morPho-anatomical featureS of the leaveS and StemS  
of bacchariS notoSergila (aSteraceae) and their  
relationShiP with the environment and chemical control  
caracteríSticaS morfo-anatómicaS de laS hojaS y talloS de bacchariS  
notoSergila (aSteraceae) y Su relación con el ambiente y control  
químico  
Alejandra V. Carbone , Federico E. Fernández , Marcelo P. Hernández  
andAna M. Arambarri  
Santiago M. Martínez Alonso  
Summary  
Background and aims: Baccharis notosergila is an aggressive weed inhabiting the  
Salado river basin, Buenos Aires province, Argentina. The aims were: to analyze  
the morpho-anatomy and histochemistry of aerial vegetative organs in order to  
understand the adaptation strategies that ensure its survival, as well as to expand  
knowledge on traits determining resistance to the control methods applied.  
M&M: The material collected was prepared and examined with conventional techniques  
of microscopy. Histochemical tests were performed.  
Results: The major features found were small and deciduous leaves; uniseriate  
epidermis with massive and striate cuticle; stomata at level or slightly above the other  
epidermal cells and glandular trichomes secreting oily substances; stomata on both  
surfaces and isobilateral mesophyll. Starch, phenolic and lipophilic substances, and  
resins were identified in leaves and stems, and calcium oxalate crystals in leaves,  
stems and capitate trichomes.  
Conclusions: The aerial vegetative organs features of B. notosergila explain its  
tolerance to the unfavorable conditions of the Salado river basin area, as well as  
its competitive ability over others species of the natural prairie. The reduced and  
deciduous leaves, the epidermal traits, and chemical substances found constitute a  
physical and chemical barrier reducing dehydration as well as the penetration of the  
herbicides applied for its control. Botanical knowledge of B. notosergila is the basis to  
develop new and appropiate management methods for this species.  
1
. Prof. Adjunta de Morfología  
Vegetal, Facultad de Ciencias  
Agrarias y Forestales (FCAyF),  
Universidad Nacional de La Plata  
(
UNLP), La Plata, Argentina.  
Instituto de Fisiología Vegetal,  
INFIVE-CONICET-UNLP)  
. Forrajicultura y Praticultura,  
FCAyF, UNLP  
. Laboratorio de Morfología  
Comparada de Espermatófitas  
LAMCE). Sistemática Vegetal,  
(
2
3
(
FCAyF, UNLP. Botánica Sistemática  
II, DivisiónPlantas Vasculares,  
Facultad de Ciencias Naturales y  
Museo (FCNyM), UNLP  
4
5
. Técnico (INFIVE-CONICET-UNLP)  
. Prof. jubilada de Morfología  
Vegetal, Investigadora FCAyF, UNLP  
1
3
-5. FCAyF, UNLP, 60 y 119, C. C.  
1 (1900) La Plata, Buenos Aires,  
Key wordS  
Argentina.  
Aboveground system, environmental adaptation, stress tolerance.  
*anaramba@gmail.com  
reSumen  
Citar este artículo  
Introducción y objetivos: Baccharis notosergila es una maleza agresiva que habita  
la Depresión del Salado, provincia Buenos Aires, Argentina. Los objetivos fueron:  
analizar la morfo-anatomía e histoquímica de los órganos vegetativos aéreos para  
entender las estrategias de adaptación que aseguran su sobrevivencia, así como  
profundizar el conocimiento sobre los caracteres que determinan la resistencia a los  
métodos de control.  
CARBONE, A. V., F. E. FERNÁNDEZ,  
M. P. HERNÁNDEZ, S. M. MARTÍNEZ  
ALONSO &A. M. ARAMBARRI. 2021.  
Morpho-anatomical features of  
the leaves and stems of Baccharis  
notosergila (Asteraceae) and their  
relationship with the environment  
and chemical control. Bol. Soc.  
Argent. Bot. 56: 423-444.  
M&M: El material recolectado fue preparado y analizado con técnicas convencionales  
para microscopía. Se realizaron pruebas histoquímicas.  
Resultados: Los principales caracteres encontrados fueron hojas pequeñas y  
caedizas, anfistomáticas con mesofilo isobilateral; epidermis uniseriada, cutícula  
masiva y estriada, estomas a nivel o ligeramente elevados y tricomas glandulares  
que secretan sustancias oleosas. Se identificaron sustancias lipofílicas y fenólicas,  
almidón y resinas en hojas y tallos y se hallaron cristales de oxalato de calcio en  
hojas, tallos y tricomas capitados.  
Conclusiones: Las características de los órganos vegetativos aéreos de B. notosergila  
explican su tolerancia a las condiciones desfavorables del área de la Depresión del  
Salado, así como su habilidad competitiva y predominancia sobre otras especies de  
la pradera natural. Las hojas pequeñas y deciduas, sus características epidérmicas  
y sustancias químicas encontradas constituyen una barrera física y química para  
la deshidratación y penetración de los herbicidas aplicados para su control. El  
conocimiento botánico de B. notosergila es la base para el desarrollo de nuevos y  
apropiados métodos para el manejo de esta especie.  
Recibido: 20 Jun 2021  
Aceptado: 3 Set 2021  
Publicado en línea: 4 Nov 2021  
Publicado impreso: 20 Dic 2021  
Editora: Ana María Gonzalez  
PalabraS clave  
Adaptación ambiental, sistema vegetativo aéreo, tolerancia al estrés.  
ISSN versión impresa 0373-580X  
ISSN versión on-line 1851-2372  
423  
Bol. Soc. Argent. Bot. 56 (4) 2021  
introduction  
just been said, there is not a comprehensive study of  
aboveground system of B. notosergila. Therefore,  
The genus Baccharis L. is the richest in species the aims of this study were to investigate leaves  
within the Astereae tribe, comprises from 354 and stems morphology, structure and histochemical  
species (Müller, 2013) to 440 (Heiden et al., 2019) features to ascertain whether a correlation exists  
of exclusively American distribution. Zuloaga et al. between the leaves and stems traits and survival  
(2019) reported 210 species for southern cone of strategies, and to obtain some insight into the  
South America (Argentina, southern Brazil, Chile, biological problems concerning the resistance to  
Paraguay, and Uruguay). In Argentina inhabit current control methods.  
9
9 species (Giuliano & Plos, 2014). The present  
contribution is about Baccharis notosergila Griseb.,  
which is a woody shrub that inhabit in the Salado materialS and methodS  
river basin situated in Buenos Aires province  
(Argentina). This region alternate cyclically periods Plant materials  
of drought and floods, the land surface is nearly Plants of B. notosergila having fully developed  
horizontal with predominance of saline-alkaline leaves were collected during the spring of 2018-  
soils and a deficient drainage. This area is occupied 2020 in the “El Amanecer” establishment-  
by natural pastures and principally dedicated to farm situated at 57º37’ W, 35º15’S in Vieytes,  
livestock farming (Rodriguez & Jacobo, 2012). Magdalena party (Pdo.), Buenos Aires province  
Baccharis notosergila not only reduce with its (Prov.), Argentina. The botanical material was  
cover the area accessible to grazing, but produce identified and the vouchers were deposited in the  
strong competition for water, nutrients and light herbarium of Facultad de Agronomía, Universidad  
with the species of value of the natural grassland, Nacional de La Plata, and registered as: 17-  
generating a process of degradation that normally XII-2018, F. Fernández & A. Carbone 1, 2, 3, 4  
result in low productivity (Sione et al., 2006). (LPAG); F. Fernández & A. Carbone 5, 15-X-2019,  
Baccharis notosergila in the Salado river basin has (LPAG); F. Fernández & A. Carbone 6 (specimen  
shown to be resistant to mechanical and chemical from half hill), 7 (specimen from alkaline-saline  
control (Urdampilleta, 2019; Carbone et al., 2019). lowland), 8 (specimen from sweet lowland), 11-  
For the reasons mentioned above, this species XI-2020 (LPAG). In addition, specimens having  
is included in the project on problematic weeds, leaves from Instituto de Botánica Darwinion were  
developed in the Facultad de Ciencias Agrarias consulted. ARGENTINA. Prov. Buenos Aires: Pdo.  
y Forestales, Universidad Nacional de La Plata Berazategui, Hudson, 16-IV-1927, Burkart 1302  
(Argentina). In a previous paper, Carbone et al. (SI) (image 15). Prov. Entre Ríos: Dpto. Concordia,  
(2019) analyzed the underground system in which 31-I-1927, Burkart 1122 (SI), Det. Cabrera (image  
was found a xylopodium with buds constituting 14). Dpto. Gualeguaychú, 10-IV-1960, Burkart  
a bud bank, either was detected in the radical 21988 & Gamerro (SI).  
system the accumulation of inulin as the principal  
reserve. According to Hayashi & Appezzato-da- Optical microscopy  
Glória (2007) and Appezzatto-da-Glória & Cury  
For anatomy study, mature leaves and stem  
(2011), the presence of these two traits allow for fragments of different specimens were fixed in FAA  
regeneration and survival through unfavourable (a solution of formaldehyde, glacial acetic acid, and  
environmental conditions. Carbone et al. (2019), 70% ethyl alcohol, Johansen, 1940), then stored in  
attributed to subterranean system’s traits the 70% ethanol. To analyze epidermis in surface view,  
capacity to sprout and develop new organs in the the leaves were diaphanized using the method of  
spring after mechanical and chemical control, and Franklin (1945) modified, for that, the leaves were  
the accumulation of inulin reinforces the resprout boiled in ethyl alcohol 96º for 20 min, allowed to  
and persistence of this shrub. Now, two questions cool were washed and bleached in 50% sodium  
arise: what is the role of aerial vegetative organs in hypochlorite (NaClO) for 2 h, washed twice and  
the survival of this species?, and what is its reaction submerged in a solution of hydrogen peroxide +  
to the chemical control treatment?. Despite what has glacial acetic acid (1: 1 v/v) for 48 h, washed twice  
424  
A. V. Carbone et al. - Baccharis notosergila: aerial vegetative organs and environment  
in distilled water, bleached again in 50% NaClO. & Chalk (1988) was followed in this work. The  
At the completion of the bleaching process, five stomata types were recognized using the manual  
washes in distilled water were carried out to remove of Ash et al. (1999). Trichomes were described  
the NaClO, and samples were then transferred into considering the literary works (Ramayya, 1962;  
a solution of chloral hydrate (5%) for 24-48 h. To Freire et al., 2007; Tosoratto et al., 2016, and Budel  
complete the process, some leaves were washed et al., 2018).  
and stained with safranin or Oil red “O”, on others  
was applied the peeling method to obtain the Scanning electron microscopy (SEM)  
epidermis which were also stained. To analyze  
It was performed using portions of stem and  
the structures, freehand cross-sections of stems, leaf blade. They were taken from fixed material,  
petiole and at leaf blade middle part of leaves were dehydrated in ethyl alcohol (100º) for 24 h. Then  
cut; the selected sections were bleached in 50% the samples were affixed on stubs by double-sided  
NaClO, washed thrice with distilled water, then adhesive tape and were submitted to metallization  
a successive double staining was performed with with a fine and thin gold layer. Afterwards they  
Alcian blue and safranin (Luque et al., 1996), on were examined with a Philips 505 SEM, and  
others a metachromatic staining was performed micrographs were prepared. Center for Research  
using Toluidine blue “O” (0.05%) (O’Brien et al., and Development in Applied Sciences “Dr. Jorge  
1
964) or Cresyl brilliant blue (0.05%) (Pérez & J. Ronco” (CINDECA), National Council for  
Tomasi, 2002), and also a monochromatic staining Scientific and Technical Research (CONICET),  
was made using alcoholic solution of safranin National University of La Plata (UNLP).  
(
80%) (D’Ambrogio, 1986). The sections, clarified  
leaves, and epidermis were mounted in gelatin-  
glycerin on glass slides and sealed with nail polish. reSultS  
The histochemical analysis was performed on  
freehand sections of leaf and stem samples. To Leaf morphology  
test lipophilic substances an alcoholic solution of  
Leaves are deciduous and have an alternate  
Oil red “O” was used (Gurr, 1971), the red color arrangement. They are variable in shape and size.  
indicated positive test. Detection of phenolic They are elliptic or elliptic-obovate, linear-elliptic  
compounds (tannins) was performed using ferric and linear. The largest elliptic or elliptic-obovate  
chloride (10%) and sodium carbonate (2%) frequently are situated in the basal part of the plant  
(
Zarlavsky, 2014), a green-blue color was a or stems, the linear-elliptic towards the middle part,  
positive test. Starch was identified with Iodine- and the linear leaves at the top of the stem or the  
Potassium-Iodide (IKI) (Ruzin, 1999) a black-blue upper branches of the plant. All leaves have acute-  
color indicate positive test. Resins were detected mucronate apex, decurrent base with petiole, and  
using a saturated solution of copper sulphate (Cosa reticulate vascularization. The largest leaves have  
et al., 2014) a color emerald green indicate positive the serrate margins with 1-4(-10) teeth on each  
test. Additionally, toluidine blue “O” was used to margin; 3.7-7 cm long and 0.5-1 cm wide. The  
contrast polyphenols (Tapia-Torres et al., 2014), a median leaves have a few teeth or entire margins,  
color turquoise green was a positive test.  
2.3-4.2 cm in length and 0.3-0.5 cm in width, and  
The leaf morphology and phyllotaxy type the smallest linear leaves have entire margins,  
were evaluated through a visual inspection. To measuring 1-2.5 cm long x 0.1-0.3 cm wide (Fig. 1).  
see details a Bausch & Lomb stereomicroscope  
was used. Photographs were taken with a digital Epidermal tissue in surface view by SEM  
camera, resolution 12 MP. Slides were analyzed  
The leaves epidermis exhibit striate and massive  
with a Nikon E200 LED optical microscope cuticle and frequently waxes overlap the guard  
and using micrometrics SE Premium software. cells, partly obscuring them (Fig. 2A). Stem  
The measurements of outer periclinal epidermal topography view by SEM reveals longitudinal ribs  
cell walls and cuticle thickness in micrometers alternating with grooves, all covered by striate  
(
(
µm) were obtained by using ImageJ software cuticle, and the stomata located in the depth of the  
González, 2018). Terminology used by Metcalfe grooves (Figs. 2 B; 8B).  
425  
Bol. Soc. Argent. Bot. 56 (4) 2021  
and less frequently anisocytic. Each stoma shows  
in surface view the outer stomatal ledge, a polar  
thickening, and ellipsoidal stomatal aperture (pore)  
(
Fig. 3A-E). The trichomes are found on both  
leaf blade surfaces, margins, and the petiole. The  
trichomes types are: (i) Biseriate capitate glandular  
with 2 basal cells and 6-8 cells which contains druses  
(Fig. 4A); (ii) Bulbiferous flagelliform glandular  
(bfg) type II, uniseriate and curved body with 3-7  
(frequently 4) rounded cells, the terminal swollen  
spherical, and a translucent flagellum-like apical cell  
Fig. 4B), less frequently are found bfg type I with  
straight body of 5-7(-8) cells and flagellum cell (Fig.  
D); (iii) Uniseriate capitate glandular trichome  
(
4
composed by one basal cell, 2-6(-8) stalk cells and  
a multicellular head (Fig. 4C). All the trichomes  
have basal cells cutinized, given positive reaction  
for lipophilic compounds, and are responsible for  
the secretion of oil droplets deposited over the leaf  
blade surface (Fig. 4D-F). The biseriate glandular  
trichomes can be seen forming a tuft themselves  
(Fig. 4A), but frequently appear clustered with bfg  
trichomes (Fig. 4B, D-G) in tufts and localized  
in a small epidermal depression. Either of the bfg  
trichomes can occur singly. It was observed that  
frequently two or three tufts appear connected  
by more elongated epidermal cells with cuticular  
thickened over the anticlinal cell walls (Fig. 4G).  
Fig. 1. Leaf morphology. It shows the variability of B.  
notosergila leaf size and shapes. The large elliptic The uniseriate capitate trichomes are found in lower  
and elliptic-obovate leaves (3.7-7 cm length); with frequency and solitaries (Fig. 4C).  
toothed margins, and it may be seen the reticulate  
venation. The median elliptic and linear-elliptic  
leaves (2.3-4.2 cm length), with toothed or entire  
margins. The small linear leaves (1-2.5 cm length),  
with entire margins. Scale: 2 cm.  
The caulinar axis exhibits epidermal cells  
tangentially elongated on the ribs with slightly thick  
anticlinal cell walls, and the surface covered by  
waxes; in the grooves there are numerous actinocytic  
stomata and trichome tufts (Figs. 3F; 4B).  
Leaf structure  
The petiole cross section next to attach the stem  
Epidermal tissue in surface view by light microscope (basal part) shows a concave adaxial side forming  
The epidermal cells on both leaf blade faces two lobes (Fig. 5A). This cross-section exhibits  
are polygonal with anticlinal cell walls straight to quadrangular or rectangular epidermal cells,  
slightly wavy, and the cuticle is striated especially covered by cuticle. The angular collenchyma occurs  
around the trichomes and stomata. Generally, the in each lobe and some layers are found at middle  
anticlinal cell walls are thin. Stomata are uniformly vein level. The parenchyma is composed by rounded  
distributed over whole petiole and leaf blade cells except the chlorenchyma which is formed by  
surfaces and on the margins. They are randomly palisade parenchyma on the abaxial side, except at  
distributed, however, the stomata longitudinal axis is middle vein level. There are three main vascular  
oriented following the longitudinal axis of the organ bundles and some traces. The cross section in the  
(Fig. 2A). Stomata are predominantly actinocytic, middle part of the petiole length (Fig. 5B), exhibits  
anomocytic, anomotetracytic, cyclocytic types a reduction of adaxial concavity; the collenchyma  
426  
A. V. Carbone et al. - Baccharis notosergila: aerial vegetative organs and environment  
Fig. 2. Leaf and stem surface view by SEM. A: Leaf epidermis with massive cuticle and waxes over the  
stomata. B: Stem showing ribs and grooves covered by striate cuticle. Scales= A: 50 µm; B: 5 µm.  
appears as one continuous subepidermal layer, (Fig. 6D). In the center, there are 3-4 layers of  
increasing the layers at midvein level, and the colorless dense spongy parenchyma (Fig. 6C). The  
chlorenchyma begin to extend to adaxial side. The vascular system is composed by collateral vascular  
petiole cross section at the base of leaf blade (distal bundles each surrounded by a parenchyma sheath,  
part, Fig. 5C), shows deltoid outline, however and cross the spongy parenchyma (Fig. 6C). The  
at midvein level there are adaxial and abaxial xylem always is to the upper side. The middle  
prominences, and the palisade chlorenchyma is vein exhibits in the center one collateral vascular  
present on both sides except at middle vein level; bundle with fiber cap adjoining the xylem and  
the wings of the leaf blade begin to appear. Along one to three secretory ducts next to phloem, all  
the entire length of the petiole there are three main surrounded by a parenchyma sheath adding several  
vascular bundles. Each vascular bundle has fiber layers of thin-walled parenchyma cells that connect  
caps on the xylem and phloem sides, and one to with two or three layers of angular collenchyma  
three secretory ducts next to phloem fiber cap, all below the epidermis, on both sides (Fig. 6E). The  
surrounded by a parenchyma sheath (Fig. 5D).  
schizogenous secretory ducts exhibits a single  
The leaf blade cross section exhibits the layered epithelium composed of 4-6 cells (Fig. 6D-  
uniseriate epidermis formed by quadrangular E). In all materials analyzed the linear-elliptic and  
or rectangular epidermal cells with periclinal linear leaves have fiber cap only on the xylem side,  
cell walls thin or conspicuously thicker, always and they have ample ducts, while in the largest  
covered by a thin and striate cuticle (Fig. 6A, B). elliptic or elliptic-obovate leaves the vascular  
The stomata are localized above or at level with the bundles have fiber caps on xylem and phloem  
surrounding epidermal cells, and the guard cells sides (similar occurs in the petiole), and the duct  
show conspicuous outer and inner stomatal ledges exhibit a reduced size (Fig. 6F). The teeth found on  
(
Fig 6A, B). Internally the isobilateral mesophyll apex and margins of the leaves present hydathode  
shows 2-3 layers of palisade parenchyma on structure, each tooth shows three vascular bundles  
both faces interrupted at middle vein level, but which converge approaching the tooth end, the  
continuous in the margins (Fig. 6C), sometimes epithema is poorly developed and there is an open  
separated from the epidermis by collenchyma stoma at the tooth apex.  
427  
Bol. Soc. Argent. Bot. 56 (4) 2021  
Fig. 3. Leaf and stem surface view by light microscope. A-E: Leaf. A: Anomocytic stoma, it exhibits the outer  
stomata ledge and polar thickening; cuticular striaes are notable on subsidiary cells. B: Two actinocytic  
stomata. C: Anisocytic. D: Anomocytic stoma on the left and anomotetracytic on the right. E: Ciclocytic. F:  
Epidermis of stem in surface view showing rectangular epidermal cells with anticlinal cell walls straight and  
thickened; epicuticular waxes visible as points on the surface, and an actinocytic stoma. Abbreviations= esa:  
ellipsoidal stomata aperture; ew: epicuticular waxes; pt: polar thickening; osl: outer stomata ledge. Staining=  
A, B, E, F: oil red “O”; C: safranin; D: toluidine blue “O”. Scales= A-F: 100 µm.  
428  
A. V. Carbone et al. - Baccharis notosergila: aerial vegetative organs and environment  
Fig. 4. Trichome features. A: A tuft with two biseriate capitates glandular trichomes showing druses in cells.  
B: A tuft showing three biseriate capitate trichomes clustered with three bulbiferous flagelliform glandular  
(bfg) type II (arrows). C: Uniseriate capitate trichome, solitary, rarely was seen in large leaves. D: A tuft  
showing biseriate capitate trichomes clustered with bfg type II, and one bfg type I (straight) with numerous  
oil droplets inner the trichome cells (arrows). E: A tuft showing the secretion of oil droplets and deposited  
on the epidermal cells surface. F: A tuft exhibiting oil droplets in the flagellum cell. G: Two tufts connected  
by elongated epidermal cells with cuticular thickened on the anticlinal epidermal cell walls. Abbreviations=  
bfgI: bulbiferous flagelliform glandular straight (type I); bfgII: bfg curved (type II); cu: cuticle; dr: druses;  
fc: flagellum cell; hd: head; od; oil droplets; st: stalk cells; tf: tuft. Staining= A-E: safranin; F, G: oil red “O”.  
Scales: A-G= 100 µm.  
429  
Bol. Soc. Argent. Bot. 56 (4) 2021  
Fig. 5. Petiole cross section (CS). A: The CS near the insertion point on the stem is bilobed with  
chlorenchyma on abaxial side except at middle vein; there are three main vascular bundles. B: The CS in  
middle of the petiole length shows a reduction of lobes. C: The CS at base of the leaf-blade has a deltoid  
outline beginning to develop the wings of the leaf-blade with chlorenchyma on both faces, except at middle  
vein. D: detail of one vascular bundle showing caps of fibers on the xylem and phloem sides, and on the  
phloem side one duct; all surrounded by the parenchyma sheath. Abbreviations= abf: abaxial face; adf:  
adaxial face; ch: chlorenchyma; fb: fibers; lb: lobe; mv: middle vein; ph, phloem; ps: parenchyma sheath; re:  
resins; xy, xylem. Scales= A-C: 300 µm; D: 100 µm.  
The histochemical tests showed that some Comparing leaves structures collected from plants  
epidermal cells are filled with tanniniferous inhabiting on half hill, alkaline-saline lowland and  
substances, the guard cells of stomata also contain sweet lowland in the studied area  
tannins and starch, and these compounds are  
The leaves from half hill exhibit in surface view,  
abundant in the mesophyll (Fig. 7A, B). In the thickened anticlinal epidermal cell walls, and striated  
mesophyll, especially in the palisade parenchyma cuticle; on the teeth the epidermal cells shows thicker  
cells there are many chloroplasts, oil bodies (Fig. cell walls. In cross section both epidermis, adaxial  
6
B), and small prismatic crystals (Fig. 7C). In and abaxial, show conspicuous cellulosic thicker  
the epithelial cells of ducts were identified oil on the cell walls; in the periclinal epidermal cell  
droplets of volatile oils (Fig. 6E) and in the cavity walls the thickness ranged between 5.6-20.6 µm  
were obtained positive reactions for resins and with a mean value of 14.2 µm (Fig. 6B). The leaves  
polyphenols (Fig. 7D).  
from alkaline-saline soils and from sweet lowland  
430  
A. V. Carbone et al. - Baccharis notosergila: aerial vegetative organs and environment  
Fig. 6. Leaf blade cross section (CS). A: epidermal cells with thin cell walls and thin cuticle, the stomata  
slightly above the other epidermal cells, and the stoma guard cells with the cuticle forming conspicuous  
stomatal ledges. B: epidermal cells with thick periclinal cell walls, thin and striate cuticle, and stomata guard  
cells at level. Also may be seen the oil bodies in the mesophyll. C: Leaf-blade CS showing the prominences  
at middle vein level, the uniseriate epidermis, stomata and trichomes on sides, isobilateral mesophyll  
and vascular bundles (vb) across the spongy parenchyma. D: a detail of the obtuse margins showing the  
palisade parenchyma continuous, separated from epidermis by some collenchyma cells; and marginal  
vascular bundles, one with an ample duct. E: middle vein CS of a linear-elliptic leaf showing the collateral vb  
with fibers on the xylem side and two ample ducts on the phloem side containing volatile oils in the epithelial  
cells, all surrounded by a parenchyma sheath and its extension towards the angular collenchyma cells.  
F: middle vein CS of an large elliptic-obovate leaf showing the collateral vb with fibers on both sides and  
one reduced duct on the phloem side, all surrounded by a parenchyma sheath and its extension to under  
epidermal collenchyma tissue. Abbreviations= co: collenchyma cells; dc: duct; ec: epithelial cells; fb: fibers;  
gc: guard cells; isl: inner stomatal ledge; ob: oil bodies; osl: outer stomatal ledge; pcw: periclinal cell walls;  
ph: phloem; pp: palisade parenchyma; ps: parenchyma sheath; sp: spongy parenchyma; st: stomata; tsc:  
thin and striate cuticle; vb: vascular bundle; xy: xylem. Scales: A, B, D-F: 100 µm; C: 500 µm.  
431  
Bol. Soc. Argent. Bot. 56 (4) 2021  
Fig. 7. Leaf histochemical tests and crystals. A: Leaf blade cross-section (CS) showing presence of tannins  
in epidermal cells, guard cells and mesophyll cells (test FeCl3). B: leaf blade CS showing starch grains in  
mesophyll cells (test IKI). C: Leaf blade CS showing thin and striate cuticle (test oil red “O”); small crystals  
in parenchyma cells (arrows). D: Vascular bundle showing two secretory ducts containing polyphenols  
and resins (tests toluidina blue “O” and copper sulphate have been made). Abbreviations= cr: crystals; ep:  
epidermis; gc: guard cells; me: mesophyll; ph: phloem; po: polyphenols; re: resins; sc: striate cuticle; st:  
starch grains; ta: tannins; xy: xylem. Scales= A-D: 100 µm.  
show in surface view, thin anticlinal epidermal cell cells (Fig. 6A) while in the leaves from half hill they  
walls, and slightly striated cuticle. In cross section, appeared localized at level (Fig. 6B). The leaves  
the periclinal epidermal cell walls thickness ranged from half hill shows the palisade parenchyma with  
between 0.9-3.6 µm with a mean value of 2.3 µm abundant oil bodies (Fig. 6B), compared to leaves  
and 1.7 µm, respectively (Fig. 6A). The cuticle in from alkaline-saline and sweet lowland.  
all leaves is thin (0.4-2.7 µm) with a mean value of  
1
.2-1.6 µm (Fig. 6A, B). The stomata in the leaves Stem structure  
from alkaline-saline and sweet lowland are localized A young stem of 1-2 mm diameter, in cross-  
somewhat elevated above to the other epidermal section, reveals a wavy outline with eight ribs  
432  
A. V. Carbone et al. - Baccharis notosergila: aerial vegetative organs and environment  
Fig. 8. Stem outline (1-2 mm diam.) and tissues in cross section. A: stem outline showing eight lobes or  
ribs. B: Stem tissues: ch, chlorenchyma; co, collenchyma; en, endodermis; ep, epidermis; fb, fiber clusters;  
ft, foliar trace; ph, secondary phloem; phf, secondary phloem fibers; pt: pith; dc, duct; st, stomata; xy,  
secondary xylem. Scales= A: 1mm; B: 400 µm.  
and alternating grooves (Fig. 8A). The epidermis the cortex, a few vascular bundles corresponding  
is unilayered and consists of quadrangular or to foliar traces are present. They each contain  
rectangular cells. The external periclinal walls of xylem internally and phloem externally with a cap  
the cells are thick and impregnated with lipids and of phloem fibers and a secretory duct adjacent to  
are covered by a cuticle of 1.2-3 µm thick. Stomata the fibers. The vascular bundle is surrounded by  
are localized in the grooves and are elevated a parenchyma sheath with cell walls impregnated  
above the adjacent epidermal cells (Fig. 8B). with lipophilic substances. The endodermis is  
In the outer cortex, two to six layers of angular formed by rectangular cells with thin cell walls  
collenchyma are present beneath the ribs. Between impregnated with suberin, obscuring the Casparian  
the collenchyma, three to four layers of palisade strips. In the vascular cylinder, fiber clusters are  
chlorenchyma occur in the grooves. The inner found adjoining the phloem, and also fibers are in  
cortex comprises two or three layers of polygonal the secondary phloem. The secretory ducts with a  
parenchyma cells, and the innermost layer is the uniseriate epithelium formed by 4-10 cells occur  
endodermis surrounding the vascular cylinder. In in front of the phloem. The secondary xylem has  
433  
Bol. Soc. Argent. Bot. 56 (4) 2021  
Fig. 9. Stem (3-4 mm diam.) in cross section. A: secondary bark (periderm) developed under the epidermis;  
cork cells contain tannins (test ClFe3). B: This photograph shows cutin in the epidermis; lipophilic  
substances in cork cell walls and in the endodermis cell walls (test oil red “O”); in the cortex may be seen  
isodiametric parenchyma cells. C: Secondary phloem with fibers and starch grains (test IKI). D: pith with  
crystals. Abbreviations= ck: cork; cp: cortical parenchyma; en: endodermis; ep: epidermis; fb: fiber cluster;  
ls: lipophilic substances; pe: periderm; phf: fibers in the secondary phloem; pt: pith; st: starch grains; sty:  
styloids; ta: tannins. Scales= A-D: 100 µm.  
fibers as the predominant component and tannins contain tannins (Fig. 9A). The cork cell walls are  
are occasionally found in the secondary xylem. impregnated by suberin (Fig. 9B). In the cortex,  
The center of the stem is filled with the pith the cortical parenchyma exhibits rounded cells,  
formed by thin-walled parenchyma cells. In the and the most inner cell layer, the endodermis,  
perimedullary cells, calcium oxalate crystals are also shows cell walls impregnated with lipophilic  
observed (Fig. 8B).  
substances (Fig. 9B). Internally, the parenchyma  
A caulinar axis of 3-4 mm diameter exhibits of the secondary phloem contains starch grains  
rounded outline and similar structure as was (Fig. 9C). In the medullary rays and pith there are  
described above, however the periderm (cork abundant crystals which have very thin tabular  
+
cork cambium + phelloderm) is developed shape that according to the focal distance may be  
below the epidermis (Fig. 9A, B). The cork cells confused with raphides (Fig. 9D).  
434  
A. V. Carbone et al. - Baccharis notosergila: aerial vegetative organs and environment  
diScuSSion  
The epidermal cells and cuticle features may be  
attributed to environmental factors. Roth (1984),  
Leaf morphology. The leaves arrangement and reported that when the foliar epidermis is exposed  
features found in B. notosergila accord well greater luminosity and reduced humidity develop  
with description of Baccharis leaves reported by characters of the “sun leaves”, such as the straight  
Heiden et al. (2009). The petiole is not common epidermal anticlinal cell walls. Nughes et al. (2013)  
in Baccharis leaves, however it has been found in found the principal factor producing the “sun  
several species (e. g., Souza et al., 2011; Jasinski et leaves is the high light intensity, whereas they  
al., 2014; Bobek et al., 2016; Tosoratto et al., 2016). suggested the humidity is related to the stomata  
Respect to the variability of leaf margins dentate or number and size. In B. notosergila, the linear leaves  
entire, is common trait for the genus (Budel & predominantly found in the high part of the plants,  
Duarte, 2008; Oliveira et al., 2011; Souza et al., show the most reduced size and present epidermal  
2
011). Baccharis notosergila has leaves generally anticlinal cell walls slightly thickened, also the  
with reduced foliar expansion and stay on the plant epidermal periclinal cell walls conspicuously  
about five months in spring and beginning summer. thickened were found in elliptic-obovate leaves  
This is the best period to do photosynthesis. The collected in half hill. These features may be  
character deciduous of the leaves is a favorable adaptations to more exposed localization to weather  
feature to the economy of water without affect factors such as wind, high light intensity, because  
its physiology, because it can continuous doing straight and thick periclinal cell walls tend to  
photosynthesis with its numerous younger green decrease the excessive loss of water (Fahn & Cutler,  
stems which have active palisade chlorenchyma. It 1992), and prevent cell collapse due to dehydration  
would be an adaptation to the environment (Roth, (Cosa & Dottori, 2010). The striated cuticle would  
1
984). On the other hand, the deciduous, small and be a response to the environment as prevent rapid  
narrow leaves would be unfavorable to penetration dehydration (Fahn & Cutler, 1992). The massive  
of herbicide treatments.  
aspect found in the cuticle would be produce by  
waxes deposited over the cuticle (Barthlott et  
Hydathodes. Teeth found in leaves are al., 1998). Cuticle and epicuticular waxes also  
hydathodes. The structure has been found in constitute the outermost defensive barrier of plant  
Asteraceae and in some species of Baccharis leaves against pathogens because their repellents  
(
Smiljanic, 1969; Lersten & Curtis, 1985). The properties (Barthlott et al., 1998; Stenglein et al.,  
function is to discharge water (guttation), however, 2005). In cross sections the cuticle was found thin,  
it would be interesting to do a more comprehensive however the chemical composition of the cuticle  
study about the structure and function in B. is of a great importance limiting transpiration,  
notosergila.  
and thin cuticles are often effective in preventing  
excessive cuticular transpiration (Merida et al.,  
Epidermal cells and cuticle. The polygonal 1981). The chemical weed control is more difficult  
epidermal cell shapes in surface view found in in those species which have less foliar area and  
Baccharis notosergila accords well with the genus thicker cuticle and epicuticular waxes (Westwood  
pattern (Ariza Espinar, 1973), while the anticlinal et al., 1997; Dall’Armellina & Zimdahl, 1989;  
cell walls straight to slightly wavy also have been Carbone, 2015), whereas a thin cuticle could be  
reported for some species (Cortadi et al., 1999; an advantage for the penetration of the herbicide,  
Freire et al., 2007; Budel & Duarte, 2008; Oliveira and therefore, increase its absorption into the inner  
et al., 2011; Souza et al., 2011; Bobek et al., 2015). tissues (Santier & Chamel, 1992), however in this  
The cuticle of B. notosergila in surface view appears case the epicuticular waxes and volatile oils over  
massive and striated in leaves and stems, but it is the leaves and stem surfaces could be a barrier  
always thin. These cuticle traits coincide with the to penetration the herbicides or phytosanitary  
most cases reported in the literature (Ariza Espinar, treatments applied.  
1
&
2
973; Cortadi et al., 1999; Budel et al., 2003; Budel  
Duarte, 2007; Petenatti et al., 2007; Jasinski et al.,  
014; Bobek et al., 2015, 2016; Budel et al., 2018).  
Stomata types. Actinocytic, anisocytic,  
anomocytic, anomo-tetracytic and cyclocytic types  
435  
Bol. Soc. Argent. Bot. 56 (4) 2021  
of stomata were found in B. notosergila. According environment with high solar radiation and also  
to Metcalfe & Chalk (1950), the Asteraceae family it would be a manner to increase photosintetic  
may present anomocytic and anisocytic stomata, process, because increase gas exchange proving  
being the former predominant. These two types more efficient when compared to hypostomatic  
have been also reported in the genus by Ariza leaves (Roth, 1984; Parkhurst, 1978; Arambarri  
Espinar (1973), and were described for most et al., 2011; Carbone, 2015). Liesenfeld et al.  
species of Baccharis (Cortadi et al., 1999; Budel (2019), analyzed morphology and anatomy traits  
et al., 2004; Budel & Duarte 2007, 2008, 2010; of leaves in 34 species of Asteraceae inhabiting in  
Petenatti et al. 2007; Souza et al., 2011; Tosoratto extreme environmental conditions, and they also  
et al., 2016). However, cyclocytic was previously reported among the characteristics adaptive to xeric  
referred for B. notosergila (Freire et al., 2005, environments, the amphistomatic leaves.  
2
007), and several authors mentioned tetracytic  
type (e. g., Freire et al. 2007; Bobek et al., 2015,  
016; Budel et al., 2018; Ornellas et al., 2019). The in B. notosergila has been reported for many  
Mesophyll. The isobilateral mesophyll found  
2
actinocytic stomata type was mentioned by Freire et Baccharis species (e. g., Oliveira & Bastos, 1998;  
al. (2007) for 11 species of Baccharis, and Pereira Budel & Duarte, 2007, 2008, 2010; Petenatti et  
et al. (2014) for B. milleflora DC. On the other al., 2007; Jasinski et al., 2014; Barreto et al.,  
hand, different stomata types in the same epidermis 2015; Bobek et al., 2015, 2016; Tosoratto et al.,  
of one species of Baccharis have been previously 2016; Budel et al., 2018). Metcalfe & Chalk  
encountered (Pereira et al.; 2014; Budel et al., (1950) noted the relationships among presence  
2
015; Bobek et al., 2015, 2016; Budel et al., 2018; of adaxial stomata in plants with isobilateral  
Ornellas et al., 2019).  
organization of palisade mesophyll. The correlation  
among amphistomatic leaves and isobilateral  
Stomata distribution. Baccharis notosergila mesophyll was also found by Arambarri et al.  
presents amphistomaty, and the stomata localized (2011). Nughes et al. (2013) studied the behavior  
at level or elevated above the epidermal cells of Celtis ehrenbergiana (Klotzsch) Liebm., plants  
around them. Both stomata characteristics have growing under temperate and wet weather with  
been reported in Baccharis by different authors available water, and the leaves exposed to a high  
(
2
Metcalfe & Chalk, 1950; Budel et al., 2003, light intensity were amphistomatic with isobilateral  
004; Budel & Duarte 2007, 2008, 2010; Petenatti or homogeneous (palisade parenchyma) mesophyll,  
et al., 2007; Jasinski et al., 2014; Bobek et al., whereas the leaves expanded under low light  
015, 2016; Ornellas et al., 2019). Metcalfe & intensity were hypostomatic with dorsiventral  
2
Chalk (1950) demonstrated that a significant mesophyll. Ornellas et al. (2019) had similar results  
number of plant species have amphistomatic studying six species of Baccharis inhabiting in the  
leaves. Mott et al. (1982) suggested that the high-altitude grasslands, they found the occurrence  
presence of stomata on both sides of the leaf has of stomata and the mesophyll organization seem to  
an adaptive significance, being a derived character be correlated, the amphistomatic leaves tend to be  
and ecologically correlated with the increased leaf isobilateral.  
conductance of carbon dioxide in plants living  
in open areas and full sun environments or with  
Trichomes. Glandular trichomes were found  
high light intensity, with seasonal variations of in aerial vegetative organs of B. notosergila:  
water availability in the soil. Mott & Michaelson (i) Biseriate capitate glandular, (ii) Bulbiferous  
(1991) established that high light intensity produce flagelliform glandular type II, and rarely type I,  
amphistomatic leaves in Ambrosia cordifolia (A. that accords well with description provided by  
Gray) W. W. Payne (Asteraceae), and increase leaf Tosoratto et al. (2016) and Budel et al. (2018),  
thickness, photosynthetic capacity, and maximum and (iii) Uniseriate capitate glandular which was  
stomatal conductance, because the presence of previously reported by Petenatti et al. (2007)  
stomata on adaxial and abaxial sides would be for B. sagittalis (Less.) DC. and B. triangularis  
reducing diffusional limitations to photosynthesis. Hauman. The biseriate capitate and flagelliform  
Amphistomatic leaves are common of arid trichomes have been found in nearly all Baccharis  
436  
A. V. Carbone et al. - Baccharis notosergila: aerial vegetative organs and environment  
species. They have been cited for the genus by  
Fibers and endodermis. Baccharis notosergila  
Ariza Espinar (1973) who namely “pilose nests”, showed scarce fibers in the leaves, frequently  
and have been reported for B. notosergila by reduced to xylem side in the vascular bundles.  
Freire et al. (2007) and Heiden et al. (2009), and However, they were abundant in the secondary  
in other species of Baccharis (e. g., Cortadi et xylem of the stem. Also, the stem showed the  
al., 1999; Budel & Duarte, 2007, 2008; Budel et endodermis with Casparian strips surrounding the  
al., 2003, 2004, 2012, 2015, 2018; Freire et al., vascular system. These stem characteristics were  
2
005; Petenatti et al., 2007; Souza et al., 2011; also found by Tosorato et al. (2016) in B. salicifolia  
Jasinski et al., 2014; Pereira et al., 2014; Barreto Nutt. According to Fahn & Cutler (1992) the  
et al., 2015; Bobek et al., 2015, 2016). For many presence of fibers and endodermis are xeromorphic  
years, the flagelliform trichomes were described traits with the function to protect tissues of the  
as non-glandular trichome multicellular with a dehydration.  
whip-like apical cell with different characteristics  
(
e. g., Ramayya, 1962; Ariza Espinar, 1973; Freire  
Oil bodies. These lipid bodies were identified  
et al., 2007). However, Budel et al. (2012, 2015) in the leaf mesophyll of B. notosergila. They were  
reported positive test for lipophilic compounds mentioned for the genus by Budel et al. (2018)  
in basal cells. Tosoratto et al. (2016) studying B. and Ornellas et al. (2019). According to Pihakaski  
salicifolia described the flagelliform trichomes et al. (1987), there is a seasonal fluctuation in  
as glandular bulbiferous flagelliform. Budel et storage lipids, it would be increasing in the growing  
al. (2018) described and illustrated the secreted period. It may be seen large lipid bodies in summer  
substances in the body and apical cell of the but several small spherules in winter. Lersten et  
flagelliform trichomes, and they suggested that al. (2006) referred the presence of oil bodies in  
these flagelliform glandular trichomes have two leaf mesophyll cells of many Angiosperms, and  
functional properties for protection and secretion. indicated the Asteraceae as one of the families  
They also reported two forms of flagelliform in which the highest number of species have  
trichomes, type I and type II, with straight and lipid bodies. Gidda et al. (2016) reported that  
curved body, respectively. Ornellas et al. (2019) environmental conditions such as dark and extreme  
also cited the glandular flagelliform trichomes temperatures (heat and cold) induce oil body  
in other species of Baccharis. The lipophilic formation, so they also suggested leaf oil bodies  
substances secreted by glandular trichomes function in stress response. The function of the leaf  
and deposited on the leaves form an oily layer oil bodies still are under study, however, Shimada et  
that increase the impermeability and reduce al. (2014) showed that the leaf oil bodies function  
transpiration (Haberlandt, 1928). In this way, as subcellular factories for the production of a  
trichomes help prevent leaf overheating and novel stable phytoalexin (antimicrobial compounds  
water loss by transpiration process (Johnson, that are synthesized after stresses) in response to  
1
975; Ehleringer & Mooney, 1978; Fahn & fungal infection and senescence. Shimada et al.  
Cutler, 1992; García et al., 2008). Glandular (2018) reported that oil bodies are lipid storage  
trichomes are an important source of essential compartments that occur primarily in seeds and  
oils having different uses, although many of these senescing leaves, and concluded the oil bodies  
substances have evolved to provide the plant with have multiple functions, in seeds, seedlings and in  
protection against herbivores and pathogens (Glas leaf. In the leaves, the energy accumulated in oil  
et al., 2012). Trichomes may also complement the bodies has a defensive role against fungal infection  
chemical defense of a plant by possessing internal because they produce antifungal compounds.  
secretion of phenolics, alkaloids and other repellent  
substances (Levin, 1973; Delbon et al., 2012).  
Secretory ducts and chemical substances  
Minteguiaga (2019) studying species of Baccharis secreted. The secretory ducts were found in leaves  
found the oil droplets secreted by trichomes are and stems of B. notosergila. They were previously  
essential oils that have bioactive properties (e. g., found in the roots of B. notosergila by Carbone et  
garrapaticide, insecticide, fungicide) for example al. (2019). In cross sections of leaves, frequently,  
in B. dracunculifolia DC., and B. tridentata Vahl.  
there is one duct associated to each vascular  
437  
Bol. Soc. Argent. Bot. 56 (4) 2021  
bundle, but may be seen two or three at middle of the genus by Tosoratto et al. (2016), Budel et  
vein level and coincidently in the main vascular al. (2018), and Ornellas et al. (2019). Tannins are  
bundle of the petiole. The presence of more than phenolic compounds of high molecular weight,  
one duct was previously documented by Budel et and may be found in all organs of plants. The  
al. (2018) and reported by Ornellas et al. (2019) presence of tannins is an adaptation to the high  
for B. platypoda DC. and B. stylosa Gardner. It incidence of sunshine to protect against oxidative  
has been established for Asteraceae the principal stress affecting the photosynthesis (Hassanpour  
substances secreted are volatile oils (Budel et al., et al., 2011). The sites of tannin production were  
2
012; Jasinski et al., 2014). The secretory ducts the large cells located in the leaf mesophyll,  
in B. notosergila have given positive reaction for plants can accumulate phenolic compounds in the  
resins, polyphenols, and oils. It was also found in leaf epidermis and mesophyll tissues, where its  
B. notosergila subterranean system by Carbone et protective feature became evident against the UV  
al. (2019), and it is in agreement with Ariza Espinar radiation damage (Hassanpour et al., 2011). Del  
(1973) who reported that the secretory ducts may Valle et al. (2020) established the UV radiation  
be releasing other chemical components such as increased the concentration of phenolic compounds  
tannins and resins besides essential oils. The resins (tannins, flavonoids, anthocianins) suggesting a  
could protect the plant against insects as occur in photoprotective role against UV light. On the other  
coniferous (Johnson & Croteau, 1987). Cobos et hand, secondary metabolites of phenolic nature  
al. (2001) analyzed the composition of the essential play an important role in the defensive response, e.  
oils in aerial organs of B. notosergila, and they g., phytoalexins who behave as inducer or elicitors  
found 32 constituents and α-pinene, limonene, of plant defense mechanisms (Ebel, 1986; Boller,  
β-caryophyllene, and the spathulenol as the major 1989; Stone, 1989). Currently, research suggests  
components. Budel et al. (2018) and Minteguiaga that phytoalexins are a biochemical mechanism  
(
2019) indicated that Baccharis species produce possessed by plants for disease tolerance and  
volatile oils that mainly contain sesquiterpenes pathogen attacks (Ryan, 1987).  
and monoterpenes. Internal secretion of terpens  
By other way, during the fieldwork was found  
and other secondary metabolites (e. g., flavonoids, a reduction of Stipa population around the B.  
tannins, resins) would help protect the plant from notosergila plants (M. Oyhamburu & F. Fernández,  
herbivores and pathogens, and contributing to the personal communication, October 20, 2020). This  
water balance (Fahn & Cutler, 1992; Delbon et is a new line to research, on the basis that numerous  
al., 2012; Tosoratto et al., 2016). Essential oils compounds of phenolic nature act as allelopathic  
components are produced in most plant organs and agents inhibiting the germination and growth of  
they are stored in secretory structures (glandular other species around plants (Rice, 1984). Although  
trichomes and internal ducts). Chemically essential there are few reports the Baccharis species  
oils are complex mixture which have biology allelopathic effects, Dias et al. (2017) probed an  
effects (e.g., antimicrobial, analgesic, antioxidants, allelopathic potential of phenolic compounds using  
sedative, antiinflamatory, andmutagenic, phototoxic an ethanolic and aqueous extracts from aerial parts  
and citotoxic) (Budel & Duarte, 2008; Minteguiaga, of Baccharis spp.  
2
019). In Baccharis has been isolated and identified  
more than 500 compounds, the most frequent  
would be essential oils, terpenoids, and flavonoids cells of stomata, in the chlorenchyma of leaves and  
Starch grains. These were identified in the guard  
(Minteguiaga, 2019).  
stems, in the last also in the secondary phloem.  
However, this polysaccharide was not detected in  
Phenolic compounds. Tannins were identified subterranean organs (Carbone et al., 2019). We  
in the epidermal tissue and mesophyll of leaves. did not find starch grains in the parenchyma sheath  
In stem in the secondary protection tissues, and surrounding the vascular bundles as was cited by  
were also found in the secondary xylem which is in Budel et al. (2018). Thus, we believe the starch  
agreement with the localization reported by Carbone grains presence and quantity is variable in relation  
et al. (2019) in the xylopodium of B. notosergila. with the period of the year in which the leaves and  
Similar results were reported in different species aerial stems are collected.  
438  
A. V. Carbone et al. - Baccharis notosergila: aerial vegetative organs and environment  
Calcium oxalate crystals (CaOx). Crystals epidermal cells with straight cell walls; massive  
were found in the mesophyll of leaves, in pith and and striate cuticle; glandular trichomes secreting  
medullary rays of stems, and in the head cells of oily substances; stomata at level or above the  
the glandular capitate trichomes of B. notosergila. other epidermal cells; presence of tannins in  
Carbone et al. (2019) recorded abundant styloids leaves and stem tissues; oily bodies in mesophyll  
in medullary rays of the xylopodium and roots of cells; a moderate quantity of fibers; presence of  
the same species. These crystal types and others endodermis with Casparian strips; amphistomatic  
were revealed for the genus by previous authors, leaves and isobilateral mesophyll. Among them  
coincidentally in the mesophyll of leaves, and the epidermal tissue, cuticle and epicuticular  
the perimedullary region of stems (Cortadi et waxes covered by an oily layer, and presence of  
al., 1999; Budel et al., 2003, 2004; Petenatti et tannins would be a physical and chemical barrier  
al., 2007; Budel & Duarte, 2010; Jasinski et al., for dehydration as well as the penetration of the  
2
2
014; Bobek et al., 2015, 2016; Budel et al., herbicides applied for its control. The mentioned  
015, 2018). Many reasons have been written characteristics adding the abundant lipophilic  
about the formation and functions of CaOx in substances, the presence of fibers and endodermis  
plants, such as the functions attributed to the in stems would be producing tolerance to lowland  
calcification process include the elimination of areas and the alternate of drought and flooding  
oxalate in those plants unable to metabolize it, periods which are common in the studied region.  
protection against herbivores (Molano-Flores, The stomata localized at level or slightly elevated  
2
001), being a source of calcium reserve (Volk and scarce sclerenchyma are mesomorphic traits  
et al., 2002), the detoxification of heavy methals corresponding to a luminous temperate weather in  
Nakata, 2003). Franceschi & Nakata (2005) which B. notosergila inhabit, and the combination  
(
communicated the crystals are formed in specific amphistomatic leaves with isobilateral mesophyll  
shapes and sizes, and genetic regulation of CaOx promote more efficient photosynthesis process. As  
formation is indicated by constancy of crystal a matter of fact, leaves are present during spring-  
morphology within species. The same authors, summer, with favorable environmental conditions  
also mentioned as the major functions of CaOx contributing plants produce as many resources as  
crystals in plants include high-capacity calcium possible to storage in its deep root system, ensuring  
regulation, and protection against herbivores. the survival during the unfavorable period, and  
Apóstolo (2005) reported high pH values in the providing the capacity to sprout and resprout from  
soil promote formation of crystals in plants, and the bud-bank (xylopodium), restoring the plant  
Garcia et al. (2008) indicated the presence of aerial parts in the following spring.  
crystals in leaf mesophyll would be associated to  
saline/alkaline soils. In B. notosergila, we have  
seen small crystals in mesophyll cells of leaves author contributionS  
collected in sweet lowland and half hill, but not  
observed in the leaves from alkaline-saline soils.  
AVC provided the global research ideas and  
On the basis of these data we infer that there might goals, and with FEF provided the resources and  
be several factors promoting the formation of fieldwork data and interpretation. MPH, SMMA  
calcium oxalate crystals.  
and AMA carried out the laboratory research.  
AMA, AVC and MPH prepared the first manuscript.  
All authors have read and contributed to write the  
final manuscript.  
concluSionS  
This study allows us to achieve an interpretation  
about the adaptive characteristics of B. notosergila acKnowledgementS  
whichshowshigherstresstoleranceandcompetitive  
ability. A number of meso-xeromorphic characters  
We thank the technicians Mario Sánchez and  
are found in B. notosergila, such as small, narrow Mariela Theiller of CINDECA-CONICET-UNLP  
and deciduous leaves; the hydathodes presence; for the electron microscope service.  
439  
Bol. Soc. Argent. Bot. 56 (4) 2021  
bibliograPhy  
BOLLER, T. 1989. Primary signals and second  
messengers in the reaction of plants to pathogens.  
In BOSS, W. F. & D. J. MORRÉ (eds.), Second  
Messengers in Plant Growth and Development, pp.  
227-255. Alan R. Liss, New York.  
BUDEL, J. M., M. R. DUARTE, C. A. M. SANTOS &  
L. M. CUNHA. 2003. Macro and microscopical  
identification of four species of Baccharis from  
Trimera group. Rev. Bras. Farmacogn. 13: 42-43.  
http://dx.doi.org/10.1590/S0102-695X2003000400014  
BUDEL, J. M., M. R. DUARTE, C. A. M. SANTOS.  
2004. Stem morpho-anatomy of Baccharis  
cylindrica (Less.) DC. (Asteraceae). Braz. J. Pharm.  
Sci. 40: 93-99.  
APÓSTOLO, N. M. 2005. Caracteres anatómicos de la  
vegetación costera del Río Salado (Noroeste de la  
provincia de Buenos Aires, Argentina). Bol. Soc.  
Argent. Bot. 40: 215-227.  
APPEZZATO-DA-GLÓRIA, G. & G. CURY. 2011.  
Morpho-anatomical features of underground  
systems in six Asteraceae species from the Brazilian  
Cerrado.An. Acad. Bras. Ciênc. 83: 981-991.  
ARAMBARRI, A. M., M. C. NOVOA, N. D. BAYÓN,  
M. P. HERNÁNDEZ, M. N. COLARES & C.  
MONTI. 2011. Ecoanatomía foliar de árboles y  
arbustos de los Distritos Chaqueños Occidental  
y Serrano (Argentina). Bol. Soc. Argent. Bot. 46:  
http://dx.doi.org/10.1590/S1516-93322004000100014  
BUDEL, J. M. & M. R. DUARTE. 2007. Caracteres  
morfoanatômicos de partes vegetativas aéreas de  
Baccharis coridifolia DC. (Asteraceae-Astereae).  
Lat. Amer. J. Pharm. 26: 723-731.  
2
51-270.  
ARIZA ESPINAR, L. 1973. Las especies  
de Baccharis (Compositae) de Argentina Central.  
Bol. Acad. Nac. Ci. 50: 1-305.  
ASH, A., B. ELLIS, L. J. HICKEY, K. JOHNSON,  
P. WILF & S. WING. 1999. Manual of leaf  
architecture- morphological description and  
categorization of dicotyledonous and ner-  
veined monocotyledonous angiosperms by  
Leaf architecture working group. Smithsonian  
Institution, Washington, D. C.  
BUDEL, J. M. & M. R. DUARTE. 2008. Estudo  
farmacobotânico de folha e caule de Baccharis  
uncinella DC., Asteraceae. Lat. Amer. J. Pharm. 27:  
740-760.  
BUDEL, J. M. & M. R. DUARTE. 2010. Macro and  
microscopic characters of the aerial vegetative  
organs of carqueja: Baccharis usterii Heering. Braz.  
BUDEL, J. M., M. R. DUARTE, P. M.  
DÖLLBOSCARDIN, P. V. FARAGO, N. I.  
MATZENBACHER, A. SARTORATTO & B. H. L.  
N. SALES MAIA. 2012. Composition of essential  
oils and secretory structures of Baccharis anomala,  
B. megapotamica and B. ochracea. J. Essent. Oil  
Res. 24: 19-24.  
https://doi.org/10.1080/10412905.2012.645634  
BUDEL, J. M., J. PADILHA DE PAULA, V. L.  
PEREIRA DOS SANTOS, C. R. CAVICHIOLO  
FRANCO, P. V. FARAGO & M. R. DUARTE. 2015.  
Pharmacobotanical study of Baccharis pentaptera.  
BARTHLOTT, W., C. NEINHUIS, D. CUTLER, F.  
DITSCH,IMEUSEL,I.THEISEN&H.WILHELM.  
1
998. Classification and terminology of plant  
BARRETO I. F., J. PADILHA DE PAULA, P. V.  
FARAGO, M. R. DUARTE & J. M. BUDEL. 2015.  
Pharmacobotanical study of the leaves and stems of  
Baccharis ochracea Spreng. for quality control. Lat.  
Am. J. Pharm. 34: 1497-1502.  
BOBEK, V. B., V. P. DE ALMEIDA, C. B. PEREIRA,  
G. HEIDEN, M. R. DUARTE, J. M. BUDEL  
&
T. NAKASHIMA. 2015. Comparative  
pharmabotanical analysis of Baccharis caprariifolia  
DC. and B. erioclada DC. From Campos Gerais,  
Paraná, Southern Brazil. Lat. Amer. J. Pharm. 34:  
1
396-1402.  
BUDEL, J. M., V. RAMAN, L. M. MONTEIRO, V. P.  
ALMEIDA, V. B. BOBEK, G. HEIDEN, I. J. M.  
TAKEDA & I. A. KHAN. 2018. Foliar anatomy and  
microscopy of six Brazilian species of Baccharis  
(Asteraceae). Microsc. Res. Tech. 1-11.  
BOBEK,V.B.,G.HEIDEN,C.FREITASDEOLIVEIRA,  
V. PAES DE ALMEIDA, J. PADILHA DE PAULA,  
P. V. FARAGO, T. NAKASHIMA & J. M. BUDEL.  
2
016. Comparative analytical micrographs of  
vassouras” (Baccharis, Asteraceae). Rev. Bras.  
https://doi.org/10.1002/jemt.23045  
CARBONE, A.V. 2015. Caracterización morfo-anatómica  
de dos poblaciones de Gomphrena perennis L. y su  
440  
A. V. Carbone et al. - Baccharis notosergila: aerial vegetative organs and environment  
posible relación con la sensibilidad al herbicida  
glifosato. Tesis de Maestría Protección Vegetal.  
Facultad de Ciencias Agrarias y Forestales,  
Universidad Nacional de La Plata. Repositorio  
Institucional de la UNLP. Disponible en: http://  
sedici.unlp.edu.ar/bitstream/handle/10915/48707/  
DEL VALLE, J. C., M. L. BUIDE, J. B. WHITTALL,  
F. VALLADARES & E. NARBONA. 2020. UV  
radiation increases phenolic compound protection  
but decreases reproduction in Silene littorea. PLoS  
One 15: e0231611. https://doi.org/10.13371/journal.  
pone.0231611.eCollection2020  
DIAS, M. P., R. M. NOZARI & E. R. SANTARÉM.  
2017. Herbicidal activity of natural compounds  
from Baccharis spp. On the germination and  
seedlings growth of Lactuca sativa and Bidens  
CARBONE, A. V., F. E. FERNÁNDEZ, M. P.  
HERNÁNDEZ & A. M. ARAMBARRI. 2019.  
Morphoanatomy, histochemistry and crystals of  
the underground system of Baccharis notosergila  
pilosa. Allelopathy J 42: 21-36.  
h t t p s : / / d o i .  
org/10.26651/2017-42-1-1103  
(
Asteraceae). Bol. Soc. Argent. Bot. 54: 519-532.  
EBEL, J. 1986. Phytoalexin synthesis: The biochemical  
analysis of the induction process. Ann. Rev.  
Phytopathol. 24: 235-264. https://doi.org/10.1146/  
annurev.py.24.090186.001315  
http://dx.doi.org/10.31055/1851.2372.v54.n4.24930  
COBOS, M. I., J. L. RODRÍGUEZ, M. M. OLIVA, M.  
DEMO, S. M. FAILLACI & J. A. ZYGADLO.  
2
001. Composition and antimicrobial activity of the  
EHLERINGER, J. R. & H. A. MOONEY. 1978. Leaf  
hairs: effects on physiological activity and adaptive  
FAHN, A. & D. CUTLER. 1992. Xerophytes, pp. 1-143  
Handbuchder Pflanzenantomie 13, 3. Gebruder  
Borntraeger, Berlín.  
FRANCESCHI, V. R. & P. A. NAKATA. 2005. Calcium  
oxalate in plants: formation and function. Annu. Rev.  
FRANKLIN, G. L. 1945. Preparation of thin sections of  
synthetic resins and wood-resin composites, and a  
new macerating method for wood. Nature 155: 51.  
https://doi.org/10.1038/155051a0  
FREIRE, S. E., A.M. ARAMBARRI, N. D. BAYÓN,  
G. SANCHO, E. URTUBEY, C. MONTI, M. C.  
NOVOA & M. N. COLARES. 2005. Epidermal  
characteristics of toxic plants for cattle from the  
Salado river basin (Buenos Aires, Argentina). Bol.  
Soc. Argent. Bot. 40: 241-281.  
CORTADI, A., O. DI SAPIO, J. Mc CARGO, A.  
SCANDIZZI, S. GATTUSO & M. GATTUSO.  
1999. Anatomical studies of Baccharis articulata,  
Baccharis crispa and Baccharis trímera, “carquejas”  
COSA, M. T. & N. DOTTORI. 2010. Adaptaciones  
anatómicas de plantas medicinales a la diversidad  
de ambientes, 73 pp. Curso de actualización  
Profesional, X Simposio Argentino y XIII Simposio  
Latinoamericano de Farmacobotánica, Córdoba.  
COSA, M. T., N. DOTTORI, L. STIEFKENS, M.  
HADID, M. MATESEVACH, N. DELBÓN,  
P. WIEMER, S. MACHADO, V. CABRERA,  
C. COSTA, A. PÉREZ & A. TRENCHI. 2014.  
Aplicación de técnicas de histología vegetal a la  
resolución de diversos problemas. Laboratorio  
de Morfología Vegetal, Universidad Nacional de  
Córdoba, Argentina.  
DALL´ARMELLINA, A. A. & R. L. ZIMDAHL. 1989.  
Effect of watering frequency, drought, and glyphosate  
on growth of field bindweed (Convolvulus arvensis).  
D’AMBROGIO,A. 1986. Manual de técnicas en histología  
vegetal. Hemisferio Sur, Buenos Aires, Argentina.  
DELBÓN, N., M. T. COSA & G. BERNARDELLO. 2012.  
Exomorfología y anatomía de órganos vegetativos  
aéreos en especies de Flourensia DC. (Asteraceae) con  
FREIRE, S. E., E. URTUBEY & D.A. GIULIANO. 2007.  
Epidermal characters of Baccharis (Asteraceae)  
species used in traditional medicine. Caldasia 29:  
23-38.  
https://dx.doi.org/10.15446/caldasia  
GARCIA, M., D. JÁUREGUI & E. MEDINA. 2008.  
Adaptaciones anatómicas foliares en especies de  
angiospermas que crecen en la zona costera del  
Estado Falcón (Venezuela). Acta Bot.Venez. 31:  
291-306.  
GIDDA, S. K., S. PARK, M. PYC, O. YURCHENKO, Y.  
CAI, P. WU, D. W. ANDREWS, K. D. CHAPMAN,  
J. M. DYER & R. T. MULLEN. 2016. Lipid droplet-  
441  
Bol. Soc. Argent. Bot. 56 (4) 2021  
associated proteins (LDAPs) are required for the  
dynamicregulationofneutrallipidcompartmentation  
in plant cells. Plant Physiol. 170: 2052-71.  
Bras. Farmacogn. 24: 609-616.  
https://doi.org/10.1016/j.bjp.2014.11.003  
JOHANSEN, D. A. 1940. Plant microtechnique.  
McGraw-Hill Book Company, New York.  
JOHNSON, H. B. 1975. Plant pubescence: an ecological  
perspective. Bot. Rev. 41: 233- 258.  
https://doi.org/10.1104/pp.15.01977.Epub 2016 Feb 19  
GIULIANO, D. A. & A. PLOS. 2014. Baccharis. En:  
ZULOAGA, F. O., M. J. BELGRANO & A. M.  
ANTON (eds.). Flora Argentina: flora vascular de la  
República Argentina, Dicotyledoneae, Asteraceae,  
https://doi.org/10-1007/BF02860838  
JOHNSON, M. A. & R. CROTEAU. 1987. Biochemistry  
of conifer resistance to bark beetles and their fungal  
symbionts. In: Fuller, G. & W. D. Nes (eds.).  
Ecology and Metabolism of Plant Lipids, pp. 76-92.  
American Chemical Society, Washington, D.C.  
LERSTEN, N. R. & J. D. CURTIS. 1985. Distribution  
and anatomy of hydathodes in Asteraceae. Int. J.  
Plant Sci. 146: 106-114.  
7
: 43-123. Estudio Sigma S. R. L., Buenos Aires.  
GLAS, J. J., B. C. J. SCHIMMEL, J. M. ALBA, R.  
ESCOBAR-BRAVO, R. C. SCHUURINK & M.  
R. KANT. 2012. Plant glandular trichomes as  
targets for breeding of engineering of resistance  
to herbivores. Int. J. Mol. Sci. 13: 17077-17103.  
https://doi.org/10.3390/ijms131217077  
GONZÁLEZ, A. M. 2018. Image J: una herramienta  
indispensable para medir el mundo biológico.  
Sociedad Argentina de Botánica. Folium (Relatos  
botánicos) 1: 6-17.  
GURR, E. 1971. Synthetic dyes in biology, medicine and  
chemistry. Academic Press, London.  
HABERLANDT, G. 1928. Physiological plant anatomy.  
Macmillan, London.  
HASSANPOURS.,N.MAHERI-SIS,B.ESHRATKHAH  
LERSTEN, N. R., A. R. CZLAPINSKI, J. D. CURTIS, R.  
FRECKMANN & H. T. HORNER. 2006. Oil bodies  
in leaf mesophyll cells of angiosperms: overview  
and a selected survey. Am. J. Bot. 93: 1731-1739.  
https://doi.org/10.3732/ajb.93.12.1731  
LEVIN, D. 1973. The role of trichomes in plant defense.  
Q Rev Biol 48: 3-15.  
LIESENFELD, V., P. GENTZ, E. M. DE FREITAS & S.  
MARTINS. 2019. Leaf morphology and anatomy  
of Asteraceae of the Pampas biome (sand-fields).  
FLORA 258, Article 151418.  
&
F. B. MEHMANDAR. 2011. Plants and secondary  
metabolites (Tannins): a review. Int. J. Forest, Soil  
and Erosion 1: 47-53. Available at: www.ijfse.com.  
https://doi.org/10.1016/j.flora.2019.151418  
[
Accessed: 15 June 2020].  
HAYASHI, A. H. & B. APPEZZATO-DA-GLÓRIA.  
007. Anatomy of the underground system in  
LUQUE, R., H. C. SOUSA & J. E. KRAUS. 1996.  
MétodosdecoloraçãodeRoeser(1972)–modificadoe  
Kropp (1972) visando a substituição do azul de astra  
por azul de alcião 8 GS ou 8GX/Staining methods of  
modified Roeser (1972) and Kropp (1972), aiming  
at substituting the astra blue by alcian blue 8GS or  
2
Vernonia grandiflora Less. and V. brevifolia  
Less. (Asteraceae). Braz. Arch. Biol. Technol.  
5
8
0: 979-988. http://dx.doi.org/10.1590/S1516-  
9132007000700009  
HEIDEN, G., J. R.VIEIRAIGANCI & L. MACIAS. 2009.  
Baccharis sect. Caulopterae (Asteraceae, Astereae)  
no Rio Grande do Sul, Brasil. Rodriguesia 60: 943-  
MERIDA, T., J. SCHÖNHERR & H. W. SCHMIDT.  
1981. Fine structure of plant cuticles in relation to  
water permeability: the fine structure of the cuticle  
of Clivia miniata reg. leaves. Planta 152: 259-267.  
https://doi.10.1007/BF00385154  
METCALFE, C. R. & L. CHALK. 1950. Anatomy of the  
Dicotyledons. Clarendon Press, Oxford.  
METCALFE, C. R. & L. CHALK. 1988. Anatomy of the  
Dicotyledons. Systematic anatomy of the leaf and  
stem. Clarendon Press, Oxford.  
MINTEGUIAGA, M. 2019. Fitoquímica de Baccharis  
spp. L. (Asteraceae): metabolitos secundarios, semi-  
síntesis y bioactividad, pp. 577. Tesis presentada para  
aspirar al título de Doctor en Química. Cátedra de  
Farmacognosia y Productos Naturales, Laboratorio  
9
83. https://doi.org/10.1590/2175-7860200960411  
HEIDEN, G., A. ANTONELLI & J. R. PIRANI. 2019.  
A novel phylogenetic infrageneric classification  
of Baccharis (Asteraceae: Astereae), a highly  
diversified American genus. Taxon 68: 1048-1081.  
https://doi.org/10.1002/tax.12128  
fa.htm. (Accessed: 15 June 2020).  
JASINSKI, V. C. G., R. Z. da SILVA, R. PONTAROLO,  
J. M. BUDEL & F. R. CAMPOS. 2014.  
Morphoanatomical characteristics of Baccharis  
glaziovii in support of its pharmacobotany. Rev.  
442  
A. V. Carbone et al. - Baccharis notosergila: aerial vegetative organs and environment  
de Biotecnología de Aromas, Facultad de Química,  
Universidad de la República (UdelaR), Montevideo,  
Uruguay.  
ecological implications. Botany 97: 615-626. NRC  
Research Press.  
https://dx.doi.org/10.1139/cjb-2019-0035  
MOLANO-FLORES, B. 2001. Herbivory and calcium  
concentrations affect calcium oxalate crystal  
formation in leaves of Sida (Malvaceae). Ann. Bot.  
PARKHURST, D. F. 1978. The adaptative significance  
of stomatal occurrence on one or both surfaces of  
leaves. J. Ecol. 66: 367-383.  
8
8: 387-391.  
https://doi.org/10.2307/2259142  
https://doi.org/10.1006/anbo.2001.1492  
PEREIRA, C.B., P.V. FARAGO, J.M. BUDEL, J.P. DE  
PAULA, D.G. FOLQUITTO & O. G. MIGUEL &  
M. D. MIGUEL. 2014. A new contribution to the  
pharmacognostic study of carquejas: Baccharis  
milleflora DC., Asteraceae. Lat. Am. J. Pharm. 33:  
841-847.  
PÉREZ, A. & V. H. TOMASI. 2002. Tinción con azul  
brillante de cresilo en secciones vegetales con  
parafina. Bol. Soc. Argent. Bot. 37: 211-215.  
PETENATTI, E. M., M. E. PETENATTI, D. A.  
CIFUENTE, J. C. GIANELLO, O. S. GIORDANO,  
C. E. TONN & L. A. DEL VITTO. 2007.  
Medicamentos herbarios en el Centro-Oeste  
Argentino. VI. Caracterización y control de calidad  
de dos especies de “carquejas”: Baccharis sagittalis  
y B. triangularis (Asteraceae). Lat. Am. J. Pharm.  
26: 201-208.  
PIHAKASKI, K., S. PIHAKASKI, P. KARUNEN &  
P. KALLIO. 1987. Seasonal changes in leaf lipids  
of Diapensia japponica, with special reference to  
RAMAYYA, N. 1962. Studies on the trichomes of some  
Compositae I. General structure. Bull. Bot. Surv.  
India 4: 177-188.  
MOTT, K. A., C. A. GIBSON & J. W. O’LEARY. 1982.  
The adaptive significance of amphistomatic leaves.  
MOTT, K.A. & O. MICHAELSON. 1991.Amphistomaty  
as an adaptation to high light intensity in Ambrosia  
MÜLLER, J. 2013. World checklist of Baccharis L.  
(
1
Compositae–Astereae), version 2013-09-03, pp.  
70. Herbarium Haussknecht, Friedrich-Schiller-  
Universität, Jena.  
NAKATA, P. A. 2003. Advances in our understanding of  
calcium oxalate crystal formation and function in  
plants. Plant Science 164: 901-909.  
https://doi.org/10.1016/S0168-9452(03)00120-1  
NUGHES, L., M. COLARES, M. HERNÁNDEZ  
&
A. ARAMBARRI. 2013. Morfo-anatomía de  
las hojas de Celtis ehrenbergiana (Celtidaceae)  
desarrolladas bajo condiciones naturales de sol y  
O`BRIEN, T. P., N. FEDER & M. E. MC CULLY.  
1
964. Polychromatic stained of plant cell walls by  
toluidine blue O. Protoplasma 59: 368-373. https://  
doi.org/10.1007/BF01248568  
RICE, E.L. 1984. Allelopathy, Second edition. Academic  
Press, New York.  
OLIVEIRA, V. C. & E. M. BASTOS. 1998. Aspectos  
morfo-anatômicos da folha de Baccharis  
dracunculifolia DC. (Asteraceae) visando a  
identificação da origem botánica da própolis. Acta  
OLIVEIRA, A.M.A., V.L.P. SANTOS, C.R.C. FRANCO,  
P.V. FARAGO, M.R. DUARTE & J.M BUDEL.  
RODRIGUEZ, A & E. JACOBO. 2012. Manejo de  
pastizales naturales para una ganadería sustentable  
en la Pampa Deprimida. Buenas prácticas para una  
ganadería sustentable de pastizal. Kit de extensión  
para las pampas y campos. Editorial FAUBA,  
Buenos Aires.  
ROTH, I. 1984. Stratification of tropical forests as seen  
in leaf structure. In Encyclopedia of plant anatomy,  
Gebrüder Borntraeger, Berlin.  
2
011. Comparative morpho-anatomy study of  
Baccharis curitybensis Heering ex Malme and  
Baccharis spicata (Lam.) Baill. Lat. Am. J. Pharm.  
RUZIN, S. E. 1999. Plantmicrotechniqueandmicroscopy.  
University Press, Oxford.  
3
0: 1560-1566.  
ORNELLAS, T., G. HEIDEN, B. NUNES DE LUNA  
C. FRANCA BARROS. 2019. Comparative  
RYAN, C.A. 1987. Oligosaccharide signaling in plants.  
Annu Rev Cell Biol 3: 295-317.  
https://doi.org/10.1146/annurev.cb.03.110187.001455  
SANTIER, S. & A. CHAMEL. 1992. Penetration of  
glyphosate and diuron into and through isolated  
&
leaf anatomy of Baccharis (Asteraceae) from  
high-altitude grassland in Brazil: taxonomic and  
443  
Bol. Soc. Argent. Bot. 56 (4) 2021  
plant cuticles. Weed Res. 32: 337-347.  
TAPIA-TORRES, N. A., C. de la PAZ-PÉREZ-OLVERA,  
A. ROMÁN GUERRERO, A. QUINTANAR-  
ISAÍAS, E. GARCÍA-MÁRQUEZ & F. CRUZ-  
SOSA. 2014. Histoquímica, contenido de fenoles  
totales y actividad antioxidante de hoja y de madera  
de Litsea glaucescens Kunth (Lauraceae). Madera y  
Bosques 20: 125-137.  
TOSORATTO, N., M. T. COSA & N. DELBÓN. 2016.  
Morfoanatomía e histoquímica de cuatro Asteraceae  
nativas del Bosque Chaqueño Serrano (Córdoba,  
Argentina). Bol. Soc. Argent. Bot. 51: 613-622.  
URDAMPILLETA, J. I. 2019. Métodos de control  
poblacional de Baccharis notosergila Griseb.: maleza  
arbustiva de alta incidencia en la zona de la Pampa  
Deprimida. Tesis de grado, modalidad: intervención  
profesional, Facultad de Ciencias Agrarias  
y Forestales, Universidad Nacional de La Plata.  
https://doi.org/10.1111/j.1365-3180.1992.tb01894.x  
SHIMADA, T. L., Y. TAKANO, T. SHIMADA, M.  
FUJIWARA, Y. FUKAO, M. MORI, Y.OKAZAKI,  
K. SAITO, R. SASAKI, K. AOKI & I. HARA-  
NISHIMURA. 2014. Leaf oil body functions  
as a subcellular factory for the production of a  
phytoalexin in Arabidopsis. Plant Physiol. 164: 105-  
118. https://doi.org/10.1104/pp.113.230185  
SHIMADA, T. L., M. HAYASHI & I. HARA-  
NISHIMURA. 2018. Membrane dinamics and  
multiple functions of oil bodies in seeds and leaves.  
Plant Physiol. 176: 199-207.  
https://doi.org/10.1104/pp.17.01522  
SIONE, S. M., R. A. SABATTINI, S. G. LEDESMA, A.  
F. DORSCH & C. FORTINI. 2006. Caracterización  
florística y structural del estrato arbustivo de un  
monte en pastoreo (Las Garzas, Entre Ríos). Rev.  
Cient. Agropecu. 10: 59-67.  
SMILJANIC, K. B. A. 1969. Anatomia foliar de espécies  
de Asteraceae de um afloramento rochoso no Parque  
Estadual da Serra do Brigadeiro (MG), Viçosa,  
pp.79. Tesis Magister Science. Universidade Federal  
de Viçosa, Brazil.  
VOLK, G. M., V. J. LYNCH-HOLM, T. KOSTMAN, L. J.  
GOSS & V. FRANCESCHI. 2002. The role of druse  
and raphide calcium oxalate crystals in tissue calcium  
regulation in Pistia stratioides leaves. Plant Biology  
4: 34-45. https://doi.org/10.1055/s2002-20434  
WESTWOOD, J. H., C. N. YERKES, F. P. DEGENNARO  
& S. C. WELLER. 1997.Absorption and translocation  
of glyphosate in tolerant and susceptible biotypes of  
field bindweed (Convolvulus arvensis). Weed Sci. 45:  
658-663.  
SOUZA, C. A. de, P. V. FARAGO, M. R. DUARTE  
&
J. M. BUDEL. 2011. Pharmacological study  
of Baccharis singularis (Vell.) G. M. Barroso,  
Asteraceae. Lat. Am. J. Pharm. 30: 311-317.  
STENGLEIN, S., A. M. ARAMBARRI, M. C.  
MENÉNDEZ SEVILLANO & P. A. BALATTI.  
https://doi.org/10.1017/S0043174500093292  
2
005. Leaf epidermal characters related with  
ZARLAVSKY, G. E. (ed.). 2014. Histología vegetal:  
Técnicas simples y complejas. Sociedad Argentina de  
Botánica, Buenos Aires.  
ZULOAGA, F. O., M. J. BELGRANO & C. A. ZANOTTI.  
2019. Actualización del Catálogo de las plantas  
vasculares del Cono Sur. Darwiniana, nueva serie 7:  
plant’s passive resistance to pathogens vary among  
accessions of wild beans Phaseolus vulgaris var.  
2
STONE, B. A. 1989. Cell walls in plant-microorganism  
444