moleCular CytogenetiCS revealS an unCommon  
StruCtural and numeriCal ChromoSomal  
heteromorPhiSm in ZePhyrantheS braChyandra  
(amaryllidaCeae)  
la CitogenétiCa moleCular revela un heteromorfiSmo CromoSómiCo  
numériCo y eStruCtural PoCo Común en ZePhyrantheS braChyandra  
(amaryllidaCeae)  
1
Thiago Nascimento * , Raquel S. Gonçalves , Mariana Báez  
and Marcelo Guerra  
Guillermo Seijo  
1
. Laboratório de Citogenética e  
Summary  
Evolução Vegetal, Departamento  
de Botânica, Universidade Federal  
de Pernambuco-UFPE, R. Prof.  
Moraes Rego, s/n, Recife, PE 50670-  
Background and aims: Zephyranthes brachyandra belongs to a tribe of ornamental  
Amaryllidaceae native of South America, whose genera circumscription and  
phylogenetic relationships are still unclear. Cytologically, Z. brachyandra is a  
tetraploid whose chromosomes are of similar size and morphology, hindering the  
identification of its 2n = 24 chromosomes. The aim of this study was to investigate the  
stability of the many CMA and DAPI bands and the occurrence of B chromosomes  
by a cytomolecular approach.  
M&M: For this investigation we conducted a cytomolecular analysis with CMA/DAPI  
staining and fluorescence in situ hybridization with 5S and 35S rDNA probes, and  
the TTTAGGG telomeric probe.  
4
2
20, Brazil.  
.InstitutodeBotánicadelNordeste  
+
+
(
UNNE - CONICET) and Facultad  
de Ciencias Exactas y Naturales y  
Agrimensura, Universidad Nacional  
del Nordeste, Sargento Cabral  
2
131, 3400 Corrientes, Argentina.  
thiagoagtc@gmail.com  
Citar este artículo  
Results: In the present work, a cytomolecular analysis of Z. brachyandra, revealed a  
+
+
large and variable number of CMA and DAPI heterochromatic bands and 5S and  
5S rDNA sites, and a regular distribution of the TTTAGGG telomeric sequences.  
*
3
In addition, one individual was monotrisomic with 2n = 24, and another one had a B  
chromosome. Both numerical and structural chromosome alterations were clearly  
characterized by CMA/DAPI bands and rDNA sites.  
Conclusions: Comparing the present data with the cytological data for other species  
of Zephyranthes, it becomes clear that a cytomolecular approach is fundamental  
to the understanding of the chromosome variation and cytotaxonomy of the group.  
NASCIMENTO, T., R. S. GONÇALVES,  
M. BÁEZ, G. SEIJO AND M. GUERRA.  
2
022. Molecular cytogenetics  
reveals an uncommon structural  
and numerical chromosomal  
heteromorphism in Zephyranthes  
brachyandra (Amaryllidaceae). Bol.  
Soc. Argent. Bot. 57: 39-49.  
Key WordS  
CMA/DAPI banding, cytotaxonomy, FISH, monotrisomy, rDNA, telomeric DNA.  
reSumen  
Introducción y objetivos: Zephyranthes brachyandra pertenece a una tribu de  
Amaryllidaceae ornamentales nativa de América del Sur, cuya circunscripción  
de géneros y relaciones filogenéticas aún no están claras. Citológicamente, Z.  
brachyandra es un tetraploide cuyos cromosomas son de tamaño y morfología  
similar, lo que dificulta la identificación de sus 2n = 24 cromosomas. El objetivo de  
este estudio fue investigar la estabilidad de las numerosas bandas CMA+ y DAPI+  
y la aparición de cromosomas B mediante un enfoque citomolecular.  
M&M: Para esta investigación realizamos un análisis citomolecular con tinción CMA/  
DAPI e hibridación fluorescente in situ con sondas de ADNr 5S y 35S, y la sonda  
telomérica TTTAGGG.  
Resultados: En el presente trabajo se realizaron varios análisis citomoleculares de Z.  
brachyandra, que revelaron un número alto y variable de bandas heterocromáticas  
CMA+ y DAPI+ y de sitios de ADNr 5S y 35S, además de una distribución típica de  
las secuencias teloméricas TTTAGGG. Además, un individuo era monotrisómico  
con 2n = 24 y otro tenía un cromosoma B. Las alteraciones cromosómicas tanto  
numéricas como estructurales se caracterizaron claramente por bandas CMA /  
DAPI y sitios de ADNr.  
Conclusión: Al comparar los datos actuales con la literatura citológica de otras  
especies del género Zephyranthes, queda claro que un enfoque citomolecular es  
fundamental para la comprensión de la variación cromosómica y la citotaxonomía  
del grupo.  
Recibido: 3 Ago 2021  
Aceptado: 18 Feb 2022  
Publicado impreso: 31 Mar 2022  
Editora: Paola Gaiero  
PalabraS Clave  
Bandeamiento CMA/DAPI, citotaxonomía, FISH, monotrisomía, ADNr, ADN  
telomérico  
ISSN versión impresa 0373-580X  
ISSN versión on-line 1851-2372  
39  
Bol. Soc. Argent. Bot. 57 (1) 2022  
introduCtion  
near the nucleolus organizer region (Guerra, 2000;  
Roa & Guerra, 2015; Samoluk et al., 2017). Within  
One of the taxonomic approaches most certain limits, the amount of heterochromatin  
intensively explored in the last century was is not critical to genome function but in a few  
cytotaxonomy [summarized by Stebbins (1971)]. species it is enormously expanded, forming  
The rationale behind this approach is that the large heterochromatic blocks, as in Trithrinax  
karyotype allows a “macroscopic” view of the campestris and Capsicum species (Gaiero et al.,  
genetic material of a species, with some particular 2012; Grabiele et al., 2018), or numerous small  
details of individuals or populations and reveals bands, as in Cuscuta monogyna (Ibiapino et al.,  
many characters common to its genus or tribe. 2020). The tandemly repeated nature of rDNA  
In contrast with various other morphological and telomeric DNA sites allows a considerable  
descriptors, karyotype changes, such as polyploidy variation in number and size of these sites,  
and chromosome inversions or translocations, may contributing to a better karyotype characterization  
work as reproductive barriers among populations of species or populations (Pedrosa-Harand et  
or species, playing therefore an important role in al., 2006; Robledo & Seijo, 2010; Rosato et al.,  
the speciation process (Levin, 2002). Moreover, 2017, 2018; Silvestri et al., 2020). Currently,  
the karyotype is the only morphological trait that chromosome staining with the fluorochromes  
is not affected by gene expression, environmental chromomycin A (CMA) and 4’,6-diamidino-2-  
3
conditions, age, developmental phase, etc (Guerra, phenylindole (DAPI) is the most used method to  
2
012). In general, using appropriate techniques, differentiate GC-rich and AT-rich heterochromatic  
karyotype similarity among species of a genus is bands, respectively (Guerra, 2000). Other more  
an indicative of their phylogenetic proximity. specific chromosome regions are revealed by  
Karyotype description was initially restricted fluorescence in situ hybridization (FISH), a  
to chromosome number, size and morphology well stablished method to localize any type of  
(
Stebbins, 1971), but recent advances on DNA sequence along the chromosomes (Jiang,  
molecular cytogenetics expanded the number of 2019). The analysis of CMA/DAPI bands and  
chromosomal marks and allowed a more detailed rDNA sites, or other DNA sequences revealed by  
karyotype description (Jiang, 2019). For example, FISH, into a phylogenetic context has ensured an  
the chromosomes of all species of Citrus and enormous progress in cytotaxonomical analyses  
related genera are very similar in number, size (e.g., Chalup et al., 2015; Silvestri et al., 2020;  
and morphology but they differ widely in the Ribeiro et al., 2020). However, cytomolecular  
number and distribution of heterochromatic bands methods are more time-consuming and have been  
and 5S and 35S rDNA sites (reviewed by Guerra, used in a still limited number of cytotaxonomical  
2
009). Likewise, the assumption that the families works.  
Juncaceae and Cyperaceae had holocentric Zephyranthes brachyandra (Baker) Backer  
chromosomes as one of their synapomorphies (Amaryllidaceae) is an ornamental bulbous plant  
Judd et al., 2016) was overturned by careful native of the Neotropics, from southern South  
(
analyses of the chromosome morphology and America to Mexico and southwest USA, including  
centromere immunostaining of some Juncus southern Brazil and West Indies, sometimes  
species, revealing that in Juncaceae, at least, referred to as Habranthus brachyandrus (Baker)  
holocentricity is rather a particularity of a few Sealy (Daviña, 2001; Daviña & Honfi, 2018;  
genera (Guerra et al., 2019).  
García et al. 2019). Phylogenetically, the former  
Structural chromosome differentiation is genera Zephyranthes and Habranthus are now  
most commonly revealed by identification of recognized as subgenera of Zephyranthes s.l.  
heterochromaticbandsandsitesofhighlyconserved (García et al. 2019). The two subgenera share  
DNA sequences, as the telomeric DNA and 5S and similar chromosome size and morphology, large  
3
5S rRNA genes. These marks are composed by variation in chromosome numbers, mainly with x  
repetitive DNA sequences densely concentrated = 6, several ploidy levels, and some species with  
into a few blocks and located preferentially at the B chromosomes (Naranjo, 1974; Felix et al., 2008,  
centromeric and terminal chromosome regions or 2011a; Daviña, 2001; Daviña & Honfi, 2018).  
40  
T. Nascimento et al. - Karyotype variability of Zephyranthes brachyandra  
Cytologically, Z. brachyandra is a tetraploid with twice in destilled water, digested in a 2% cellulase  
+
+
2
n = 24, characterized by many DAPI and CMA  
(Onozuka)/ 20% pectinase (Sigma) solution at 37  
heterochromatic bands located in the interstitial- °C for one hour, and macerated in a drop of 45%  
terminal region of most chromosome arms (Felix acetic acid. The coverslips were removed in liquid  
et al., 2011b). The individual analyzed by Felix nitrogen and the slides were dried in the air. The  
et al. (2011b) presented 2n = 24 plus one B preparations were mounted and stained with a 1  
chromosome, whereas the five bulbs examined μg/mL DAPI/glycerol (1:1) solution, in order to  
by Daviña (2001) exhibited always 2n = 24. B select the best slides. Subsequently, they were  
chromosomes are extra chromosome usually destained in ethanol/acetic acid (3:1), air dried,  
smaller than the regular chromosomes of the and aged for three days at room temperature.  
species (A chromosomes), mostly depleted of  
genes, and present only in some individuals of the Chromosome staining with CMA/DAPI and FISH  
species (see, e.g., Marques et al., 2013; Vanzela et  
Chromosome double staining with the  
al., 2017). They may occasionally be accumulated fluorochromes CMA (Sigma) and DAPI (Sigma)  
in some individuals affecting their DNA content was performed as described by Vaio et al. (2018).  
and some other phenotype characters (Huang et Aged slides were stained with CMA (0.1 mg/mL)  
al., 2016).  
for 1 h, counterstained with DAPI (2 µg/mL),  
In the present work, we conducted a detailed mounted with glycerol-McIlvaine buffer pH 7.0  
karyotype analysis of three individuals of Z. (1:1) and aged again for three days. After image  
brachyandra collected in the field, aiming to capture of the best metaphases the chromosomes  
+
investigate: a, the stability of the many CMA  
were destained and in situ hybridized according  
+
and DAPI bands reported previously for a single to Pedrosa et al. (2002). The probes used for 5S  
individual (Felix et al. 2011b); b, the distribution and 35S rDNA sites were, respectively, D2 from  
of 5S rDNA, 35S rDNA and telomeric DNA sites; Lotus japonicus (Regel) K. Larsen and a clone  
c, the occurrence of B chromosomes. We also from Triticum aestivum L. (plasmid Pta71). The  
evaluated karyotype similarity in chromosome probes were direct and indirect labeled with  
number, size and morphology, banding patterns Cy3 dUTP (GE Healthcare) (5S rDNA probe)  
and rDNA sites of Z. brachiandra with other and digoxigenin-11-dUTP (Roche) (35S rDNA  
species of the genus, in order to contribute to the probe) respectively, both by nick translation  
cytotaxonomy of Zephyranthes.  
(Invitrogen). The hybridization mixture contained  
0% formamide (v/v), 10% dextran sulfate  
w/v), 2x SSC, and 5–10 ng/μL of rDNA probe,  
accomplishing a final stringency of ~76%. The  
5S rDNA probe was detected with sheep anti-  
5
(
material and methodS  
3
Plants material  
digoxigenin–FITC (Roche).  
Three bulbs of Z. brachyandra were collected in  
For detection of telomeric sites, a synthetic  
San Javier (27º52´17.9´´- 55º07´41.7´´), Misiones, TTTAGGG oligoprobe labeled with Cy3 by  
Argentina, and cultivated in the Experimental Macrogen Inc. was in situ hybridized according  
Garden of the Department of Botany, Federal to the protocol of Cuadrado et al. (2010), slightly  
University of Pernambuco, Recife, Brazil. A modified. Briefly, 10 µL of the probe solution (8  
voucher was deposited in the herbarium Prof. ng/µL of the oligoprobe diluted in 2x SSC) were  
Jayme Coelho de Moraes (Federal University of applied to each slide for 2 h at room temperature.  
Paraiba, Brazil, voucher EAN 29460).  
Afterwards, the slides were washed in 4x  
SSC/0.2% Tween20 for 10 min. All preparations  
were counterstained and mounted with 2 μg/  
Slides preparation  
For mitotic analyses, young root tips were mL DAPI in Vectashield (Vector). Images of the  
pretreated with colchicine 0.2% at 10 °C for 24 best cells were captured with a Leica DM5500B  
h, fixed in ethanol-acetic acid (3:1, v/v) for 2 h at fluorescence microscope and later processed  
room temperature, then stored at –20 °C until the with Adobe Photoshop CC 2020 for brightness,  
moment of use. The fixed meristems were washed contrast, and sharpness.  
41  
Bol. Soc. Argent. Bot. 57 (1) 2022  
Chromosome measurements  
and heterochromatic bands and rDNA sites  
In order to characterize chromosome size common to all of them (Fig. 2). The individuals  
and morphology, chromosomes of the three best without B chromosomes were heteromorphic  
metaphases for each karyotype were measured for a chromosome pair formed by a meta-  
using the software DRAWID version 0.26 (Kirov and a submetacentric chromosome and were  
et al., 2017). The chromosome arm ratio [r = karyotypically identical regarding all other  
length of long arm (l)/short arm (s)] was used chromosome characteristics, suggesting that they  
to define chromosomes as metacentric (r = 1.0- were clones from a single individual. Therefore,  
1
.49), submetacentric (r = 1.50-2.99), acrocentric they will be referred to herein as a single karyotype.  
(
AR ≥ 3.0) or telocentric, according to Guerra Excluding the B chromosome, chromosome size  
(
1986). Chromosome pairs were ordered from I to varied from 14.59 to 9.28 µm and the average  
XII by decreasing size of the short arm.  
haploid complement size was 146.75 µm (Fig.  
and Table 1). The chromosome morphology in  
2
the two karyotypes was very similar, except for  
the arm ratio of chromosome pair X, which was  
reSultS  
1
.24 for the karyotype without B and 1.80 for  
The plants collected in Argentina grew very the karyotype with B. This difference changed its  
well and flowered during the summer in Recife chromosome morphology from metacentric (AR  
(
Fig. 1), but only produced sterile seeds. They = 1.00-1.49) to submetacentric (AR = 1.50-2.99)  
revealed a high rate of asexual reproduction (Guerra, 1986) and the karyotype formula from  
by lateral bulb production, providing plenty of 8M + 4SM for the individual with 2n = 24 to 9M  
material for investigation. About 15 metaphases + 3SM for the individual with 2n = 24 + 1B (the  
of each individual were analyzed for chromosome chromosome B was not included in the karyotype  
number. Two individuals analyzed presented formula). The average arm ratio for pair X  
2
n = 24 and a third presented 2n = 24 plus a B considering both karyotypes was 1.52 (Fig.2).  
chromosome. The three best metaphases of each The remaining chromosomes were metacentrics  
plant were selected for a careful comparison (pairs I to IX) or submetacentrics (pairs XI and  
of CMA/DAPI bands and rDNA sites. Two XII). The most outstanding karyotype feature of  
+
karyograms were mounted for each individual and Z. brachyandra was the large amount of DAPI  
+
a single ideogram was constructed summarizing heterochromatin. There were large DAPI bands  
the average sizes for each chromosome pair on the short arm of 10 chromosomes and one to  
four small bands in the interstitial/terminal region  
of the remaining chromosome arms (Fig. 3A). The  
submetacentric pairs XI and XII presented similar  
size and morphology, differing mainly in the  
+
number of DAPI bands on the long arm: two on  
+
pair XI and three on pair XII. CMA bands were  
identified only in the short arms of the smaller  
submetacentrics (Fig. 3A’) and in the short arm  
of pair VIII (not always visible). Besides these  
general features, the two karyotypes observed  
here had several small structural differences.  
The number and position of the 5S and 35S  
rDNA loci complemented the identification of  
each chromosome pair and were different in  
the two karyotypes. The karyotype with the  
heteromorphic pair had 19 sites of 5S and six  
sites of 35S rDNA. The 5S rDNA sites were  
Fig. 1. Flowers of Zephyranthes brachyandra  
cultivated as ornamental plants in Recife, Brazil.  
located on the interstitial (12 sites) or terminal  
(7 sites) regions of the large metacentric and  
42  
T. Nascimento et al. - Karyotype variability of Zephyranthes brachyandra  
Fig. 2. Idiogram of Z. brachyandra, including all characters observed in both karyotypes plus the B  
chromosome. CO, chromosome order; S, chromosome size in µm; AR, arm ratio; CM, chromosome  
+
morphology. The scale on the left side indicates the size of the chromosome arms. Blue = DAPI band;  
+
yellow = CMA band; yellow with green bars = 35S rDNA sites co-localized with CMA+ bands; red dots = 5S  
rDNA sites; very small purple dots = TTTAGGG sites.  
Table 1. Chromosome data of Zephyranthes brachyandra karyotype, including chromosome order  
(CO, larger to smaller short arm), short and long arm sizes, chromosome size, arm ratio, chromosome  
morphology (CM), number and position of DAPI+ bands and CMA+ bands, and number and position of 5S  
and 35S rDNA sites. DAPI+ bands were classified as large (L) or small (S), CMA+ bands as terminal (T),  
and rDNA sites as terminal (T) or interstitial (i). Chromosomal marks on the short arms are superscript and  
those on the long arms are subscript.  
Short arm  
µm)  
Long arm  
(µm)  
Chromosome  
Size (µm)  
DAPI  
bands  
CMA 5S rDNA 35S rDNA  
CO  
Arm ratio CM  
(
bands  
sites  
sites  
S
I
6.91 ± 0.98 7.68 ± 0.92  
6.20 ± 0.78 7.28 ± 1.27  
6.06 ± 1.13 7.42 ± 0.98  
14.59 ± 1.82 1.12 ± 0.09  
13.48 ± 1.97 1.70 ± 0.12  
13.49 ± 1.88 1.25 ± 0.23  
12.28 ± 1.83 1.09 ± 0.06  
M
M
M
M
2 + 2S  
--  
--  
--  
--  
--  
--  
--  
--  
--  
S
T
II  
2 + 2S  
1
S
III  
1 + 2S  
--  
--  
--  
S
IV* 5.89 ± 0.92 6.39 ± 0.92  
IV* 2.58 ± 0.23 7.33 ± 0.31  
1 + 1S  
S
T
T
9.91 ± 0.42  
2.87 ± 0.34 SM  
2 + 2S  
1
1
L
T
V
5.65 ± 0.63 7.02 ± 0.65  
5.49 ± 0.56 6.65 ± 0.85  
12.67 ± 0.98 1.26 ± 0.19  
12.15 ± 1.28 1.21 ± 0.13  
12.29 ± 1.45 1.26 ± 0.09  
12.94 ± 1.93 1.43 ± 0.32  
12.06 ± 1.21 1.38 ± 0.24  
M
M
M
M
M
1 + 2S  
--  
--  
--  
--  
--  
--  
1
--  
--  
--  
L
i
VI  
1 + 2S  
1
S
VII 5.44 ± 0.68 6.84 ± 0.85  
VIII 5.40 ± 0.95 7.54 ± 1.21  
3 + 2S  
--  
L
i
i
1 + 2S  
1 + 1  
1
i
L
i
IX  
X
5.10 ± 0.60 6.95 ± 0.95  
4.93 ± 0.95 7.29 ± 1.23  
2.52 ± 0.38 6.78 ± 0.75  
1 + 3S  
1 + 1  
--  
T
L
i
i
12.22 ± 1.77 1.52 ± 0.34 SM  
1 + 3S  
1 + 1  
1
i
T
T
XI  
9.30 ± 0.93  
9.28 ± 0.96  
6.75 ± 0.45  
2.73 ± 0.41 SM  
2.94 ± 0.87 SM  
2S  
3S  
--  
1
--  
--  
--  
1
T
T
XII 2.09 ± 0.28 7.19 ± 0.94  
-- 6.75 ± 0.45  
1
1
T
B
A
1 + 1  
1T  
T
43  
Bol. Soc. Argent. Bot. 57 (1) 2022  
Fig. 3. Metaphase of Z. brachyandra with a heteromorphic chromosome pair. Chromosomes were stained  
with DAPI (A) and CMA (A’) and in situ hybridized with 5S (red) and 35S (green) rDNA probes (A’’). Arrows  
+
in A’ point to CMA bands of submetacentrics. Inset in A’’ shows magnified images of small rDNA sites.  
Karyograms based on this metaphase allow the identification of each chromosome pair by comparison of the  
different marks (B). Asterisks in B indicate heteromorphic pairs. Bar in A corresponds to 10 µm.  
submetacentric chromosomes and a single site including an extra signal on the short arm of both  
on one homologue of pair XI (Fig 3A’’). The five homologues of pair V and a heteromorphic site on  
small submetacentrics had a 35S rDNA site on pair X, and 12 sites of 35S rDNA plus one in the  
+
the short arm co-localized with the CMA band. B chromosome. Noteworthy, the additional 35S  
One chromosome of pair VIII also displayed a rDNA sites, located on pairs VIII and X, were not  
+
small 35S rDNA near the large DAPI band, but clearly detected as CMA+ bands. The 35S rDNA  
+
+
it was not co-localized with a CMA band. The site on pair X was very close to the large DAPI  
karyograms based on Fig. 3A-A’’ placed the extra band but they were not colocalized (see insets in  
small submetacentric provisionally as pair IV Fig. 4A and respective chromosomes in Fig. 4B).  
(
Fig. 3B), since one homologue of pair IV was  
The TTTAGGG probe labelled the telomeric  
absent. However, it was almost identical to pair regions of all chromosomes of both karyotypes and  
XI in size and morphology as well as in banding no ectopic site was found (Fig. 5). No short arm  
+
patterns, with two weakly differentiated DAPI  
was visible on the B chromosome, suggesting that  
+
bands on the long arm and a CMA band on the it was a telocentric. It was shorter (6.75 µm) than  
short one. At least six other chromosome pairs the submetacentrics (Fig. 2), had no DAPI bands,  
were heteromorphic for one or more bands or sites and presented two CMA bands: one interstitial and  
+
+
(
asterisks in figure 3B).  
one very small on its narrower end (inset in Fig.  
The karyotype with a B chromosome exhibited 4A’). The latter could be the centromere itself or a  
a similar pattern of CMA/DAPI bands and rDNA very small short arm, whereas the interstitial band  
sites (Fig. 4A-A’). It had 19 sites of 5S rDNA, coincided with a 35S rDNA site.  
44  
T. Nascimento et al. - Karyotype variability of Zephyranthes brachyandra  
+
Fig. 4. Metaphase of Z. brachyandra with 2n = 24 + 1B displaying DAPI bands (blue) plus 35S rDNA sites  
+
(
green) (A) and CMA bands (white arrows) plus 5S rDNA sites (red dots) (A’). Insets show magnified  
chromosome regions with small rDNA sites (white frames) and B chromosome (yellow arrows and frames).  
Karyograms (B) were based on the same metaphase. Bar in A corresponds to 10 µm.  
diSCuSSion  
The two karyotypes of Z. brachyandra analysed  
here differed mainly in the occurrence of a  
heteromorphic chromosome pair in one of them  
and a B chromosome in the other. Regarding  
chromosome sizes and haploid karyotype formula,  
our data (14.59 to 9.28 µm and 8M + 4SM or  
9
M + 3SM) differ in part from that reported  
by Daviña (2001) (10.89 to 6.14 µm and 8M +  
SM). The difference in chromosome size may be  
4
due to the distinct anti-mitotic pre-treatment and  
the condensation status of selected metaphases  
(Guerra, 2012), whereas the karyotype formula 8M  
+
4SM was the same found here for the karyotype  
without B. Therefore, in spite of the small sample  
size, our data revealed karyotype instability, which  
was not detected in previous studies.  
The two karyotypes displayed a similar number  
of CMA/DAPI bands and differed slightly in the  
Fig. 5. In situ hybridization of the TTTAGGG probe  
in a metaphase of Z. brachyandra with 2n = 24 +  
number of the 5S and 35S rDNA sites. The complex  
1B (arrow) revealed terminal sites only. Inset shows  
+
magnified B chromosome. Bar corresponds to 10 µm. DAPI banding pattern of Z. brachyandra was  
45  
Bol. Soc. Argent. Bot. 57 (1) 2022  
similar to that reported by Felix et al. (2011b), while 1976) and Alloe rabaiensis (Bradham, 1983).  
+
the number and position of CMA bands reported by However, the similarity of the extra submetacentric  
these authors were quite distinct from the present with chromosome pair XI in size, morphology,  
+
ones. They found eight or ten bright CMA bands and CMA/DAPI bands, as well as the absence  
(excepting the B chromosome), only two of them of one homologue of pair IV, suggest that this  
on small submetacentric chromosomes, whereas karyotype had a trisomy for pair XI combined  
+
in our sample there were only four or six CMA  
and a monosomy for pair IV. Such monotrisomic  
bands (excepting the B and the extra submetacentric aneuploids are more commonly found among  
+
chromosome). It is possible that some CMA bands chromosomically engineered crop plants, as wheat  
in our sample had not been detected because they and barley, and most of them are compensating  
were too small. Actually, the 35S rDNA sites of aneuploids involving homeologous chromosomes  
+
pairs VIII and X were expected to be CMA , since (Singh, 2003). Differently, in Z. brachyandra  
+
they are usually co-localized with CMA bands (e.g., the monotrisomy involved two quite different  
Moraes et al., 2007; Gaiero et al., 2012; Silva et chromosomes, although the plant phenotype was  
al., 2019). However, small rDNA sites, like those, identical to the normal plants. In this case, the normal  
+
are sometimes not detected as CMA bands (e.g., appearance of the individual is most probably due to  
Vaio et al., 2018). Variation in size and number of the buffer effect of polyploidy, in which a deletion  
heterochromatic bands and rDNA sites depends or a duplication of an entire chromosome of a  
on the number of repetitive sequences per locus, tetraploid genome could not be sufficient to alter  
which may be caused by recombination events with the phenotype (Deng et al., 2018). The occurrence  
unequal exchanges (Lower et al., 2018). However, of aneuploid plants is more common in meiotically  
+
the position of some interstitial CMA bands instable polyploids (Mandáková & Lysak, 2018),  
reported by Felix et al. (2011b) did not coincide with while Z. brachyandra has a regular meiosis (Daviña,  
position of the 35S rDNA sites found in our sample, 2001; Daviña & Honfi, 2018). Monotrisomy in wild  
suggesting that if they correspond to 35S rDNA plants has rarely been reported, but it is probably  
sites, they are not the same reported here.  
underestimated because its detection demands a  
B chromosomes probably arise from regular clear distinction of the chromosomes involved, as  
A chromosomes and can alter their original DNA demonstrated in Tragopogon miscellus (Chester et  
composition by rapidly accumulating or losing al., 2012) and Nothoschordum bonariense (Souza  
several DNA sequences (Marques et al., 2013). In et al., 2019). Trisomy as well as B chromosomes  
Z. brachyandra the only B chromosome observed have also been reported in some other species of  
was a telocentric chromosome similar in size Zephyranthes (see e.g., Felix et al., 2008, 2011a,b).  
and morphology to that reported by Felix et al.  
(
Despite the polymorphisms observed here, Z.  
brachyandra is karyotypically very well defined,  
+
2011a,b), but without the two interstitial DAPI  
bands observed by those authors. Both Bs had a due to its many chromosome marks. The only other  
+
small terminal CMA band, although only one Zephyranthes species where rDNA sites have been  
+
reported here had an extra interstitial CMA band investigated is Z. robusta, a diploid with 2n = 12  
co-localized with a 35S rDNA site. Polymorphisms (10M + 2SM) and similar chromosome sizes. The  
on B chromosomes are more common than in molecular karyotype of Z. robusta is also similar  
the regular chromosomes, probably due to the to that expected for a hypothetical diploid ancestor  
dispensable nature of Bs (Marques et al., 2013; of Z. brachyanda, with two 35S rDNA sites co-  
+
Vanzela et al., 2017).  
localized with CMA bands on submetacentric  
At first sight, the extra submetacentric short arms, ten 5S rDNA sites, some interstitial  
+
chromosome found in a karyotype with the normal and subterminal DAPI bands and a few other  
chromosome number seemed to be a partial deletion heterochromatic blocks detected by C-banding  
of the short arm of a metacentric chromosome. (Barros e Silva & Guerra, 2010; Felix et al.,  
Heteromorphism for large chromosome segments 2011b; A.E. Barros e Silva, unpublished results).  
are rare but have already been clearly documented This similarity points to a possible autopolyploid  
for several plant species, especially those with large origin for Z. brachiandra, in spite of its regular  
chromosomes, as Crocus cancellatus (Brighton, meiotic pairing (Daviña and Honfi, 2018), which  
46  
T. Nascimento et al. - Karyotype variability of Zephyranthes brachyandra  
is usually associated with allopolyploidy. Regular CARVALHO A., M. DELGADO, A. BARÃO, M.  
bivalent formation has also been reported for other  
autopolyploids, as Arabidopsis arenosa (Carvalho  
et al., 2010), and autopolyploidy may be not as  
rare as supposed earlier (Soltis et al., 2007). The  
assumption of an autopolyploid origin for Z.  
brachiandra could also explain the many duplicated  
FRESCATADA, E. RIBEIRO, C. S. PIKAARD,  
W. VIEGAS & N. NEVES. 2010. Chromosome  
and DNA methylation dynamics during meiosis in  
the autotetraploid Arabidopsis arenosa. Sex. Plant.  
Reprod. 23:29-37.  
https://doi.org/10.1007/s00497-009-0115-2  
patterns of chromosome banding and rDNA site CHALUP, L., S. S. SAMOLUK,V. S. NEFFA& G. SEIJO.  
distribution observed here, some of them blurred  
by the intense heteromorphism characteristic of  
heterochromatic bands and rDNA sites (Chalup  
et al., 2015; Silvestri et al., 2020; Ribeiro et  
al., 2021). Five other species of Zephyranthes  
2015. Karyotype characterization and evolution in  
South American species of Lathyrus (Notolathyrus,  
Leguminosae) evidenced by heterochromatin and  
rDNA mapping. J. Plant Res. 128: 893–908.  
https://doi.org/10.1007/s10265-015-0756-1  
analysed by Felix et al. (2011b) revealed a much CHESTER, M., J. P. GALLAGHER, V. V. SYMONDS,  
+
smaller and variable number of CMA bands and  
A. V. C. SILVA, E. V. MAVRODIEV, A. R. LEITGH,  
P. S. SOLTIS & D. E. SOLTIS. 2012. Extensive  
chromosomal variation in a recently formed natural  
allopolyploid species, Tragopogon miscellus  
(Asteraceae). Proc. Natl. Acad. Sci. 109: 1176–1181.  
https://doi.org/10.1073/pnas.1112041109  
+
no DAPI bands, suggesting that a cytomolecular  
investigation of other Zephyranthes species would  
be very helpful to understand the cytotaxonomy and  
chromosomal evolution of this group.  
CUADRADO, A. & N. JOUVE. 2010. Chromosomal  
detection of Simple Sequence Repeats (SSRs) using  
nondenaturing FISH (ND-FISH). Chromosoma 119:  
495–503. https://doi.org/10.1007/s00412-010-0273-x  
authorS Contribution  
THN conducted the FISH experiments, analyzed  
the data, constructed the figures and tables and DAVIÑA, J. R. 2001. Estudios citogenéticos en algunos  
wrote the paper. RSG conducted FISH experiments  
and helped to write the paper. MB collected the  
material, conducted FISH experiments and helped  
géneros argentinos de Amaryllidaceae. Doctoral  
thesis, Universidade Nacional de Córdoba, Córdoba,  
Argentina.  
to write the paper. GS collected the material and DAVIÑA, J. R. & A. I. HONFI. 2018. IAPT chromosome  
helped to write the paper. MG discussed the results,  
provided resources for the FISH experiments,  
designed this research and wrote the paper. All  
data 28 [extended online version]. In: MARHOLD  
K. AND KUČERA J. (Eds.). Taxon. 67: E1–E46.  
https://doi.org/10.12705/676.39  
authors read and approved the final version of the DENG, X., Y. SHA, Z. LV, Y. WU, A. ZHANG, F.  
paper.  
WANG & B. LIU. 2018. The capacity to buffer and  
sustain imbalanced D-subgenome chromosomes  
by the BBAA component of hexaploid wheat is an  
evolved dominant trait. Front. Plant Sci. 9: 1–12.  
https://doi.org/10.3389/fpls.2018.01149  
bibliograPhy  
BARROS E SILVA, A. E. & M. GUERRA. 2010. The  
meaning of DAPI bands observed after C-banding  
FELIX, W. J. P., J. H. A. DUTILH, N. F. M., ANDREA  
A. F. & LEONARDO P. F. 2008. Intrapopulational  
chromosome number variation in Zephyranthes  
sylvatica Baker (Amaryllidaceae: Hippeastreae)  
from Northeast Brazil. Rev. Bras. Bot. 31: 371–75.  
https://doi.org/10.1590/S0100-84042008000200020  
FELIX, W. J. P., L. P. FELIX, N. F. MELO, M. B. M.  
OLIVEIRA, J. H. A. DUTILH & R. CARVALHO.  
2011a. Karyotype variability in species of the  
genus Zephyranthes Herb. (Amaryllidaceae–  
Hippeastreae). Plant Syst. Evol. 294: 263.  
BRADHAM, P. 1983. Evolution in a stable chromosome  
system. In: P.E. BRADHAM & M.D. BENNET  
(
Eds). George Allen & Unwin (Publishers), Kew  
Chromosome Conference II, pp. 251-260. London.  
BRIGHTON, C. A. 1977. Cytological problems in the  
genus Crocus (Iridaceae): II. Crocus Cancellatus  
https://doi.org/10.1007/s00606-011-0467-6  
47  
Bol. Soc. Argent. Bot. 57 (1) 2022  
FELIX, W. J. P., L. P. FELIX, N. F. MELO, J. H. A.  
DUTILH & R. CARVALHO. 2011b. Cytogenetics  
of Amaryllidaceae species: heterochromatin  
evolution in different ploidy levels. Plant Syst.  
Evol. 292: 215–221.  
https://doi.org/10.1007/s00606-011-0418-2  
GAIERO, P., C. MAZZELLA, M. VAIO, A. E. BARROS  
E SILVA, F. F. SANTIÑAQUE, B. LÓPEZ-CARRO,  
G. A. FOLLE & M. GUERRA. 2012. An unusually  
high heterochromatin content and large genome size  
in the palm tree Trithrinax campestris (Arecaceae).  
Aust. J. Bot. 60: 378.  
IBIAPINO, A., M. A. GARCÍA, M. COSTEA, S.  
STEFANOVIĆ & M. GUERRA. 2020. Intense  
proliferation of rDNA sites and heterochromatic  
bands in two distantly related Cuscuta species  
(Convolvulaceae) with very large genomes and  
symmetric karyotypes. Genet. Mol. Biol. 43: 1–9.  
https://doi.org/10.1590/1678-4685-GMB-2019-0068  
JIANG, J. 2019. Fluorescence in situ hybridization in  
plants: recent developments and future applications.  
Chromosome Res. 27: 153–165.  
https://doi.org/10.1007/s10577-019-09607-z  
JUDD, W. S., CAMPBELL C. S., KELLOGG E. A.,  
STEVENS P. F. & DONOGHUE M. J. 2016. Plant  
systematics: a phylogenetic approach. 4th ed.  
Sunderland, Sinauer Associates.  
http://dx.doi.org/10.1071/BT12029  
GARCÍA N., A. W. MEEROW, S. ARROYO-  
LEUENBERGER, R. S. OLIVEIRA, J. H. DUTILH,  
P. S. SOLTIS & W. S. JUDD. 2019. Generic  
classification of Amaryllidaceae tribe Hippeastreae.  
Taxon 68: 481-498.  
KIROV, I., L. KHRUSTALEVA, K. V. LAERE, A.  
SOLOVIEV, S. MEEUS, D. ROMANOV & I.  
FESENKO. 2017. DRAWID: user-friendly java  
software for chromosome measurements and  
idiogram drawing. Comp. Cytogenet. 11: 747–757.  
https://doi.org/10.3897/compcytogen.v11i4.20830  
LEVIN, D. A. 2002. The role of chromosomal change in  
plant evolution. New York, Oxford University Press.  
LOWER, S. S., M. P. MCGURK, A. G. CLARK & D.  
A. BARBASH. 2018. Satellite DNA evolution: old  
ideas, new approaches. Curr. Opin. Genet. Dev. 49:  
70–78. https://doi.org/10.1016/j.gde.2018.03.003  
MANDÁKOVÁ, T. & M. A. LYSAK. 2018. Post-  
polyploid diploidization and diversification through  
dysploid changes. Curr. Opin. Plant Biol. 42: 55–65.  
https://doi.org/10.1016/j.pbi.2018.03.001  
https://doi.org/10.1002/tax.12062  
GRABIELE, M.⁠, H. J. DEBAT⁠, M.A. SCALDAFERRO,  
P. M. AGUILERA, E. A. MOSCONE, J. G.  
SEIJO & D. A. DUCASSE. 2018. Highly GC-  
rich heterochromatin in chili peppers (Capsicum-  
Solanaceae): A cytogenetic and molecular  
characterization. Sci. Hortic. 238: 391–399.  
https://doi.org/10.1016/j.scienta.2018.04.060  
GUERRA, M. S. 1986. Reviewing the chromosome  
nomenclature of Levan et al. Braz. J. Genet. 9: 741-  
7
43.  
GUERRA, M. 2000. Patterns of heterochromatin  
distribution in plant chromosomes. Genet. Mol. Biol.  
2
3: 1029–1041.  
MARQUES, A., A. M. BANAEI-MOGHADDAM,  
S. KLEMME, F. R. BLATTNER, K. NIWA, M.  
GUERRA & A. HOUBEN. 2013. B chromosomes  
of rye are highly conserved and accompanied the  
development of early agriculture. Ann. Bot. 112:  
527–534. https://doi.org/10.1093/aob/mct121  
https://doi.org/10.1590/S1415-47572000000400049  
GUERRA, M. 2009. Chromosomal variability and  
the origin of Citrus species. In: Mahoney C. L. &  
Springer D. A. (Eds) Genetic diversity, pp. 51-68.,  
Nova Science Publishers New York..  
GUERRA, M. 2012. Cytotaxonomy: the end of childhood.  
Plant Biosyst. 146: 703–710.  
MORAES, A. P., R. R. LEMOS, A. C. BRASILEIRO-  
VIDAL, W. S. S FILHO & M. GUERRA. 2007.  
Chromosomal markers distinguish hybrids and non-  
hybrid accessions of mandarin. Cytogenet. Genome  
Res. 119: 275–281.  
https://doi.org/10.1080/11263504.2012.717973  
GUERRA, M., T. RIBEIRO & L. P. FELIX. 2019.  
Monocentric chromosomes in Juncus (Juncaceae)  
and implications for the chromosome evolution of  
the family. Bot. J. Linn. Soc. 191: 475-483.  
https://doi.org/10.1159/000112074  
NARANJO, C. A. 1974. Karyotypes of four argentine  
species of Habranthus and Zephyranthes  
(Amaryllidaceae). Phyton. 32: 61–71.  
PEDROSA, A., N. SANDAL, J. STOUGAARD,  
D. SCHWEIZER & A. BACHMAIR. 2002.  
Chromosomal map of the model legume Lotus  
japonicus. Genetics 161:1661-1672.  
https://doi.org/10.1093/botlinnean/boz065  
HUANG, W., Y. DU, X. ZHAO & W. JIN. 2016. B  
chromosome contains active genes and impacts the  
transcription of A chromosomes in maize (Zea mays  
L.). BMC Plant Biol. 16: 88.  
https://doi.org/10.1186/s12870-016-0775-7  
48  
T. Nascimento et al. - Karyotype variability of Zephyranthes brachyandra  
PEDROSA-HARAND, A., C. C. S. ALMEIDA, M.  
MOSIOLEK, M. W. BLAIR, D. SCHWEIZER  
M. GUERRA. 2006. Extensive ribosomal  
DNA amplification during Andean common bean  
Phaseolus vulgaris L.) evolution. Theor. Appl.  
SILVA, S. C., S. MENDES, T. RÉGIS, O. S. PASSOS,  
W. S. S. FILHO & A. PEDROSA-HARAND. 2019.  
Cytogenetic map of pummelo and chromosome  
evolution of true Citrus species and the hybrid sweet  
orange. J. Agric. Sci. 11: 148.  
&
(
Genet. 112: 924–933.  
https://doi.org/10.5539/jas.v11n14p148  
https://doi.org/10.1007/s00122-005-0196-8  
SILVESTRI, M .C., A. M. ORTIZ, G. A. R. DOBLADEZ  
& G. I. LAVIA. 2020. Chromosome diversity in  
species of the genus Arachis, revealed by FISH and  
CMA/DAPI banding, and inferences about their  
karyotype differentiation. An. Acad. Bras. Cienc.  
92: 1–29.  
https://doi.org/10.1590/0001-3765202020191364  
SINGH, R. J. 2003. Plant cytogenetics. 3rd ed. Boca  
Raton, Florida, USA .  
SOLTIS, D. E., P. S. SOLTIS, D. W. SCHEMSKE, J. F.  
HANCOCK, J. N. THOMPSON, B. C. HUSBAND  
& W. S. JUDD. 2007. Autopolyploidy in angiosperms:  
have we grossly underestimated the number of species?  
Taxon. 56: 13-30. https://doi.org/10.2307/25065732.  
SOUZA, G., A. MARQUES, T. RIBEIRO, L. G.  
DANTAS, P. ESPERANZA, M GUERRA & O.  
CROSA. 2019. Allopolyploidy and extensive  
rDNA site variation underlie rapid karyotype  
evolution in Nothoscordum section Nothoscordum  
(Amaryllidaceae). Bot. J. Linn. Soc. 190: 215–228.  
https://doi.org/10.1093/botlinnean/boz008  
RIBEIRO, T., E. VASCONCELOS, K. G. B. SANTOS,  
M. VAIO, A.C. BRASILEIRO-VIDAL & A.  
PEDROSA-HARAND. 2020. Diversity of repetitive  
sequences within compact genomes of Phaseolus L.  
beans and allied genera Cajanus L. and Vigna Savi.  
Chromosome Res. 28: 139–153.  
https://doi.org/10.1007/s10577-019-09618-w  
RIBEIRO, T., J. NASCIMENTO, A. SANTOS, L. P.  
FÉLIX, & M. GUERRA. 2021. Origin and evolution  
of highly polymorphic rDNA sites in Alstroemeria  
longistaminea (Alstroemeriaceae) and selated  
species. Genome 64: 833–45.  
https://doi.org/10.1139/gen-2020-0159  
ROA, F. & M. GUERRA. 2015. Non-random distribution  
of 5S rDNA sites and its association with 45S rDNA  
in plant chromosomes. Cytogenet. Genome Res. 146:  
2
43–249. https://doi.org/10.1159/000440930  
ROBLEDO, G. & G. SEIJO. 2010. Species relationships  
among the wild non-B genome of Arachis species  
(section Arachis) based on FISH mapping of rDNA  
loci and heterochromatin detection: a new proposal for  
genome arrangement. Theor. Appl. Genet. 121: 1033–  
STEBBINS, G. L. 1971. Chromosomal evolution in  
higher plants. Edward Arnold Ltd, London.  
1
046. https://doi.org/10.1007/s00122-010-1369-7  
VAIO, M., J. NASCIMENTO, S. MENDES, A.  
IBIAPINO, L. P. FÉLIX, A. GARDNER, A.  
GARDNER, E. EMSHWILLER, P. FIASCHI,  
M. GUERRA. 2018. Multiple karyotype changes  
distinguish two closely related species of  
Oxalis (O. psoraleoides and O. rhombeo-ovata)  
and suggest an artificial grouping of section  
Polymorphae (Oxalidaceae). Bot. J. Linn. Soc.  
188: 269–280.  
https://doi.org/10.1093/botlinnean/boy054  
VANZELA, A. L. L., A. A. PAULA, C. C. QUINTAS,  
T. FERNANDES, J. N. C. BALDISSERA & T.  
B. SOUZA. 2017. Cestrum strigilatum (Ruiz &  
Pavón, 1799) B chromosome shares repetitive DNA  
sequences with A chromosomes of different Cestrum  
(Linnaeus, 1753) species. Comp. Cytogenet. 11:  
511–524.  
ROSATO, M., I. ÁLVAREZ, G. N. FELINER & J. A.  
ROSSELLÓ. 2017. High and uneven levels of 45S  
rDNA site-number variation across wild populations  
of a diploid plant genus (Anacyclus, Asteraceae).  
PLoS One 12: e0187131.  
https://doi.org/10.1371/journal.pone.0187131  
ROSATO, M., I. ÁLVAREZ, G. N. FELINER & J.  
A. ROSSELLÓ. 2018. Inter- and intraspecific  
hypervariability in interstitial telomeric-like repeats  
(TTTAGGG)n in Anacyclus (Asteraceae). Ann. Bot.  
1
22: 387–395. https://doi.org/10.1093/aob/mcy079  
SAMOLUK, S. S., L. M. I. CHALUP, C. CHAVARRO,  
G. ROBLEDO, D. J. BERTIOLI, S. A. JACKSON  
&
J. G. SEIJO. 2019. Heterochromatin evolution in  
Arachis investigated through genome-wide analysis  
of repetitive DNA. Planta 49: 1405-1415.  
https://doi.org/10.1007/s00425-019-03096-4  
https://doi.org/10.3897/CompCytogen.v11i3.13418  
49