitobius diaperinus. Ind. Crops Prod. 122: 190–  
CORZO, F.L., TRAVERSO, L., STERKEL, M.,  
BENAVENTE, A., AJMAT, M.T. & ONS, S. 2020.  
Plodia interpunctella (Lepidoptera: Pyralidae):  
intoxication with essential oils isolated from Lippia  
turbinata (Griseb.) and analysis of neuropeptides  
and neuropeptide receptors, putative targets for  
DA SILVA, A. G., ALVES, R. C. C., FILHO, C. M. B.,  
BEZERRA-SILVA, P. C., SANTOS, L. M. M. D.,  
FOGLIO, M. A., FERRAZ NAVARRO, D.M.A,  
DA SILVA, M.V. & CORREIA, M. T. D. S. 2015.  
Chemical composition and larvicidal activity of  
the essential oil from leaves of Eugenia brejoensis  
Mazine (Myrtaceae). J Essent. Oil Bear Pl. 18:  
1441–1447.  
9
4. https://doi.org/10.1016/j.indcrop.2018.05.077.  
BARBIERI, C. & BORSOTTO, P. 2018. Essential Oils:  
Market and legislation. In Hany A. El-Shemy (ed.).  
Potential of Essential Oils, pp. 107-127. IntechOpen.  
https://doi.org/10.5772/intechopen.77725.  
BENZI, V.S., MURRAY, A.P. & FERRERO, A.A.  
2
009. Insecticidal and insect-repellent activities of  
essential oils from Verbenaceae and Anacardiaceae  
against Rhizopertha dominica. Nat. Prod.  
BENZI, V., STEFANAZZI, N., MURRAY, A.P.,  
WERDIN GONZÁLEZ, J.O. & FERRERO,A. 2014.  
Composition, repellent, and insecticidal activities of  
two south american plants against the stored grain  
pests Tribolium castaneum and Tribolium confusum  
https://doi.org/10.1080/0972060X.2014.1000390.  
DE ARIAS, A. R., SCHMEDA‐HIRSCHMANN, G.  
& FALCAO A.. 1992. Feeding deterrency and  
insecticidal effects of plant extracts on Lutzomyia  
longipalpis. Phytother. Res. 6: 64–67.  
BOHBOT, J.D., STRICKMAN, D. & ZWIEBEL, L.J.  
014. The future of insect repellent discovery and  
https://doi.org/10.1002/ptr.2650060203.  
2
DESCAMPS, L. R. & SÁNCHEZ CHOPA, C.  
2019. Insecticidal activity of essentials oils  
against Plutella xylostella larvae (Lepidoptera:  
Plutellidae). Dominguezia 35: 35–38.  
DHEN, N., MAJDOUB, O., SOUGUIR, S., TAYEB,  
W., LAARIF, A. & CHAIEB, I. 2014. Chemical  
composition and fumigant toxicity of Artemisia  
absinthium essential oil against Rhyzopertha  
dominica and Spodoptera littoralis. Tunis J. Plant  
Prot. 9: 57–65.  
BUDEL, J.M., WANG, M., RAMAN, V., ZHAO, J.,  
KHAN, S.I., REHMAN, J.U., ... & KHAN, I.A.  
2
018. Essential oils of five Baccharis species:  
Investigations on the chemical composition and  
biological activities. Molecules. 23: 2620.  
https://doi.org/10.3390/molecules23102620.  
CHANTRAINE, J.M., LAURENT, D., BALLIVIAN,  
C., SAAVEDRA, G., IBANEZ, R. & VILASECA,  
L.A. 1998. Insecticidal activity of essential oils  
EL-SHAZLY, A.M. & HUSSEIN, K.T. 2004. Chemical  
analysis and biological activities of the essential  
oil of Teucrium leucocladum Boiss. (Lamiaceae).  
Biochem. Syst. Ecol. 32: 665–674.  
https://doi.org/10.1016/j.bse.2003.12.009.  
CHU, S.S., FENG H.J. & LIU, Z. 2011. Composition of  
essential oil of chinese Chenopodium ambrosioides  
and insecticidal activity against maize weevil,  
CLEMENTE, S.V., MAREGGIANI, G., JUÁREZ, B.  
E., MENDIONDO, M.E., VAN BAREN, C.M., DI  
LEO, P., LIRA BROUSSALIS, A.M., BANDONI,  
A. L. & FERRARO, G.C. 2008. Insecticidal activity  
of the essential oil and extracts of Gutierrezia  
mandonii and G. repens (Asteraceae) growing in  
ESCOBAR, F.M., CARIDDI, L.N., SABINI, M.C.,  
REINOSO, E., SUTIL, S. B., TORRES, C.V.,  
ZANON S.M. & SABINI, L.I. 2012. Lack of  
cytotoxic and genotoxic effects of Minthostachys  
verticillata essential oil: Studies in vitro and in  
vivo. Food Chem. Toxicol. 50: 3062–3067.  
https://doi.org/10.1016/j.fct.2012.06.018.  
FIERASCU, R.C., FIERASCU, I., BAROI, A.M.  
& ORTAN, A. 2021. Selected aspects related  
to medicinal and aromatic plants as alternative  
sources of bioactive compounds. Int. J. Mol. Sci.  
22: 1–20.  
https://doi.org/10.3390/ijms22041521.  
667  
Bol. Soc. Argent. Bot. 57 (4) 2022  
GARCÍA, M., SOSA, M.E., DONADEL, O.J.,  
GIORDANO, O.S. & TONN, C.E. 2003. Effects  
of some sesquiterpenes on the stored-product insect  
Tenebrio molitor (Coleoptera: Tenebrionidae). Rev.  
Soc. Entomol. Arg. 62: 17–26.  
GUTIÉRREZ, M.M., WERDIN-GONZÁLEZ, J.O.,  
STEFANAZZI, N., BRAS, C. & FERRERO, A. A.  
2016. The potential application of plant essential  
oils to control Pediculus humanus capitis (Anoplura:  
Pediculidae). Parasitol. Res. 115: 633–641.  
GILLIJ, Y.G., GLEISER, R.M. & ZYGADLO, J.A.  
https://doi.org/10.1007/s00436-015-4781-8.  
2
008. Mosquito repellent activity of essential oils  
HERRERA, J.M., ZUNINO, M.P., MASSUH, Y.,  
PIZZOLLITO, R.P., DAMBOLENA, J.S., GAÑAN,  
N.A. & ZYGADLO, J.A. 2014. Fumigant toxicity of  
five essential oils rich in ketones against Sitophilus  
zeamais (Motschulsky). AgriScientia 31: 35–41.  
https://doi.org/10.31047/1668.298x.v31.n1.9839.  
HWANG, Y.S., WU, K.H., KUMAMOTO, J.,  
AXELROD, H. & MULLA, M.S. 1985. Isolation  
and identification of mosquito repellents in Artemisia  
vulgaris. J. Chem. Ecol. 11: 1297–1306.  
of aromatic plants growing in Argentina. Bioresour.  
Technol. 99: 2507–2515.  
https://doi.org/10.1016/j.biortech.2007.04.066.  
GLEISER, R.M., BONINO, M.A. & ZYGADLO, J.A.  
2
011. Repellence of essential oils of aromatic  
plants growing in Argentina against Aedes aegypti  
Diptera: Culicidae). Parasitol. Res. 108: 69–78.  
(
https://doi.org/10.1007/s00436-010-2042-4.  
GLEISER, R.M. & ZYGADLO, J.A. 2007. Insecticidal  
properties of essential oils from Lippia turbinata  
and Lippia polystachya (Verbenaceae) against Culex  
quinquefasciatus (Diptera: Culicidae). Parasitol.  
Res. 101: 1349–1354.  
https://doi.org/10.1007/BF01024117.  
INKWOOD, R. En: MARKET RESEARCH REPORT:  
GLOBAL BIOPESTICIDES MARKET  
FORECAST 2020-2028 [online]. Disponible en:  
https://inkwoodresearch.com/reports/biopesticides-  
market/#report-summary [Acceso: Mayo de 2022].  
KEMBRO, J.M., MARIN, R.H., ZYGADLO, J.A. &  
GLEISER, R.M. 2009. Effects of the essential  
oils of Lippia turbinata and Lippia polystachya  
(Verbenaceae) on the temporal pattern of locomotion  
of the mosquito Culex quinquefasciatus (Diptera:  
Culicidae) larvae. Parasitol. Res. 104: 1119–1127.  
https://doi.org 10.1007/s00436-008-1296-6.  
https://doi.org/10.1007/s00436-007-0647-z.  
GONZALEZ AUDINO, P., VASSENA, C., ZERBA,  
E. & PICOLLO, M. 2007. Effectiveness of lotions  
based on essential oils from aromatic plants against  
permethrin resistant Pediculus humanus capitis.  
Arch. Dermatol. Res. 299: 389–392.  
https://doi.org/10.1007/s00403-007-0772-7.  
GOVINDARAJAN, M., RAJESWARY, M., HOTI,  
S.L., BHATTACHARYYA, A. & BENELLI, G.  
2
016. Eugenol, α-pinene and β-caryophyllene from  
KURDELAS, R.R., LÓPEZ, S., LIMA, B., FERESIN,  
G.E., ZYGADLO, JA., ZACCHINO, S., LÓPEZ,  
M.L. & TAPIA, A. 2012. Chemical composition,  
anti-insect and antimicrobial activity of Baccharis  
darwinii essential oil from Argentina, Patagonia.  
Ind. Crops. Prod. 40: 261–267.  
Plectranthus barbatus essential oil as eco-friendly  
larvicides against malaria, dengue and japanese  
encephalitis mosquito vectors. Parasitol. Res. 115:  
8
07–815.  
https://doi.org/10.1007/s00436-015-4809-0.  
GUERREIRO, A.C., CECATI, F.M., ARDANAZ, C.E.,  
DONADEL, O.J., TONN, C.E. & SOSA, M.E.  
https://doi.org 10.1016/j.indcrop.2012.03.024.  
LIMA, B., LÓPEZ, S., LUNA, L., AGÜERO, M.B.,  
ARAGÓN, L., TAPIA, A., ZACCHINO S., LÓPEZ,  
M.L., ZYGADLO, J.A. & FERESIN, G. E. 2011.  
Essential oils of medicinal plants from the central  
andes of Argentina: Chemical composition, and  
antifungal, antibacterial, and insect-repellent  
activities. Chem. Biodivers. 8: 924–36.  
2
018. Assessment of the insecticidal potential of  
the Eupatorium buniifolium essential oil against  
Triatoma infestans (Hemiptera: Reduviidae). A  
chiral recognition approach. Neotrop. Entomol. 47:  
4
18–28.  
https://doi.org/10.1007/s13744-018-0601-z.  
GUTIÉRREZ, M.M., STEFANAZZI, N., WERDIN  
GONZÁLEZ, J.O., BENZI, V. & FERRERO A.  
https://doi.org/10.1002/cbdv.201000230.  
LÓPEZ, S.B., LÓPEZ, M.L., ARAGÓN, L.M.,  
TERESCHUK, M.L., SLANIS, A.C., FERESIN,  
G.E., ZYGADLO, J.A. & TAPIA, A.A. 2011.  
Composition and anti-insect activity of essential  
oils from Tagetes species (Asteraceae, Helenieae)  
on Ceratitis capitata Wiedemann and Triatoma  
2
009. Actividad fumigante de aceites esenciales  
de Schinus molle (Anacardiaceae) y Tagetes  
terniflora (Asteraceae) sobre adultos de Pediculus  
humanus capitis (Insecta: Anoplura: Pediculidae). B.  
Latinoam. Caribe Pl. 8: 176–179.  
668  
F. Achimón et al. - Bioactividad de AEs de la flora argentina  
infestans Klug. J. Agric. Food Chem. 59: 5286–  
292. https://doi.org/10.1021/jf104966b.  
OLMEDO, R., HERRERA, J.M., LUCINI, E.I.,  
ZUNINO M.P, PIZZOLITTO, DAMBOLENA, J.S.  
& ZYGADLO, J.A. 2015. Essential oil of Tagetes  
filifolia against the flour beetle Tribolium castaneum  
and its relation to acetylcholinesterase activity and  
lipid peroxidation. AgriScientia 32: 113–121.  
https://doi.org/10.31047/1668.298x.v32.n2.16562  
PALACIOS, S.M., BERTONI, A., ROSSI, Y.,  
SANTANDER, R. & URZÚA, A. 2009. Insecticidal  
activity of essential oils from native medicinal plants  
of central argentina against the house fly, Musca  
domestica (L.). Paras. Res. 106: 207–212.  
5
LÓPEZ, S.B., LIMA, B., ARAGÓN, L., ESPINAR,  
L. A., TAPIA, A., ZACCHINO, S., ZYGADLO,  
J.A., FERESIN, G.E. & LÓPEZ, M.L. 2012.  
Essential oil of Azorella cryptantha collected in  
two different locations from San Juan Province,  
Argentina: chemical variability and anti-insect and  
antimicrobial activities. Chem. Biodivers. 9: 1452–  
1
464. https://doi.org/10.1002/cbdv.201100319.  
LÓPEZ, S.B., LIMA, B.,AGÜERO, M.B., LOPEZ, M.L.,  
HADAD, M., ZYGADLO, J.A., CABALLERO,  
D. & TAPIA, A. 2018. Chemical composition,  
antibacterial and repellent activities of Azorella  
trifurcata, Senecio pogonias, and Senecio oreophyton  
essential oils. Arab. J. Chem. 11: 181–187.  
https://doi.org/10.1007/s00436-009-1651-2.  
PANDEY, A.K., KUMAR, P., SINGH, P., TRIPATHI,  
N.N. & BAJPAI, V.K. 2017. Essential oils: sources  
of antimicrobials and food preservatives. Front.  
Microbiol. 7: 1–14.  
https://doi.org/10.1016/j.arabjc.2014.11.022.  
LÓPEZ, S.B., TAPIA, A., ZYGADLO, J., STARIOLO,  
R., ABRAHAM, G.A. & CORTEZ TORNELLO,  
P.R. 2021. Zuccagnia punctata Cav. essential oil  
into poly(ε-caprolactone) matrices as a sustainable  
and environmentally friendly strategy biorepellent  
against Triatoma infestans (Klug) (Hemiptera,  
Reduviidae). Molecules 26: 4056.  
https://doi.org/10.3389/fmicb.2016.02161.  
PAVELA, R. 2010. Acute and synergistic effects of  
monoterpenoid essential oil compounds on the  
larvae of Spodoptera littoralis. J. Biopestic. 3:  
573–578.  
PAVELA, R. 2012. Sublethal effects of some essential  
oils on the cotton leafworm Spodoptera littoralis  
PESCHIUTTA, M.L., PIZZOLITTO R.P., ORDANO,  
M.P., ZAIO, Y.P. & ZYGADLO, J.A. 2017.  
Laboratory evaluation of insecticidal activity of  
plant essential oils against the vine mealybug,  
Planococcus ficus. Vitis 56: 79–83.  
https://doi.org/10.3390/molecules26134056.  
MACHADO, C.D., RAMAN, V., REHMAN, J. U.,  
MAIA, B.H., MENEGHETTI, E.K., ALMEIDA,  
V.P., ROSI, Z.S., FARAGO, P.V., KHAN, I.A.  
&
BUDEL, J.M. 2019. Schinus molle: Anatomy  
of leaves and stems, chemical composition and  
insecticidal activities of volatile oil against bed bug  
(
1
Cimex lectularius). Rev. Bras. Farmacogn. 29:  
–10. https://doi.org/10.1016/j.bjp.2018.10.005.  
MAMANI DE MARCHESE, A. & FILIPPONE, M.P.  
018. Bioinsumos: componentes claves de una  
https://doi.org/10.5073/vitis.2017.56.79-83.  
RAJABI, S., RAMAZANI, A., HAMIDI, M. & NAJI, T.  
2015. Artemia salina as a model organism in toxicity  
assessment of nanoparticles. DARU. 23: 1–6.  
https://doi.org/10.1186/s40199-015-0105-x.  
2
agricultura sostenible. RANAR. 38: 9–21.  
MARRONE, P.G. 2014. The market and potential for  
biopesticides. ACS Symp. Ser. 1172: 245–258.  
https://doi.org/10.1021/bk-2014-1172.ch016.  
MULLO, Y.N. 2011. Biological activity of essential oils  
from Aloysia polystachya and Aloysia citrodora  
SÁNCHEZ CHOPA, C. & DESCAMPS, L.R. 2012.  
Composition and biological activity of essential  
oils against Metopolophium dirhodum (Hemiptera:  
Aphididae) cereal crop pest. Pest Manag. Sci. 68:  
1492–1500. https://doi.org/10.1002/ps.3334.  
(
Verbenaceae) against the soybean pest Nezara  
SÁNCHEZ CHOPA, C. & DESCAMPS, L.R. 2015.  
Toxicidad de aceites esenciales de Verbenaceas sobre  
adultos de Diuraphis noxia (Hemiptera: Aphididade)  
toxicity of essential oils from Verbenaceae against  
Diuraphis noxia (Hemiptera: Aphididae) adults.  
Dominguezia 31: 31–36.  
SARAN, A., FERNÁNDEZ, L., MINIG, M.,  
REINHARD, M.B. & MERINI, L.J. 2019. Repellent  
activity of essential oils from native plants and their  
viridula (Hemiptera: Pentatomidae). Tesis de  
grado. Escuela superior politécnica de Chimborazo.  
Facultad de Ciencias.  
OLIVA, M.M., GALLUCCI, N, ZYGADLO, J.A. &  
DEMO M.S. 2007. Cytotoxic activity ofArgentinean  
essential oils on Artemia salina. Pharm. Biol. 45:  
2
59–262.  
https://doi.org/10.1080/13880200701214557.  
669  
Bol. Soc. Argent. Bot. 57 (4) 2022  
blend for Tribolium castaneum control in store  
grains. Semiárida UNLPam. 29: 43–51.  
https://doi.org/10.19137/semiarida.2019(01).  
of Argentinean essential oils against permethrin-  
resistant head lice, Pediculus humanus capitis.  
J. Insect Sci. 10: 1–8.  
SOSA, A., COSTA, M., SALVATORE, A., BARDON,  
A.D.V., BORKOSKY, S. & VERA, N. 2017.  
Insecticidal effects of eudesmanes from Pluchea  
sagittalis (Asteraceae) on Spodoptera frugiperda and  
Ceratitis capitata. Int. J. Environ. Agric. Biotech. 2:  
https://doi.org/10.1673/031.010.14145.  
TOMOVA, B.S., WATERHOUSE, J.S. & DOBERSKI,  
J. 2005. The effect of fractionated Tagetes oil  
volatiles on aphid reproduction. Entomol. Exp.  
Appl. 115: 153–159.  
3
61–369. https://doi.org/10.22161/ijeab/2.1.45.  
https://doi.org/10.1111/j.1570-7458.2005.00291.x.  
UMPIÉRREZ, M.L., LAGRECA, M.E., CABRERA,  
R., GRILLE, G. & ROSSINI, C. 2012. Essential  
oils from Asteraceae as potential biocontrol tools  
for tomato pests and diseases. Phytochem. Rev. 11:  
339–350.  
SOSA, M. E., LANCELLE, H. G., TONN, C. E.,  
ANDRES, M. F. & GONZALEZ-COLOMA, A.  
2
012. Insecticidal and nematicidal essential oils  
from Argentinean Eupatorium and Baccharis spp.  
Biochem. Syst. Ecol. 43: 132–138.  
https://doi.org/10.1016/j.bse.2012.03.007.  
STEFANAZZI, N., STADLER, T. & FERRERO, A.  
https://doi.org/10.1007/s11101-012-9253-5.  
WERDIN GONZALEZ, J.O., GUTIÉRREZ, M.M.,  
MURRAY, A.P. & FERRERO, A.A. 2010.  
Biological activity of essential oils from Aloysia  
polystachya against the soybean pest Nezara  
viridula. Nat. Product Commun. 5: 301–306.  
https://doi.org/10.1177/1934578X100050022  
WIMALARATNE, P.D.C., SLESSOR, K.N., BORDEN,  
J.H., CHONG, L.J. & ABATE, T. 1996. Isolation  
and identification of house fly, Musca domestica  
L., repellents from pepper tree, Schinus molle L.  
J. Chem. Ecol. 22: 49–59.  
2
011. Composition and toxic, repellent and feeding  
deterrent activity of essential oils against the stored-  
grain pests Tribolium castaneum (Coleoptera:  
Tenebrionidae) and Sitophilus oryzae (Coleoptera:  
Curculionidae). Pest Manag. Sci. 67: 639–646.  
https://doi.org/10.1002/ps.2102.  
TOLOZA, A.C., ZYGADLO, J.A., CUETO, G. M.,  
BIURRUN, F., ZERBA, E. & PICOLLO, M.I. 2006.  
Fumigant and repellent properties of essential oils  
and component compounds against permethrin-  
resistant Pediculus humanus capitis (Anoplura:  
Pediculidae) from Argentina. J. Med. Entomol.  
https://doi.org/10.1007/BF02040199.  
YONES, D.A., HANAA Y.B. & BAYOUMI, S.A.L.  
2016. Chemical composition and efficacy of some  
selected plant oils against Pediculus humanus  
capitis in vitro. Parasitol. Res. 115: 3209–3218.  
https://doi.org/10.1007/s00436-016-5083-5.  
4
2
3: 889–895. https://doi.org/10.1603/0022-  
585(2006)43[889:FARPOE]2.0.CO;2.  
TOLOZA, A.C., ZYGADLO, J.A., BIURRUN, F.,  
ROTMAN, A. & PICOLLO, M.I. 2010. Bioactivity  
670