cytotyPe variation and clonal diverSity in PolyPloid  
aPomictic PoPulationS of PiloSella (comPoSiteae,  
cichorieae) introduced to Southern Patagonia  
variación citotíPica y diverSidad clonal en PoblacioneS PoliPloideS  
y aPomícticaS de PiloSella (comPoSitae, cichorieae) introducidaS en  
el Sur de la Patagonia  
Summary  
Introduction and objectives: The genus Pilosella is native to Europe and Asia, but its  
Institute of Botany of the Czech  
Academy of Sciences, CZ-25243  
Průhonice, Czech Republic  
species are successful invaders on most continents. These species form an agamic  
complex with common apomixis. Apomictic species hybridize and have different degree  
of residual sexuality. Main aim of this paper was to determine if interspecific hybridization  
already occurred in Patagonia.  
M&M: We analysed seed progeny collected at thirteen populations of Pilosella in southern  
Argentina and Chile. The taxonomic identity of plants, DNA ploidy level (using flow  
cytometry), chromosome number, reproduction, formation of parthenogenetic seeds  
and clonal identity (using isozyme phenotypes) were examined.  
*frantisek.krahulec@ibot.cas.cz  
Citar este artículo  
KRAHULCOVÁ, A. & F. KRAHULEC.  
021. Cytotype variation and  
2
Results: No mixed-species population was recorded. Two apomictic clones of P.  
officinarum (one pentaploid and the other hexaploid) were found in populations:  
eight were hexaploid and one was mixed in cytotype composition. A new species for  
Patagonia, the apomictic pentaploid P. caespitosa, was represented by plants from two  
Argentinean populations. Some of the progeny plants, cultivated from seeds sampled  
at three localities, represented seed-fertile aneuploids the morphology of which suggest  
a hybrid origin with P. officinarum as one of the parental species.  
Conclusions: The presence of seed-fertile, aneuploid and parthenogenetic hybrids  
among the cultivated plants signifies an increased risk of the formation of new  
hybridogeneous genotypes of Pilosella in southern Patagonia.  
clonal diversity in polyploid  
apomictic populations of Pilosella  
(
Compositeae, Cichorieae)  
introduced to southern Patagonia.  
Bol. Soc. Argent. Bot. 56: 307-326.  
Key wordS  
Alien plants, aneuploidy, clonal diversity, cytotypes, facultative apomixis, hybridization,  
Patagonia, Pilosella, plant invasion, polyploidy, South America.  
reSumen  
Introducción y objetivos: El género Pilosella es nativo de Europa y Asia, pero sus  
especies son invasoras exitosas en la mayoría de continentes. Estas especies forman  
un complejo agámico en el que la apomixis es común. Las especies apomícticas  
hibridan y presentan diferentes grados de sexualidad residual. El objetivo de este  
trabajo fue determinar la existencia de hibridación interespecífica en poblaciones del  
sur de la Patagonia.  
M&M: Se analizó la descendencia de semillas de Pilosella recolectadas en trece  
poblaciones del Sur de Argentina y Chile. Se determinó la identidad taxonómica de las  
plantas, el nivel de ploidía (empleando citometría de flujo), el número cromosómico, el  
tipo de reproducción, la formación de semillas partenogenéticas y su identidad clonal  
(caracterizando fenotipos isoenzimáticos).  
Resultados: No se registró ninguna población mixta entre especies. Se encontraron  
dos clones apomícticos de P. officinarum (uno pentaploide y otro hexaploide) en varias  
poblaciones: ocho de ellas fueron hexaploides; mientras que una presentó ambos  
citotipos. La presencia de la especie apomíctica y pentaploide P. caespitosa en dos  
poblaciones de Argentina supone el primer registro de esta especie en la Patagonia.  
Algunas semillas muestreadas en tres localidades mostraron una descendencia  
aneuploide fértil, cuya morfología indicó un origen híbrido con P. officinarum como una  
de las especies parentales.  
Conclusiones: La presencia de híbridos partenogenéticos, aneuploides y con semillas  
fértiles entre las plantas cultivadas, implica un aumento del riesgo de formación de  
nuevos genotipos híbridos de Pilosella en el sur de la Patagonia.  
Recibido: 19 Abr 2021  
Aceptado: 18 Ago 2021  
Publicado impreso: 30 Set 2021  
Editora: Viviana Solis Neffa  
PalabraS clave  
ISSN versión impresa 0373-580X  
ISSN versión on-line 1851-2372  
AméricadelSur, aneuploidía, apomixisfacultativa, citotipos, diversidadclonal, hibridación,  
invasión de plantas, Patagonia, Pilosella, plantas invasoras, poliploidía.  
307  
Bol. Soc. Argent. Bot. 56 (3) 2021  
introduction  
name of Hieracium pilosella L., first published by  
Moore, 1983 and many authors later), P. aurantiaca  
The agamic complex Pilosella Hill., formerly (L.) F. W. Schultz et Sch. Bip. (H. aurantiacum  
placed in the genus Hieracium L. in its broad sense, L.: Zuloaga & Morrone, 1999; Ugarte et al., 2011;  
includes strictly sexual diploids and polyploids Ariza Espinar & Cerana, 2015; Rodriguez et al.,  
(up to the octoploid level, the basic chromosome 2018), P. praealta (Gochnat) F. W. Schultz et Sch.  
number x = 9) that are predominantly facultatively Bip. (H. praealtum Gochnat: Zuloaga & Morrone,  
apomictic and less commonly sexual (Krahulcová 1999; Ugarte et al., 2011; Ariza Espinar & Cerana  
et al., 2000). All Pilosella species are native to 2015 – the figure indicates P. piloselloides (Vill.)  
Eurasia and most of them occur in Europe (Fehrer Soják; Rodriguez et al., 2018), P. flagellaris (Willd.)  
et al., 2007). Multiple species or cytotypes often Arv.-Touv. (H. flagellare Willd.: Moore, 1983) and  
coexist within a population, and interspecific and P. floribunda (Wimm. et Grab.) Fr. (H. floribundum  
intercytotype hybridization is rather common (Fehrer Wimm. et Grab.: Krahulec & Krahulcová, 2011).  
et al., 2007; Krahulcová et al., 2009, 2014). The Surprisingly, P. officinarum F. W. Schultz et Sch. Bip.  
still commonly used taxonomic concept is primarily (H. pilosella) has been reported to not occur in Flora  
based on morphological characters, distinguishing of Argentina (Ariza Espinar & Cerana, 2015, but it is  
between ‘basic‘ species and ‘intermediate‘ species often reported in ecological papers, e.g. Rauber et al.,  
(Zahn, 1922–1930; Bräutigam, 2017). Basic species 2013, Braun et al., 2019).  
possess unique morphological characters whereas Both native and alien populations of Pilosella  
intermediate species combine morphological have primarily been studied with respect to  
characters of two or more basic species (Zahn, ecological traits supporting invasiveness, such as  
1922–1930; Fehrer et al., 2007; Bräutigam, 2017). seed germination and adaptation to environmental  
Supposed hybrid origins of intermediate species conditions (Beckmann et al., 2011), dynamics of  
have in many cases been inferred from early crossing vegetative and generative reproduction (Makepeace,  
experiments (Peter, 1884; Nägeli & Peter, 1885). The 1985; Beckmann et al., 2009), and the relationship  
morphological characters of intermediate species are between environmental and ecological factors  
expressed using hybrid formulas that reflect either a influencing population dynamics and spread  
balanced contribution of both parents (sign ‘–’) or (Cipriotti et al., 2010, 2012; Day & Buckley,  
a prevalence/less distinct influence of either parent 2011; Rauber et al., 2014; Cook et al., 2021).  
(
2
signs ‘>’ or ‘<’; Zahn, 1922–1930; Bräutigam, Follow-up research aimed to devise appropriate  
017). management practices to restrict the spread of  
Preferring unproductive habitats, Pilosella species invasive P. officinarum in natural grasslands, for  
are capable colonizers of disturbed habitats (Fehrer example in New Zealand (e.g. Scott, 1993; Walker  
et al., 2007). Several polyploid species have become et al., 2016) or in Argentinian Patagonia (Cipriotti et  
a weed problem in the secondary distribution area of al., 2012, 2014). The geographic origin of invasive  
the genus (e.g. Makepeace, 1985; Jenkins & Jong, populations of Pilosella was traced by comparing  
1996; Wilson et al., 2006; Loomis & Fishman, 2009; the DNA molecular markers in natural populations  
Cipriotti et al., 2010). Their success as invaders in in Europe and in alien populations in New Zealand  
North and South America, New Zealand and North- (Trewick et al., 2004) and in North America (Wilson  
eastern Asia is mainly enabled by their reproductive et al., 2006; Loomis & Fishman, 2009). Evidence  
versatility (for an overview of the secondary of recent interspecific/intraspecific hybridization  
distribution area, see Fehrer et al., 2007). Whereas in facultatively apomictic alien populations of  
facultatively apomictic reproduction, together with Pilosella in New Zealand is based on chloroplast  
clonal growth, facilitates the establishment and DNA markers (Trewick et al., 2004), inter-simple  
rapid spread of new populations, residual sexuality sequence repeats and allozyme markers (Chapman  
maintains a potential for hybridization allowing the et al., 2003), as well as species-specific parental  
generation of new genotypes (Fehrer et al., 2007; genome sizes reflected in hybrids (Morgan-Richards  
Krahulcová et al., 2014). To date, five Pilosella et al., 2004; Suda et al., 2007).  
species have been reported from Patagonia: P.  
The reproductive system largely determines the  
officinarum F. W. Schultz et Sch. Bip. (under the ease of progeny formation and progeny diversity.  
308  
A. Krahulcová and F. Krahulec - Pilosella in Patagonia  
These aspects are important for invasion success, material and methodS  
but they have until recently been overlooked in  
alien populations of Pilosella in Patagonia. Our Seed sampling and recovery of progeny plants  
previous study, focused on karyological, reproductive  
In the late summer of 2013, Petra Šarhanová  
and clonal diversity in the seed progeny of P. (Leibnitz-Institut für Pflanzengenetik und  
officinarum originating from three localities in Kulturpflanzenforschung, Gatersleben, Germany)  
Chilean Patagonia, was the first to take account of and Erwin Domínguez (INIA Kampenaike, Punta  
reproductive traits of Pilosella in South America Arenas, Chile) collected, independently of each  
(
Krahulec & Krahulcová, 2011). The cultivated other, seeds in thirteen populations of Pilosella in  
plants belonged to two clones of P. officinarum, Chilean Patagonia (both collectors) and Argentinian  
one pentaploid and the other hexaploid. Both clones Patagonia (exclusively P. Šarhanová; Table 1).  
exhibited a high degree of apomictic reproduction The two collectors used different seed-sampling  
facilitating easy seed formation independent of strategies. Because of the limited time spent at each  
a compatible pollinating parent (Krahulec & locality, Petra Šarhanová sampled seeds together from  
Krahulcová, 2011). Later on, in 2013, our colleagues all available fruiting Pilosella plants at each locality.  
took samples of seeds in populations of Pilosella at This sampling strategy is likely to have increased  
an additional thirteen localities in southern Argentina the heterogeneity of these seed samples (accessions  
and Chile (Table 1). The study presented here is 2102–2111 in Table 1 and Table 2). The reason for  
based on the evaluation of individual mature plants this simplified seed sampling was that was carried  
raised from these seeds, especially with respect to out during an expedition to Patagonia conducted as  
their (a) taxonomic identity, (b) DNA ploidy level/ part of a different project. Erwin Domínguez sampled  
chromosome number, (c) reproductive behaviour (i.e. separately the fruiting inflorescences (capitula)  
the potential for parthenogenetic seed formation), and of individual maternal plants of P. officinarum  
(d) clonal identity illustrating genotype diversity. If (accessions 2113–2117 in Table 1 and Table 2).  
the cultivated progeny proved to be heterogeneous A map of all collection sites is provided in Fig. 1.  
in either morphological/karyological characters or The maximum distance between localities in the  
in clonal structure, the remaining available seeds northwest to southeast direction was ca 500 km and  
were used for the determination of seed origin. the maximum distance in the southwest to northeast  
The methodical approach followed the one used direction was ca 170 km (Fig. 1). All the collection  
previously for analysing seeds of Pilosella from the sites were situated in the close vicinity of roads.  
field and cultivated progeny plants (e.g. Krahulec & Herbarium specimens of fruiting maternal plants  
Krahulcová 2011; 2018).  
were not collected.  
Because of the known occurrence of at least  
The material used is based on progeny plants that  
five morphologically distinct species of Pilosella were grown from seeds, alternatively on remaining  
in Patagonia (Moore, 1983; Zuloaga & Morrone, seeds that were not used for cultivation of the  
1999; Cipriotti et al., 2010; Krahulec & Krahulcová, progeny. Examining the cultivated progeny plants,  
2011, Ariza Espinar & Cerana, 2015), we tried to the following methodological approach was used: 1)  
ascertain whether each of the thirteen populations assessment of morphological appearance that resulted  
sampled is composed of a single species or whether to determination of particular species (Bräutigam &  
at least some of them were composed of more than Greuter, 2007-2009; Bräutigam, 2017); 2) search for  
one species. Among the progeny grown from seeds apomictic reproduction, i.e., for an ability to produce  
we especially looked for traits that may be indicative the seed progeny that replicates the maternal parent  
of sexual reproduction potentially taking place (both the cultivated progeny plants and remaining  
in the field. Such traits are, for example, specific seeds were used for this purpose); 3) determination  
combinations of certain parental morphological of ploidy level/chromosome number reflecting the  
characters reflecting interspecific hybridization, cytotypic diversity; 4) search for the clonal diversity  
aneuploidy and intraspecific clonal diversity within within particular species/morphotypes and cytotypes  
populations. Better knowledge of reproductive traits using the isoenzyme analysis; 5) evaluation of the  
and population structure may help to understand the pollen quality (reflected in pollen stainability) in two  
possibly advancing invasion of Pilosella in Patagonia. selected representatives of an euploid basic species  
309  
Bol. Soc. Argent. Bot. 56 (3) 2021  
Table 1. Collection data of Pilosella plants from southern Patagonia. Plants were grown from seeds  
sampled in the field by Petra Šarhanová (PŠ) and Erwin Domínguez (ED). Taxonomic determination of  
cultivated plants was done by S. Bräutigam and F. Krahulec.  
Collector  
Locality Accession  
No. label  
Elevation  
(msnm)  
of  
seeds,  
date  
Species  
Country, location  
Argentina, Santa  
Cruz, S of Estancia Nothofagus forest  
Cancha Carrera, 30 in upper Rio  
Habitat  
Coordinates  
in open, patchy  
PŠ, 2  
Feb  
013  
51°24’41”S,  
72°13’42”W  
1
.
.
2102  
P. caespitosa  
428  
15  
2
km N of Rio Turbio  
Turbio valley  
overgrazed steppe  
with all plants small 52°31’17”S,  
no bushes), lot of  
Empetrum cushions  
Chile, Region XII,  
PŠ, 4  
Feb  
2013  
2
2103  
P. officinarum Tierra del Fuego,  
(
69°29’40”W  
W of Manantiales  
Chile, Region XII,  
P. officinarum Tierra del Fuego,  
W of Manantiales  
PŠ, 4  
Feb  
2013  
grass dominated  
steppe  
52°43’60”S,  
69°03’33”W  
3
.
.
2104  
2105  
67  
5
Chile, Region XII,  
P. officinarum Tierra del Fuego,  
W of Manantiales  
PŠ, 7  
Feb  
2013  
grass dominated  
steppe  
52°32’05”S,  
69°23’51”W  
4
bog vegetation with  
Berberis empetrifolia 54°27’45”S,  
within Nothofagus  
forest area  
Argentina, Tierra  
P. brachiata /  
PŠ, 5  
Feb  
2013  
5.  
6.  
7.  
2106  
2108  
2109  
del Fuego, N of  
99  
P. piloselliflora  
67°12’22”W  
Tolhuin along R3  
Argentina, Tierra del  
Fuego, at coast of  
PŠ, 6  
Feb  
2013  
P. brachiata /  
meadow on top  
of the hill  
54°49’28”S,  
67°30’03”W  
Beagle Channel, 10  
P. piloselliflora  
110  
11  
km W of Estancia  
Harberton  
Chile, Region XII,  
Tierra del Fuego,  
coast E of Pt.  
Nuevo along Y71  
PŠ, 7  
Feb  
53°21’15”S,  
69°22’11”W  
P. officinarum  
not specified  
2013  
Chile, Region XII,  
Tierra del Fuego,  
along R257 S of  
Cerro Sombrero  
PŠ, 7  
Feb  
grass dominated  
steppe  
53°11’23”S,  
69°16’35”W  
8
.
.
2110  
2111  
P. officinarum  
73  
2013  
PŠ, 7  
Feb  
Argentina, Santa  
P. caespitosa  
lava rocks and  
outcrops  
52°04’30”S,  
69°34’53”W  
9
131  
Cruz, Laguna Azul  
2013  
ED,  
Chile, XII Reg.,  
Prov. Mag., Sector  
Barranco Amarillo,  
Com. Punta Arenas  
53°05’00” –  
53°05’01”S,  
70°52’25” –  
70°52’26”W  
5 Jan  
2013  
and 23  
Feb  
2
2
113 +  
114  
10.  
P. officinarum  
not specified  
not specified  
44 – 45  
2013  
Chile, XII Reg.,  
Prov. Mag., Sector  
ED,  
18 Jan  
53°17’31”S,  
70°56’12”W  
11.  
2115  
P. officinarum  
0
805, Punta Arenas,  
2013  
Ruta No 9  
Chile, XII Reg.,  
P. officinarum Prov. Mag., Sector  
Los Cineces  
ED,  
18 Jan  
2013  
5
7
3°20’13”S,  
0°57’03”W  
1
2.  
3.  
2116  
2117  
not specified  
not specified  
0
0
Chile, XII Reg.,  
P. officinarum Prov. Mag., Sector  
Agua Fresca  
ED,  
18 Jan  
2013  
5
7
3°23’39”S,  
0°59’25”W  
1
310  
A. Krahulcová and F. Krahulec - Pilosella in Patagonia  
Table 2. Cytotype, reproductive and clonal-identity attributes of Pilosella plants that were grown from  
seeds sampled in the field in southern Patagonia.  
Nr of  
plants  
grown  
DNA  
ploidy  
level  
Production of  
parthenogenetic  
seeds  
Accession  
label  
Sampling  
design  
Chromosome  
number (2n)  
Isozyme  
Species  
phenotype  
2
102  
103  
P. caespitosa  
P. officinarum  
P. officinarum  
CP  
CP  
20  
22  
5x (20)  
6x (22)  
6x (20)  
45M (1)  
n.d.  
yes (3)  
yes (4)  
yes (2)  
b (3)  
a (2)  
a (2)  
2
54 (1)  
2
104  
P. officinarum ×  
CP  
21  
<
6x (1)  
51 (1)  
54 (1)  
46 (4)  
n.d.  
a (1)  
a (2)  
unknown parent  
2
105  
106  
P. officinarum  
CP  
CP  
20  
18  
6x (20)  
5x (18)  
yes(2)  
yes (2)  
P. brachiata /  
P. piloselliflora  
2
c (5), d (12), h (1)  
5
x (20)  
44 (13)  
39 (1)  
54 (1)  
54 (1)  
45M (2)  
45 (1)  
n.d.  
n.d.  
n.d.  
c (2), d (16), e (2)  
P. brachiata /  
P. piloselliflora  
2
108  
109  
CP  
21  
<5x (1)  
6x (9)  
f (1)  
a (2)  
a (2)  
b (3)  
g (7)  
a (3)  
a (1)  
a (1)  
a (1)  
2
P. officinarum  
P. officinarum  
P. caespitosa  
CP  
9
yes (3)  
yes (2)  
yes (3)  
n.d.  
2
110  
CP  
22  
16  
14  
28  
30  
30  
28  
6x (22)  
5x (16)  
5x (14)  
6x (28)  
6x (30)  
6x (30)  
6x (28)  
2
111  
CP  
2
2
2
2
2
113  
114  
115  
116  
117  
IFC (6)  
IFC (10)  
IFC (10)  
IFC (10)  
IFC (10)  
P. officinarum  
n.d.  
P. officinarum  
P. officinarum  
P. officinarum  
n.d.  
n.d.  
54 (1)  
n.d.  
n.d.  
n.d.  
References: Accession labels refer to the respective localities listed in Table 1. Design of seed sampling:  
accessions 2102 – 2111 represent the composite progenies (CP) of all seeding maternal plants that were  
available at locality; accessions 2113 – 2117 comprise the progeny arrays sourced from individual fruiting  
capitula (IFC) sampled separately at each locality. The number of fruiting capitula sampled and the number  
of analysed plants are given in parentheses. The DNA ploidy level was determined using flow cytometry,  
the basic chromosome number in Pilosella is x = 9. The different isozyme phenotypes (clones), designated  
by specific letters, were distinguished using a combined pattern of four enzyme systems analysed (see  
M & M section for details). The isozyme phenotype ‘fʼ within a multiclonal accession 2108 refers to plant  
with a somatic chromosome number of 2n = 39 presented in the same row. Some of the diverse cytotypes  
that undoubtedly represent different clones, still shared identical isozyme phenotypes: specifically, the  
phenotype ‘aʼ was shared by two cytotypes within accession 2104 and phenotypes ‘cʼ and ‘dʼ were shared  
by two cytotypes comprising the accessions 2106 and 2108. The isozyme phenotype ‘aʼ has previously been  
detected in hexaploid apomictic P. officinarum originating from two other localities in Patagonia whereas the  
isozyme phenotype ‘gʼ has previously been detected in pentaploid apomicic P. officinarum originating from  
another locality in this region (Krahulec & Krahulcová, 2011). Abbreviations and symbols used: M – a long  
hemizygous (marker) chromosome is present in the karyotype; n.d. – not determined.  
and of an aneuploid putative hybrid, respectively: this the experimental garden of the Institute of Botany,  
indicative test allowed to estimate if the transfer of Průhonice, Czech Republic. Individual seedlings  
the paternal genome to progeny is possible by means were replanted into seedling trays and the DNA  
of pollen.  
ploidy level of adequately grown young plants was  
Seeds were sown into pots with sterilized garden determined (see below). Later on, the plants were  
soil and were left to germinate in a greenhouse in repotted and transferred to outdoor garden beds for  
311  
Bol. Soc. Argent. Bot. 56 (3) 2021  
Fig. 1. Map of localities (black circles) in southern Patagonia of Pilosella species under study. The accession  
labels, corresponding to those presented in Table 1, refer to the following species: P. officinarum (accessions  
2
2
103, 2104, 2105, 2109, 2110, 2113 + 2114, 2115, 2116 and 2117), P. caespitosa (accessions 2102 and  
111) and P. brachiata/P. piloselliflora (accession 2106 and 2108).  
continued cultivation. A total of 299 progeny plants (FCM). The DAPI staining method (Otto, 1990)  
were raised from the seeds (Table 2). Their accession was applied using the ice-cold nuclei-extracting  
labels correspond to the respective localities where buffer (Otto I) and the staining buffer (Otto II)  
−1  
the seeds were sampled (Tables 1 and 2). Accessions supplemented with 2 µl·ml mercaptoethanol as an  
113 and 2014 share one locality because they antioxidant. Fluorescence intensity was determined  
2
were sampled from six and ten nearby occurring using a CyFlow Ploidy Analyser PA II (Partec  
maternal plants, respectively (Table 2). Herbarium GmbH, Münster, Germany) equipped with an HBO  
specimens of cultivated and analysed progeny high-pressure mercury lamp for UV excitation.  
plants are deposited in the Herbarium of the Institute For details of the procedure, see Krahulcová et al.  
of Botany, Průhonice (PRA). Determination of (2004). The diploid Pilosella lactucella (Wallr.) P.  
species was done by Siegfried Bräutigam (Dresden, D. Sell & C. West (DNA content 4.07 pg/2C, Suda  
Germany) using both live plants grown in the et al., 2007) was used as the internal standard. When  
experimental garden and their herbarium specimens. evaluating the FCM analyses, only histograms in  
The nomenclature follows Bräutigam & Greuter which the coefficient of variance of peaks (hereafter  
(
2007–2009) and Bräutigam (2017).  
referred to as CV) did not exceed 3% were accepted.  
A total of 3000 nuclei were scored for each sample.  
The reproduction mode was principally  
determined using the emasculation/open pollination  
Ploidy level and reproduction mode in recovered  
progeny  
DNA ploidy levels (Suda et al., 2006) were experiment, which allows us to distinguish  
determined in seedlings using flow cytometry parthenogenetic (assumed to be apomictic), sexual  
312  
A. Krahulcová and F. Krahulec - Pilosella in Patagonia  
and seed-sterile plants (Gadella, 1984; Krahulcová et enzymatic systems provided sufficient resolution  
al., 2004). Emasculation was carried out by cutting within individual cytotypes of numerous polyploid  
off the whole upper part of an unopened inflorescence taxa of Pilosella (Krahulec et al., 2004; Krahulcová  
(capitulum) before anthesis; the anthers and stigmas et al., 2009, 2014; Krahulcová & Krahulec, 2020).  
were removed, but the ovaries remained untouched.  
Given that fertilization-independent seed formation Chromosome numbers and pollen stainability  
is predominantly coupled with apomeiosis in wild-  
Chromosome numbers were determined  
type apomicts within Pilosella, this test is an especially for selected plants which represented  
approximation for apomictically reproducing plants individual accessions and individual clones as  
(
Bicknell & Koltunow, 2004; Hand et al., 2015).  
implied from specific isozyme phenotypes. In those  
sporadic aberrant plants that were distinguishable  
by morphological traits from other plants within  
Clonal structure  
Clonal (genotypic) identity was examined each of the two accessions 2104 and 2108, the  
in each accession and plants representing an chromosomes were counted as well (Table 2). Plants  
identical taxon/cytotype were compared among that were uniform in morphology and belonged  
accessions (Table 2). An extent of morphological to a common hexaploid clone of P. officinarum  
and karyological uniformity within an accession (i.e. bearing the isozyme phenotype labelled ‘a’ in  
was preliminarily assessed, based on a general Table 2) were cytotyped in only five out of the ten  
appearance of plant phenotypes (morphotypes) and accessions in which this clone was recorded (Table  
on their corresponding cytotypes, respectively. If the 2). Chromosomes were counted in metaphases  
cultivated plants showed high morphological and in root-tip meristems. Root-tips were pre-treated  
karyological uniformity within an accession, one to with a saturated solution of α-bromonaphtalene  
three individuals per accession were chosen for the for 3 hours at room temperature, rinsed in water  
determination of clonal identity. Individuals that and fixed in cold acetic-ethanol (1: 3) overnight.  
showed some diversity in morphological features The fixed material was stored in 70% ethanol at 4  
within an accession were included in addition; °C until required. The maceration was carried out  
6
9 plants were analysed for clonal structure in in 1N HCl at 60 °C for 7 min. The root-tips were  
total (Table 2). Clonal identity was inferred from then rinsed in water and the cut meristems were  
unique patterns of isozyme phenotypes (Table squashed in a drop of lacto-propionic orcein (Dyer,  
2
) derived from a combination of four tested 1963). Only temporary slides were made.  
enzymes (AAT, LAP, 6-PGDH/PGM and EST). An indicative evaluation of pollen fertility  
Electrophoresis was performed on crude protein was carried out for one plant representing the  
extracts of leaf material. Tissue was ground in common eu-hexaploid P. officinarum (2n = 54)  
ice-cold Tris-HCl extraction buffer: 0.1 M Tris- and for one aneuploid plant (2n = 46) of a putative  
HCl pH 8.0; 70 mM 2-mercaptoethanol, 26 mM hybrid origin, representing the morphotype of  
sodium metabisulfite, 11 mM ascorbic acid, 4% the hybridogeneous species P. brachiata/ P.  
polyvinyl-pyrrolidone. Roughly 60 mg of fresh leaf piloselliflora (for explanation see Discussion,  
material was homogenized with Dowex.Cl (1-X8) Apomictic nature…). Pollen fertility was estimated  
on ice in 0.7 ml of extraction buffer. Extracts were as pollen stainability using Alexanderʼs stain  
centrifuged for 10 min at 13,000 rpm and clear (Alexander, 1969). The stain was applied to fresh  
supernatants were stored at ̶ 75 °C. All enzyme pollen, following the procedure described by  
systems were investigated on polyacrylamide gels Rotreklová & Krahulcová (2016). A total of 300  
8% acrylamide, discontinuous tris-glycine buffer pollen grains were evaluated per plant.  
system, pH 8.3). The staining procedures followed  
Vallejos (1983) LAP (Fast Black K), AAT (+ Fast Reproductive origins in seeds and embryo ploidy  
Violet B) and Wendel & Weeden (1989) 6-PGDH, levels  
PGM (NADP), EST-colorometric (b-naphtyl Reproductive origins and embryo ploidy levels  
(
̶
̶
phosphate, Fast Blue BB) with modifications. were screened in accessions 2104, 2105 and 2108,  
The isoenzyme patterns were visually compared using the remaining seeds that were sampled in  
among individual plants. In previous studies, the field but not used to obtain progeny. Flow  
313  
Bol. Soc. Argent. Bot. 56 (3) 2021  
cytometric seed screening (FCSS) was used (Matzk room temperature, stained and analysed (Krahulcová  
et al., 2000) with the following modifications for & Suda, 2006; Krahulcová et al., 2011). The  
Pilosella: The seeds were kept in a fridge in order maternal ploidy peak was used as the internal ploidy  
to retain endosperm tissue, allowing us to get standard and histograms with CVs below 5% were  
interpretable endosperm peaks in flow-cytometric considered. This threshold of accuracy of analyses  
histograms for up to several months. Before the was still acceptable because two simultaneous  
analysis, filled (well developed) seeds were screened peaks in a histogram are indicative of a difference  
under a stereomicroscope by putting appropriate in DNA content between two components within a  
pressure with tweezers on each seed. Filled seeds sample, corresponding to double the CV (Doležel &  
were pooled either two at a time (Table 3) or ten at Göhde, 1995). The quantification of embryo ploidy  
a time (Table 4), so either seed doublets or groups classes was based on the proportions of nuclei in  
comprising ten seeds each were prepared for FCM their respective embryo ploidy peaks (Krahulcová  
analysis. If possible, 5000 nuclei were scored for & Suda, 2006).  
each sample analysed. Basically, the procedure was  
the same as the one used for the detection of ploidy ploidy level of progeny embryos (when analysing  
level in seedlings (see above). both the seed doublets and pooled samples of  
The FCSS analysis allows us to detect both the  
When analysing seed doublets, two cypselae ten seeds) and their reproductive origins (when  
(
achenes) were chopped in the nuclei-isolating analysing the seed doublets). FCSS analyses of  
2
buffer with a razor blade together with 0.05 cm  
pooled seed samples sourced from facultatively  
of leaf tissue of Bellis perennis L. (DNA content apomictic mothers commonly reveal the most  
.96 pg/2C, Leong-Škorničková et al., 2007) as frequent embryos of apomictic origin that maintain  
3
the reference standard. The suspension was filtered the maternal ploidy level; in addition, this procedure  
and incubated for 10 min at room temperature, can distinguish and quantify the number of potential  
stained and analysed (Krahulcová et al., 2009, less frequent embryos differing in ploidy level  
2
011). Histograms with CVs below 3.5% were from the maternal parent, namely, the products  
considered. When analysing pooled samples of (a) heteroploid crosses, (b) sexual mating via  
comprising ten seeds, ten cypselae were chopped in unreduced gametes and (c) haploid parthenogenesis  
the nuclei-isolating buffer with a razor blade, and the (Krahulco & Suda, 2006). This way, the potential  
suspension was filtered and incubated for 10 min at diversity in embryo ploidy level can be traced.  
Table 3. Flow cytometric seed screening (FCSS) of remaining seeds (seed doublets) of Pilosella from the  
field that were not used to obtain progeny. The accession symbols and chromosome numbers that were  
detected paralelly among cultivated plants, follow Table 2. The basic chromosome number in Pilosella is  
x = 9. Symbols of species: OFF – P. officinarum; BRA – P. brachiata; PF – P. piloselliflora. The symbol of  
seed origin 2n + 0 (Harlan and de Wet 1975) refers to apomictic origin of embryo. For description of both  
FCSS methods used and for their detection capacity, see M & M section.  
Plants grown from the same  
FCSS analysis of seed doublets  
source of seeds  
Seed origin  
Chromosome  
number  
2n + 0  
Embryo  
Other  
Embryo  
Total Nr of seeds  
Accession Species  
Nr of  
Nr of  
ploidy  
seeds  
ploidy  
seeds  
2
n = 6x = 54,  
2104  
2105  
2108  
OFF  
OFF  
6x  
20  
20  
12  
0
0
0
20  
20  
12  
2n = 51  
2n = 6x = 54  
n = ca 5x =  
6x  
2
BRA/PF  
ca 5x  
4
4, 2n = 39  
52  
314  
A. Krahulcová and F. Krahulec - Pilosella in Patagonia  
Table 4. Flow cytometric seed screening (FCSS) of remaining seeds (bulked samples of ten seeds) of  
a
Pilosella from the field that were not used to obtain progeny. For explanation see Table 3. The embryo  
ploidy level corresponds to polyhaploid origin (n + 0, Fig. 3C).  
FCSS analysis of bulked samples comprising 10 seeds  
Chromosome  
Accession  
Species  
Maternal  
Other embryo  
ploidy  
Total Nr  
of seeds  
number  
Nr of seeds  
Nr of seeds  
embryo ploidy  
2
n = 6x =  
a
2
104  
108  
OFF  
6x  
47  
3x  
3
50  
50  
54, 2n = 51  
2
n = ca 5x =  
2
BRA/PF  
ca 5x  
50  
0
44, 2n = 39  
100  
reSultS  
In addition, 39 plants cultivated from seeds  
obtained from two other localities in Argentina  
Taxonomic identity, cytotypes and pollen (accessions 2106 and 2108 in Table 1 and  
stainability Table 2) were inconclusively determined as P.  
The plants cultivated from seeds originating brachiata (P. officinarum × P. piloselloides/  
from nine populations in Chile represented the bauhini, hybrid formula P. officinarum > P.  
basic species Pilosella officinarum (Table 1, piloselloides/bauhini) or P. piloselliflora (P.  
Table 2, Fig. 1). Hexaploids (2n = 54) prevailed officinarum × P. floribunda, hybrid formula P.  
whereas pentaploids (2n = 45) were detected only officinarum  P. floribunda). These plants were  
among plants of P. officinarum which made up a highly homogeneous in morphology within  
mixed pentaploid/hexaploid population situated each of the two recovered accessions, with the  
close to Punta Arenas (accessions 2113 and 2114 exception of a single plant within accession  
in Table 2, Fig. 1). While both hexaploids and 2108, which later turned out to be of a deviating  
pentaploids morphologically matched typical cytotype (see below). Although the overall  
P. officinarum, the rather deviating appearance morphological appearance was slightly different  
of a single plant within hexaploid accession between accessions 2106 and 2108, the variation  
2
104 suggested that this plant is a hybrid of of all cultivated plants corresponded to the  
P. officinarum and another, unknown species species P. brachiata/P. piloselliflora. These  
Table 2). This atypical plant turned out to be plants belonged to three aneuploid cytotypes:  
(
aneuploid (2n = 51, Fig. 2A) lacking the three hyperpentaploid (2n = 46, accession 2106  
chromosomes when compared with the eu- in Table 2, Fig. 2B), hypopentaploid (2n =  
hexaploid cytotype (2n = 54).  
44, accession 2108 in Table 2, Fig. 2C), and  
Another basic species that was recorded hypertetraploid (a sporadic cytotype with 2n  
among the progeny plants was Pilosella = 39, accession 2108 in Table 2, Fig. 3A). The  
caespitosa (Dumort.) P.D. Sell & C. West from overall morphological appearance of the last  
two localities in Argentina (accessions 2102 aberrant individual (2n = 39) still allowed to  
and 2111 in Table 1 and Table 2). All 36 raised distinguish it from the other aneuploid (2n =  
plants of P. caespitosa were pentaploid (Table 44) plants constituting accession 2108. Pollen  
2
). Chromosome counting of three selected stainability reached 80% and 88% in an eu-  
plants of P. caespitosa revealed the chromosome hexaploid (2n = 54) plant of P. officinarum  
number of 2n = 45, which included a long (accession 2115) and in the aneuploid (2n = 46)  
hemizygous chromosome (symbol ‘M’ following plant of P. brachiata/P. piloselliflora (accession  
the chromosome number in Table 2).  
2106), respectively.  
315  
Bol. Soc. Argent. Bot. 56 (3) 2021  
Fig. 2. Chromosomes in aneuploid cytotypes of Pilosella. Aneuploid plants were raised from seeds  
originating from altogether three populations in southern Patagonia (accession numbers follow Table 1 and  
Table 2). The mitotic metaphases were obtained from root-tip meristems. A: accession 2104, a putative  
hybrid of P. officinarum with another (unknown) species, 2n = 51. B: accession 2106, a hybridogeneous  
taxon of P. brachiata/P. piloselliflora, 2n = 46. C: accession 2108, a hybridogeneous taxon of P. brachiata/P.  
piloselliflora, 2n = 44.  
Clonal structure  
from two localities in Chilean Patagonia that had  
All obtained hexaploids assigned to P. been examined in a previous study (Krahulec  
officinarum shared an identical isozyme phenotype & Krahulcová, 2011) revealed a concordance  
(
labelled ‘a’ in Table 2). A simultaneous analysis in all analysed isozyme phenotypes, suggesting  
of these plants with hexaploid P. officinarum isoclonality. One hypo-hexaploid plant,  
316  
A. Krahulcová and F. Krahulec - Pilosella in Patagonia  
Fig. 3. Flow-cytometric fluorescence histograms. A: Pilosella brachiata/P. piloselliflora, accession 2108:  
simultaneous analysis of DAPI-stained nuclei of four hypo-pentaploid seedlings (peak 2, chromosome number  
determined as 2n = 44) and a single hyper-tetraploid seedling (peak 1, chromosome number determined as 2n =  
39). B: P. officinarum, accession 2105: simultaneous FCSS analysis of two seeds sampled from plants in the field;  
diploid P. lactucella used as the internal standard (peak 1). The histogram represents the fluorescence intensity  
of DAPI-stained nuclei of apomictically derived hexaploid embryos (6x, peak 2) and of dodecaploid autonomously  
formed endosperm (12x, minor peak 3). C: P. officinarum, accession 2104: FCSS analysis of a pooled sample of  
ten seeds sampled from plants in the field. The histogram represents the fluorescence intensity of DAPI-stained  
nuclei of a trihaploid embryo (3x, minor peak 1), of other hexaploid embryos (6x, peak 2) and of dodecaploid  
endosperm (12x, minor peak 3) attributed to hexaploid embryos. The peak of hexaploid endosperm, which is  
attributed to a trihaploid embryo, is overlapped by peak 2. All accession numbers follow Table 1 and Table 2.  
317  
Bol. Soc. Argent. Bot. 56 (3) 2021  
corresponding in morphology to a hybrid of P. therefore highly probably apomictic reproduction.  
officinarum and an unknown parent (2n = 51, Emasculation experiments were not done in  
accession 2104 in Table 2), also exhibited isozyme time in the case of aneuploid accession 2108,  
phenotype ‘a’, which was assigned to typical and plants produced normal seeds following  
hexaploid P. officinarum. Seven pentaploid plants open-pollination. The seed set was not evaluated  
of P. officinarum that constituted accession 2113 in one aneuploid individual (2n = 51) from  
from Chile had a concordant isozyme phenotype accession 2104 (Table 2) because of damage to  
(
labelled ‘g’ in Table 2) with an analogous fruiting capitula caused by insects. Emasculation  
pentaploid P. officinarum that had previously experiments were not carried out for accessions  
been recorded at another locality in the country 2103, 2113 + 2114, 2115, 2116 and 2117, which  
(
Fig. 1, Krahulec & Krahulcová, 2011). Six were found to be isoclonal within the hexaploid  
analysed plants that represented P. caespitosa and cytotype of P. officinarum (see above) and shared  
were sourced from two localities in Argentina isozyme phenotypes with two apomictic clones of  
(
accessions 2102 and 2111) shared a common P. officinarum previously identified in the region  
isozyme phenotype (labelled ‘b’ in Table 2).  
Clonal diversity within an individual cytotype  
under study (Table 2).  
was only recorded in two accessions, 2106 and Reproductive origins of seeds from the field  
108, from populations in Argentina, assigned A total of 52 seeds from three localities were  
2
to P. brachiata/P. piloselliflora (Table 2). These screened for seed origin. All the FCSS analyses  
were eighteen hyper-pentaploid plants (2n = 46) of seed doublets revealed an apomictic (2n +  
analysed within accession 2106, which possessed 0) origin of these seeds (accessions 2104, 2105  
three isozyme phenotypes, as well as twenty and 2108 in the Table 3, Fig. 3B). The embryos  
analysed hypopentaploid plants (2n = 44) within ascribed to P. officinarum (accessions 2104 and  
accession 2108 (Table 2). Comparison between 2105) were hexaploid. The ploidy of embryos  
accessions 2106 and 2108 found that plants in accession 2108 (assigned to P. brachiata/P.  
from these accessions shared the most common piloselliflora) corresponded to an approximately  
isozyme phenotype ‘d’ and also the less common pentaploid ploidy level, which is in agreement  
isozyme phenotype ‘c’ (Table 2). In general, with a hypopentaploid chromosome number of  
all five isozyme phenotypes (labelled ‘c’, ‘d’, 2n = 44 that was detected in parallelly cultivated  
e’, ‘f’ and ‘h’ in Table 2) that were detected plants (Table 3). FCSS analyses of pooled seed  
in accessions 2106 and 2108 were similar to samples comprising ten seeds (100 seeds were  
each other in their isozyme patterns, but certain analysed in total) revealed a prevalence of  
differences were still recorded among them. hexaploid embryos in seeds of P. officinarum.  
Specifically, the isozyme phenotypes ‘c’, ‘d’, In addition, three embryos (i.e. 6% out of all  
e’ and ‘h’ had a rather distinct isozyme pattern analysed embryos attributed to P. officinarum)  
of the enzyme EST (for a demonstration of were triploid, indicating a polyhaploid origin  
isozyme phenotypes in selected plants, see Fig. (accession 2104 in the Table 4, Fig. 3C). All  
4
) whereas the enzymes AAT, LAP and 6-PGDH/ analysed embryos in pooled seed samples of P.  
PGM showed a uniform pattern. The isozyme brachiata/P. piloselliflora were approximately  
phenotype ‘f’ was characterized by a distinct pentaploid (accession 2108 in the Table 4), as  
pattern of the enzyme 6-PGDH whereas the other were the embryos in the seed doublets (see above).  
three enzymes had a uniform pattern.  
Analyses of pooled seed samples yielded a minor  
endosperm peak besides the major embryo peak  
Potential for parthenogenesis in plants grown in most histograms (Fig. 3C). This endosperm  
from seeds peak was always positioned at approximately  
A total of 21 raised plants selected to cover double the distance of the major embryo peak,  
all recorded taxa were tested for parthenogenetic implying that an overwhelming majority of  
seed formation (Table 2). All these plants set a analysed embryos were of apomictic origin (2n  
normal amount of seeds in emasculated capitula + 0). Each of these embryos had the same ploidy  
(
not quantified), implying parthenogenetic and level as the respective apomictic mother.  
318  
A. Krahulcová and F. Krahulec - Pilosella in Patagonia  
2
011). The hexaploid clone of P. officinarum  
probably has a broader distribution in southern  
Patagonia because we recorded it at nine additional  
localities in the present study (Fig. 1, Table 1, Table  
2
). Furthermore, we identified both previously  
reported clones/cytotypes of P. officinarum in one  
mixed pentaploid/hexaploid population (accessions  
2
113 and 2114 in Table 2, Fig. 1), which constitutes  
the first record of a mixed-cytotype population of  
Pilosella in Patagonia. Each individual leaf rosette  
of P. officinarum forms a single inflorescence  
(capitulum; Bräutigam, 2017) and both cytotypes  
recorded in southern Patagonia produce clonal  
apomictic seeds (Krahulec & Krahulcová, 2011).  
From the aforesaid mixed population, fruiting  
capitula were sampled separately and progeny  
originating from a single capitulum was always  
homogeneous as to its ploidy level; that is, it was  
either hexaploid or pentaploid (Table 2). Therefore,  
Fig. 4. Illustration of isozyme patterns in Pilosella each of the either hexaploid or pentaploid capitula  
acquired from analysis of enzyme system esterases  
must correspond to an individual hexaploid/  
(EST). The numbers at the top (codes of laboratory  
pentaploid maternal rosette of P. officinarum in  
the source mixed-cytotype population and no inter-  
cytotype was recorded.  
The pentaploid isoclonal apomictic plants raised  
from seeds originating from two localities in  
southern Argentina (accessions 2102 and 2111 in  
samples) correspond to individual cultivated plants;  
the letters at the bottom correspond to specific  
isozyme phenotypes as presented in Table 2. The  
numbers 66, 68 and 80–91 represent cultivated  
accession 2106 (Pilosella brachiata/P. piloselliflora)  
whereas the number 60 represents cultivated  
accession 2111 (Pilosella caespitosa). Only some Table 1 and Table 2) were classified as Pilosella  
of the plants constituting accessions 2106 and 2111 caespitosa, which is a new species for Patagonia.  
(
Table 2) are included here.  
Similarly, the discovery of aneuploid apomictic  
and polyclonal plants classified as P. brachiata/P.  
piloselliflora implies the occurrence of another  
species of Pilosella in Argentinian Patagonia  
(accessions 2106 and 2108 in Table 1 and Table 2).  
Based on morphology, however, the plants in these  
two accessions were determined unequivocally  
diScuSSion  
Taxonomic, clonal and cytotype diversity  
Here we report P. caespitosa as a new species for as either P. brachiata or P. piloselliflora. These  
the flora of Argentina. With all probability it will be two hybridogeneous species of Pilosella share  
found also in the Chilean part of Patagonia in due P. officinarum as one of the parents (Bräutigam  
time.  
& Greuter, 2007–2009; Bräutigam, 2017). The  
The history of the invasion of Pilosella common predominance of morphological characters  
officinarum in Patagonia is quite recent. Soon of P. officinarum in the species P. brachiata and  
after it was recorded in Patagonia for the first time P. piloselliflora, respectively, can hinder their  
(Moore, 1983), this species was reported to invade identification. Interestingly, both these accessions  
the northern Tierra del Fuego rangelands (Livraghi of P. brachiata/P. piloselliflora shared two most  
et al., 1998). Later, two apomictic cytotypes/clones common isozyme phenotypes (labelled ‘c’and ‘d’in  
of P. officinarum were identified in southernmost Table 2) that were specific to this taxon whereas the  
Chile, the Magallanes province, namely a hexaploid other three distinct isozyme phenotypes (labelled  
clone occurring at two localities and a pentaploid ‘e’, ‘f’and ‘h’in Table 2) were similar to each other.  
clone occurring at another (Krahulec & Krahulcová, Such similarity in the pattern of isozyme phenotypes  
319  
Bol. Soc. Argent. Bot. 56 (3) 2021  
may imply a close genetic relation between two populations. Both the eu-hexaploid P. officinarum  
populations of P. brachiata/P. piloselliflora that (2n = 54) and the hyper-pentaploid P. brachiata/P.  
are situated approximately 45 km apart (accessions piloselliflora (2n = 46) exhibited fairly high pollen  
2
106 and 2108 in Fig. 1). Nevertheless, each of stainability implying a capacity for sexual mating  
these two separate populations represents a specific as the pollen parent. This agrees with the fact  
genotype(s), as implies the cytotype diversity of that, despite autonomous apomixis independent  
raised apomictic and aneuploid progeny (Table 2). of pollen, most polyploid apomictic biotypes of  
Evidently, aneuploidy is compatible with viability Pilosella produce sufficient amounts of viable  
in polyploid Pilosella biotypes, as has already been reduced pollen allowing them to serve as the pollen  
shown in mixed-cytotype populations in Europe parent (Rotreklová & Krahulcová, 2016).  
(e.g. Krahulcová et al., 2009, 2014). The unavailability of maternal plants from the  
Summarizing all previously published data (see field and the design of the seed sampling did not  
the Introduction for references) and those presented allow us to explain with certainty the origin of  
in this study, the alien flora of Patagonia currently the aneuploids grown from the seeds. Each of the  
includes seven Pilosella species, both basic (P. respective accessions 2104, 2106 and 2108 (Table  
aurantiaca, P. caespitosa, P. officinarum and P. 2) was composed of pooled progeny of an unknown  
piloselloides) and hybridogeneous (P. flagellaris, P. number of maternal individuals (see the Material  
floribunda and tentatively classified P. brachiata/P. and methods). Because living plants were not  
piloselliflora). No mixed-species population was collected, neither morphological nor karyological  
detected among those examined because each of traits could be compared between any maternal  
the thirteen populations sampled were composed of plant from the field and the respective progeny array  
a single taxon.  
raised from the seeds sampled. Therefore, each  
of the aneuploid progeny individuals originated  
Apomictic nature of populations and origins of either de novo within an euploid population or as  
variation a copy of the maternal aneuploid genome inherited  
The studied polyploid populations of Pilosella through apomixis. The single aneuploid individual  
in southern Patagonia are apomictic, as can be in accession 2104 was most likely generated de  
inferred from (a) the formation of parthenogenetic novo within a hexaploid population of P. officinarum  
seeds in raised progeny plants (Table 2), (b) the because it was raised among eu-hexaploid plants  
apomictic origins of analysed seeds that were grown from seeds sampled from the same  
produced in the field (Tables 3 and 4), and (c) the population (Table 2). Moreover, one morphological  
maintenance of maternal ploidy level in progeny peculiarity distinguished this single aneuploid plant  
embryos (Tables 3 and 4). The low frequency of from the other raised eu-hexaploid plants of P.  
trihaploid embryos recorded among hexaploid officinarum, suggesting occasional hybridization  
embryos of P. officinarum (Table 4) suggests a of P. officinarum with another (unknown) species.  
low degree of residual sexuality in this apomictic The putative hybridizing parents were most likely  
cytotype. This finding corresponds with the well- a hexaploid of P. officinarum and a pentaploid of an  
known facultativeness of apomixis in Pilosella unknown species of Pilosella because the aneuploid  
(
2
e.g. Bicknell & Koltunow, 2004; Fehrer et al., hybrid progeny (2n = 51) had a chromosome  
007). The apomictic character of P. officinarum number between the pentaploid (2n = 45) and the  
and P. caespitosa in Patagonia is also reflected in hexaploid (2n = 54) ploidy level. However, potential  
the clonal homogeneity of the raised plants within heterogeneity among fruiting plants in the field  
individual species and cytotypes (Table 2). At least allows for an alternative scenario. Specifically,  
five different but probably closely related aneuploid the parent of the hybrid apomictic plant with an  
genotypes were found in two apomictic accessions aneuploid the chromosome number of 2n = 51 could  
of P. brachiata/P. piloselliflora sampled from theoretically be already established at the locality  
two separate populations (Table 2, Fig. 1). The and its single aneuploid progeny individual could  
minor genotype and cytotype diversity recorded have happened to be raised from an apomictic seed.  
between and within these two accessions may  
Progeny accessions 2106 and 2108 most  
imply occasional sexual mating within the source likely originated from two aneuploid apomictic  
320  
A. Krahulcová and F. Krahulec - Pilosella in Patagonia  
populations of P. brachiata/P. piloselliflora is both sexual and apomictic in Europe (Rotreklová  
that were already established in the field. This et al., 2005). In spite of the expected apomictic  
assumption is based on (a) the reproduction mode reproduction, the putative parental biotypes might  
and morphological appearance, (b) variation in occasionally hybridize as either parent owing to  
chromosome numbers, and (c) clonal structure. residual sexuality operating in apomictic mothers  
Specifically, (a) the remaining seeds from which and to the production of viable pollen (e.g. Fehrer  
plants of accession 2108 were raised were of et al., 2007; Rotreklová & Krahulcová, 2016).  
apomictic origin (Tables 3 and 4). Although The two apomictic populations of P. brachiata/P.  
no remaining source seeds of accession 2106 piloselliflora in Patagonia exhibited slight diversity  
were available, the obtained progeny produced in their aneuploid chromosome numbers and  
parthenogenetic seeds, implying inherited apomictic also in their isozyme phenotypes (Table 2). Such  
reproduction as well (Table 2). A great uniformity variation could be derived from occasional sexual  
in overall morphological appearance was observed mating that potentially shaped the progeny of  
among the plants cultivated from seeds of both the primary interspecific hybrids. The diverse  
accessions, which also supports an apomictic origin aneuploid cytotypes could then have arisen by  
of the seeds sampled in the field. (b) All cytotyped irregular male/female meiosis during sporogenesis.  
progeny cultivated from seeds in accessions 2106  
and 2108 was exclusively aneuploid; the aneuploid Increasing risk of invasive hybrids in Patagonia  
chromosome numbers were clustered into three  
The plants raised from seeds appear to be  
cytotypes differing by two chromosomes in most apomictic and species-uniform within populations  
of the plants analysed (Table 2). (c) As inferred in southern Patagonia examined to date. Residual  
from isozyme phenotypes, the clonal structure of sexuality and viable pollen are two crucial attributes  
both these accessions indicated the sharing of two allowing sexual mating of a facultative apomict as  
most common clones (genotypes), the other three either parent. Both attributes needed for occasional  
clones being considerably rarer (Table 2). All five hybridization were found in the hexaploid cytotype  
detected clones are probably closely related to each of P. officinarum, which is not rare in southern  
other, as implied by the similarity of their respective Patagonia. Indeed, the properties of plants obtained  
isozyme phenotypes.  
by the cultivation of seeds sampled in the field  
It is probable that these two aneuploid imply sporadic hybridization of P. officinarum  
populations of P. brachiata/P. piloselliflora arose with another species. However, the way seeds  
recently in Argentinian Patagonia by occasional were sampled for this study does not allow us to  
interspecific hybridization. Pilosella officinarum ascertain whether the putatively hybrid plants had  
as well as P. piloselloides and P. floribunda occur already been established in the field, or whether  
as non-indigeneous taxa in Patagonia (Zuloaga the hybrid seeds originated de novo. Regardless of  
&
Morrone, 1999; Krahulec & Krahulcová, this missing information, the following traits that  
2
011), and the presence of these putative parental may be indicative of ongoing hybridization in the  
species is sufficient for the formation of both field were observed in the seed-cultivated plants:  
P. brachiata (DC.) F. W. Schultz & Sch. Bip. clonal and cytotype diversity among progeny  
(
P. officinarum × P. piloselloides/P. bauhini) originating from certain populations, aneuploidy  
and P. piloselliflora (Nägeli & Peter) Soják (P. and a morphological affiliation of putative hybrids  
officinarum × P. floribunda; Bräutigam, 2017). with P. officinarum, which was most likely one of  
The shared putative parent Pilosella officinarum is their parents. One of the aneuploid hybrids that  
apomictic in Patagonia, but the rarity of polyhaploid were tentatively classified as the hybridogeneous  
progeny (Table 4) suggests some degree of residual species P. brachiata/P. piloselliflora produced  
sexuality operating in the common hexaploid clone. fairly viable pollen, similarly to that of eu-hexaploid  
Facultatively apomictic reproduction might also be P. officinarum. Consequently, both the biotypes,  
expected in P. floribunda in Patagonia because this the putatively parental one (P. officinarum) and  
is the reproduction mode of most populations of the derived one (P. brachiata/P. piloselliflora)  
this species in Europe (Krahulec et al., 2004, 2008). can take part in sexual mating as the male parent.  
The third putative parental species, P. piloselloides, Furthermore, the existence of a mixed-cytotype  
321  
Bol. Soc. Argent. Bot. 56 (3) 2021  
population of P. officinarum, which was recorded reported from Chilean Patagonia, were found  
in Patagonia for the first time, may increase the in additional populations, of which eight were  
likelihood of inter-cytotype hybridization within hexaploid and one was mixed in its cytotype  
this species.  
composition. A new species for Patagonia, the  
Hybrids of many angiosperm taxa have apomictic pentaploid P. caespitosa, was represented  
become invasive in their secondary distribution by isoclonal plants grown from seeds originating  
areas regardless of whether a native species had from two populations in Argentina. Some of the  
hybridized with an introduced one, or whether progeny plants cultivated from seeds sampled at  
both the parents had been introduced (Ellstrand three localities represented seed-fertile aneuploids  
&
Schierenbeck, 2000). In general, polyploidy the morphology of which implied a hybrid origin  
and clonal growth are rather common among and indicated P. officinarum as one of the parents.  
successful plant invaders, especially those capable Specifically, one aneuploid (2n = 51) hybrid plant  
of uniparental reproduction, including apomixis of P. officinarum and an undetermined species  
(e.g. Rambuda & Johnson, 2004; te Beest et al., was found among other eu-hexaploid (2n = 54)  
2
012). However, invasive or potentially invasive plants of P. officinarum constituting a progeny  
apomictic hybrids that themselves had originated accession sourced from a population in Chile.  
from a facultatively apomictic parent or parents are Other accessions, originating from two populations  
not common. Such hybrids have been detected, for in Argentina, were exclusively aneuploid. Their  
example, in the genera Amelanchier (Ellstrand & morphology resembled either P. brachiata (P.  
Schierenbeck, 2000) and Rubus (Clark & Jasieniuk, officinarum > P. piloselloides/bauhini) or P.  
2
012) of the Rosaceae family. Another example are piloselliflora (P. officinarum  P. floribunda), which  
non-indigenous species of Pilosella (Asteraceae) are two mutually related hybridogeneous species  
hybridizing in New Zealand (Morgan-Richards native in Europe. These two aneuploid accessions  
et al., 2004; Trewick et al., 2004). Similarly, the comprised a single hypertetraploid plant (2n = 39)  
present study recorded some signs of interspecific and seventeen plants that were polyclonal within  
hybridization of non-native Pilosella in southern each of two approximately pentaploid cytotypes  
Patagonia. Because of polyploidy, clonal growth (2n = 44, 2n = 46). The presence of seed-fertile,  
and facultative apomixis allowing occasional aneuploid and parthenogenetic hybrids among  
hybridization, non-indigenous biotypes of Pilosella the cultivated plants signifies an increased risk of  
pose a potential risk that invasive hybrids will arise the formation of new hybridogeneous genotypes  
in this part of the species’ secondary distribution of Pilosella in southern Patagonia. If such new  
area.  
genotypes are formed, they may have greater  
evolutionary and invasive potential.  
concluSionS  
author contributionS  
The following species of Pilosella have so far  
been mentioned as alien in Patagonia: P. aurantiaca,  
AK did all experimental work and prepared  
P. flagellaris, P. floribunda, P. officinarum and first draft of the paper; FK participated on plant  
P. piloselloides. The present study inquires into determination and prepared final version of the  
the diversity of progeny plants grown from seeds paper.  
sampled at thirteen populations of Pilosella in  
southern Argentina and Chile. The plants were  
examined for their taxonomic identity, DNA ploidy acKnowledgementS  
level (using flow cytometry), chromosome number,  
formation of parthenogenetic seeds and clonal  
We thank Petra Šarhanová (University of  
identity (using isozyme phenotypes). No mixed- Vienna, Austria) and Erwin Domínguez (INIA  
species population was recorded. Two apomictic Kampenaike, Punta Arenas, Chile) who collected  
clones of P. officinarum (one pentaploid and the seeds in Patagonia, Ivana Plačková (Průhonice) for  
other hexaploid), which had previously been isozyme studies, Siegfried Bräutigam (Germany,  
322  
A. Krahulcová and F. Krahulec - Pilosella in Patagonia  
Dresden) for help with plant determination, Juan BRÄUTIGAM, S. 2017. Pilosella Vaill. In: Jäger, E. J.  
Manuel Gorospe for the translation of Summary  
into Spanish, and Fred Rooks (Průhonice) for  
language correction of the manuscript. Jan Wild  
(ed.), Rothmaler Exkursionsflora von Deutschland,  
Gefäβpflanzen: Grundband, Ed. 21. pp. 817−829.  
Spektrum Akademische Verlag, Heidelberg, Berlin.  
is acknowledged for the preparation of the map. CHAPMAN, H.M., G. J. HOULISTON, B. ROBSON &  
Two reviewers are acknowledged for their critical  
remarks and suggestions. This work was supported  
by the Czech Academy of Sciences (long-term  
research & development project No. RVO  
I. ILINE. 2003. A case of reversal: the evolution and  
maintenance of sexuals from parthenogenetic clones  
in Hieracium pilosella. Int. J. Plant Sci. 164: 719-  
728. https://doi.org/10.1086/376819  
6
7985939).  
CIPRIOTTI, P. A., R. B. RAUBER, M. B. COLLANTES,  
K. BRAUN & C. ESCARTÍN. 2010. Hieracium  
pilosella invasion in the Tierra del Fuego steppe,  
Southern Patagonia. Biol. Invasions 12: 2523-2535.  
https://doi.org/10.1007/s10530-009-9661-7  
bibliograPhy  
ALEXANDER, M. P. 1969. Differential staining of  
CIPRIOTTI, P. A., R. B. RAUBER, M. B. COLLANTES,  
K. BRAUN & C. ESCARTÍN. 2012. Control  
measures for a recent invasion of Hieracium  
pilosella in Southern Patagonian rangelands. Weed  
Res. 52: 98-105.  
https://doi.org/10.1111/j.1365-3180.2011.00897.x  
CIPRIOTTI, P.A., M. B. COLLANTES, C. ESCARTÍN,  
S. CABEZA, R. B. RAUBER, & K. BRAUN.  
2014. Experiencias de largo plazo para el manejo  
de pastizales: El caso de Hieracium pilosella en la  
Estepa Fueguina. [Long-term experiences for the  
management of a grassland invasive herb: The case  
of Hieracium pilosella L. in the Fuegian Steppe.]  
Ecologia Austral 24: 135-144.  
aborted and nonaborted pollen. Stain Technol. 44:  
117-122.  
ARIZA ESPINAR, L. & M. M. CERANA. 2015.  
Hieracium L. In: ZULOAGA, F. O., M. J.  
BELGRANO & A. M. ANTÓN (eds.), Flora  
Argentina Vol. 7, Tomo II, pp. 15-42. Darwinion,  
CONICET, San Isidro.  
BECKMANN, M., A. ERFMEIER & H. BRUELHEIDE.  
2
009. A comparison of native and invasive  
populations of three clonal plant species in Germany  
and New Zealand. J. Biogeogr. 36: 865-878. https://  
doi.org/10.1111/j.1365-2699.2008.02048.x  
BECKMANN, M., H. BRUELHEIDE & A. ERFMEIER.  
2
011. Germination responses of three grassland  
CLARK, L.V. & M. JASIENIUK. 2012. Spontaneous  
hybrids between native and exotic Rubus in the  
Western United States produce offspring both by  
apomixis and by sexual recombination. Heredity  
109: 320-328. https://doi.org/10.1038/hdy.2012.45  
COOK, M. M, A. MARTELLI, M. SLELMAN & P. A.  
CIPRIOTTI. 2021. The role of competition invader  
colonization along stress gradients in the Fuegian  
steppe. Oecologia 195: 1031-1040.  
https://doi.org/10.1007/s00442-021-04894-y  
DAY, N. J. & H. L. BUCKLEY. 2011. Invasion patterns  
across multiple scales by Hieracium species over 25  
years in tussock grasslands of New Zealandʼs South  
Island. Austral. Ecol. 36: 559-570.  
species differ between native and invasive origins.  
Ecol. Res. 26: 763-771.  
https://doi.org/10.1007/s11284-011-0834-3  
BICKNELL, R. A. & A. M. KOLTUNOW. 2004.  
Understanding apomixis: Recent advances and  
remaining conundrums. Plant Cell 16: S228−S245.  
https://doi.org/10.1105/tpc.017921  
BRAUN, K., M. B. COLLANTES, L. YAHDJIAN, C.  
ESCARTIN & J. A. ANCHORENA. 2019. Increased  
litter decomposition rates of exotic invasive species  
Hieracium pilosella (Asteraceae) in Southern  
Patagonia, Argentina. Plant Ecol. 220: 393-403.  
https://doi.org/10.1007/s11258-019-00922-3  
BRÄUTIGAM, S. & W. GREUTER. 2007−2009.  
Pilosella. In: GREUTER, W. & E. E. VON  
RAAB-STRAUBE (eds.), Compositae. Euro+Med  
Plant Database – the information resource for  
https://doi.org/10.1111/j.1442-9993.2010.02191.x  
DOLEŽEL, J. & W. GÖHDE. 1995. Sex determination in  
dioecious plant Melandrium album and M. rubrum  
using high resolution flow cytometry. Cytometry 19:  
103-106.  
DYER, A. F. 1963. The use of lacto-propionic orcein in  
rapid squash methods for chromosome preparations.  
Stain Technol. 38: 85-90.  
[Acceso: 6 November 2017].  
323  
Bol. Soc. Argent. Bot. 56 (3) 2021  
ELLSTRAND, N. C. & K. A. SCHIERENBECK. 2000.  
Hybridization as a stimulus for the evolution of  
invasiveness in plants? Proc. Nat. Acad. Sci. 97:  
KRAHULCOVÁ, A., O. ROTREKLOVÁ, F.  
KRAHULEC, R. ROSENBAUMOVÁ  
&
I. PLAČKOVÁ. 2009. Enriching ploidy level  
diversity: the role of apomictic and sexual biotypes  
of Hieracium subgen. Pilosella (Asteraceae) that  
coexist in polyploid populations. Folia Geobot. 44:  
281-306.  
7
043-7050. https://doi.org/10.1073/pnas.97.13.7043  
FEHRER, J., A. KRAHULCOVÁ., F. KRAHULEC, J.  
CHRTEK JR., R. ROSENBAUMOVÁ & S.  
BRÄUTIGAM. 2007. Evolutionary aspects in Hieracium  
subgenus Pilosella. In: Grossniklaus, U., E. Hörandl,  
T. Sharbel & P. van Dijk. (eds.), Apomixis: Evolution,  
Mechanisms and Perspectives. Regnum Vegetabile 147,  
pp. 359-390. A.R.G. Gantner Verlag, Rugel.  
GADELLA, T. W. J. 1984. Cytology and the mode of  
reproduction of some taxa of Hieracium subgenus  
Pilosella. Proc. Kon. Ned. Acad. Wetensch. C87:  
https://doi.org/10.1007/s12224-009-9041-1  
KRAHULCOVÁ, A., O. ROTREKLOVÁ  
&
F. KRAHULEC. 2014. The detection, rate and  
manifestation of residual sexuality in apomictic  
populations in Pilosella (Asteraceae, Lactuceae).  
Folia Geobot. 49: 239-258.  
https://doi.org/10.1007/s12224-013-9166-0  
3
87−399.  
KRAHULCOVÁ, A. & J. SUDA. 2006. A modified  
method of flow cytometric seed screen simplifies  
the quantification of progeny classes with different  
ploidy levels. Biol. Plant. 50: 457−460.  
HAND, M. L., P. VÍT, A. KRAHULCOVÁ, S.  
D. JOHNSON, K. OELKERS, H. SIDDONS, J.  
CHRTEK JR., J. FEHRER & A. M. G. KOLTUNOW.  
2015. Evolution of apomixis loci in Pilosella and  
https://doi.org/10.1007/s10535-006-0070-9  
Hieracium (Asteraceae) inferred from the conservation  
of apomixis-linked markers in natural and experimental  
populations. Heredity 114: 17−26.  
KRAHULEC, F. & A. KRAHULCOVÁ. 2011. Ploidy  
levels and reproductive behaviour in invasive  
Hieracium pilosella in Patagonia. NeoBiota 11: 25-  
31. https://doi.org/10.3897/neobiota.11.1349  
KRAHULEC, F. & A. KRAHULCOVÁ. 2018. Impact of  
interspecific hybridization within a polyploid agamic  
complex of Pilosella (Asteraceae, Lactuceae) in  
KRAHULEC, F., A. KRAHULCOVÁ, J. FEHRER, S.  
BRÄUTIGAM, I. PLAČKOVÁ & J. CHRTEK  
JR. 2004. The Sudetic group of Hieracium subgen.  
Pilosella from the Krkonoše Mts: a synthetic view.  
Preslia 76: 223-243.  
KRAHULEC, F., A. KRAHULCOVÁ, J. FEHRER, S.  
BRÄUTIGAM & F. SCHUHWERK. 2008. The  
structure of the agamic complex of Hieracium  
subgen. Pilosella in the Šumava Mts and its  
comparison with other regions in Central Europe.  
Preslia 80: 1-26.  
https://doi.org/10.1038/hdy.2014.61  
HARLAN, J. R. & J. M. DE WET, 1975. On Ő. Winge and a  
prayer: the origins of polyploidy. Bot. Rev. 41: 361-390.  
JENKINS, T. A., & K. JONG.1996. Significance of  
polyploid variation in New Zealand Pilosella and  
Hieracium (Asteraceae). Bot. J. Scotl. 49: 75-87.  
KRAHULCOVÁ, A. & F. KRAHULEC. 2020. Ploidy level  
and breeding system in some populations of Pilosella  
(Asteraceae) in eastern and southern Slovakia. Thaiszia  
-
J. Bot. 30: 37-58.  
https://doi.org/10.33542/TJB2020-1-04  
KRAHULCOVÁ, A., F. KRAHULEC & H. M.  
CHAPMAN. 2000. Variation in Hieracium subgen.  
Pilosella (Asteraceae): what do we know about its  
sources? Folia Geobot. 35: 319-338.  
https://doi.org/10.1007/BF02803122  
KRAHULCOVÁ, A., F. KRAHULEC  
&
R.  
ROSENBAUMOVÁ. 2011. Expressivity of apomixis  
in 2n + n hybrids from an apomictic and a sexual  
parent: Insights into variation detected in Pilosella  
LEONG-ŠKORNIČKOVÁ, J., O. ŠÍDA, V.  
JAROLÍMOVÁ, M. SABU,T. FÉR, P.TRÁVNÍČEK  
& J. SUDA. 2007. Chromosome numbers and  
genome size variation in Indian species of Curcuma  
(Zingiberaceae). Ann. Bot. (Oxford) 100: 505-526.  
https://doi.org/10.1093/aob/mcm144  
(Asteraceae: Lactuceae). Sex. Plant Reprod. 24: 63−74.  
https://doi.org/10.1007/s00497-010-0152-x  
KRAHULCOVÁ, A., S. PAPOUŠKOVÁ  
& F.  
KRAHULEC. 2004. Reproduction mode in the  
allopolyploid facultatively apomictic hawkweed  
Hieracium rubrum (Asteraceae, H. subgen. Pilosella).  
Hereditas (Lund) 141: 19-30.  
LIVRAGHI, E., S. CABEZA, R. KOFALT, G.  
HUMANO, M. MASCÓ & L. MONTES. 1998.  
Documento de trabajo sobre Hieracium pilosella L.  
Informe Téchnico INTA. [not seen cit. sec. Cipriotti  
et al. 2010].  
https://doi.org/10.1111/j.1601-5223.2004.01845.x  
324  
A. Krahulcová and F. Krahulec - Pilosella in Patagonia  
LOOMIS, E. S. & L. FISHMAN. 2009. A continent-wide  
87-93. https://doi.org/10.1556/COMEC.15.2014.1.9  
RODRIGUEZ, R., C. MARTICORENA, D. ALARCÓN,  
C. BAEZA, L. CAVIERES, V. L. FINOT, N.  
FUENTES, A. KIESSLING, M. MIHOC,  
A. PAUCHARD, E. RUIZ, P. SANCHEZ & A.  
MARTICORENA. 2018. Catálogo de las plantas  
vasculares de Chile. Gayana Bot. 75: 1-430.  
ROTREKLOVÁ, O. & A. KRAHULCOVÁ. 2016.  
Estimating paternal efficiency in an agamic polyploid  
complex: pollen stainability and variation in pollen  
size related to reproduction mode, ploidy level and  
hybridogeneous origin in Pilosella (Asteraceae).  
Folia Geobot. 51: 175-186.  
clone: population genetic variation of the invasive  
plant Hieracium aurantiacum (orange hawkweed;  
Asteraceae) in North America. Int. J. Plant Sci. 170:  
7
59-765. https://doi.org/10.1086/599241  
MAKEPEACE, W. 1985. Growth, reproduction, and  
production biology of mouse-ear and king devil  
hawkweed in eastern South Island, New Zealand.  
New Zealand J. Bot. 23: 65-78.  
MATZK, F., A. MEISTER & I. SCHUBERT. 2000. An  
efficient screen for reproductive pathways using  
mature seeds of monocots and dicots. Plant J. 21:  
9
7−108.  
https://doi.org/10.1046/j.1365-313x.2000.00647.x  
MOORE, D. M. 1983. Flora of Tierra del Fuego.  
Anthony Nelson, Shropshire, Missouri Botanical  
Garden, St. Louis.  
MORGAN-RICHARDS, M., S. A. TREWICK, H.  
M. CHAPMAN & A. KRAHULCOVÁ. 2004.  
Interspecific hybridization among Hieracium species  
in New Zealand: evidence from flow cytometry.  
Heredity 93: 34-42.  
https://doi.org/10.1007/s12224-016-9240-5  
ROTREKLOVÁ, O., A. KRAHULCOVÁ, P. MRÁZ, V.  
MRÁZOVÁ, L. MÁRTONFIOVÁ, T. PECKERT &  
B. ŠINGLIAROVÁ. 2005. Chromosome numbers  
and breeding systems of some European species of  
Hieracium subgen. Pilosella. Preslia 77: 177-195.  
SCOTT, D. 1993. Response of Hieracium in 2 long-term  
manipulative trials. New Zealand J. Ecol. 17: 41-46.  
SUDA, J., A. KRAHULCOVÁ, P. TRÁVNÍČEK & F.  
KRAHULEC. 2006. Ploidy level vs. DNA ploidy  
level: an appeal for consistent terminology. Taxon  
55: 447–450.  
SUDA, J., A. KRAHULCOVÁ, P. TRÁVNÍČEK,  
R. ROSENBAUMOVÁ, T. PECKERT & F.  
KRAHULEC. 2007. Genome size variation and  
species relationships in Hieracium sub-genus  
Pilosella (Asteraceae) as inferred by flow cytometry.  
Ann. Bot. (Oxford) 100: 1323-1335.  
https://doi.org/10.1038/sj.hdy.6800476  
NÄGELI, C. & A. PETER. 1885. Die Hieracien Mittel-  
Europas, Piloselloiden. R. Oldenbourg, München.  
OTTO, F. 1990. DAPI staining of fixed cells for high-  
resolution flow cytometry of nuclear DNA. In:  
CRISSMAN, H.A. & Z. DARZYNKIEWICZ  
(
eds.), Methods in cell biology 33. pp. 105-110.  
Academic Press, San Diego.  
PETER, A., 1884. Ueber spontane und künstliche  
Gartenbastarde der Gattung Hieracium sect.  
Piloselloidea. Bot. Jahrb. 5: 203-286, 418-496; 6:  
https://doi.org/10.1093/aob/mcm218  
TE BEEST, M., J. J. LE ROUX, D. M. RICHARDSON,  
A. K. BRYSTING K., J. SUDA, M. KUBEŠOVÁ &  
P. PYŠEK. 2012. The more are better? The role of  
polyploidy in facilitating plant invasions. Ann. Bot.  
(Oxford) 109: 19-45.  
111-136.  
RAMBUDA, T. D. & S. D. JOHNSON. 2004. Breeding  
systems of invasive alien plants in South Africa:  
does Baker′s rule apply? Diversity and Distributions  
1
0: 409-416.  
https://doi.org/10.1093/aob/mcr277  
https://doi.org/10.1111/j.1366-9516.2004.00100.x  
RAUBER, R. B., M. B. COLLANTES, P. A. CIPRIOTTI  
TREWICK, S. A., M. MORGAN-RICHARDS & H. M.  
CHAPMAN. 2004. Chloroplast DNA diversity of  
Hieracium pilosella (Asteraceae) introduced to New  
Zealand: reticulation, hybridization and invasion.  
Amer. J. Bot. 91: 73-85.  
&
J. ANCHORENA. 2013. Biotic and abiotic  
constraints to a plant invasion in vegetation  
communities of Tierra del Fuego. Austral Ecology  
3
8: 436-442.  
https://doi.org/10.3732/ajb.91.1.73  
https://doi.org/10.1111/j.1442-9993.2012.02427.x  
RAUBER, R. B., P. A. CIPRIOTTI & M. B.  
COLLANTES. 2014. Local and intermediated  
intensity soil disturbances increase the colonization  
and expansion dynamics of an invasive plant in  
Southern Patagonian rangelands. Commun. Ecol. 15:  
UGARTE, E., F. LIRA, N. FUENTES & S. KLOTZ. 2011.  
Vascular alien flora, Chile. Check List 7: 365-382.  
VALLEJOS, C. E. 1983. Enzyme activity staining. In:  
TANKSLEY, S. D. & ORTON, T. J. (eds.), Isozymes  
in plant genetics and breeding, Part A. pp. 469-516.  
Elsevier, Amsterdam etc.  
325  
Bol. Soc. Argent. Bot. 56 (3) 2021  
WENDEL, J. F. & WEEDEN, N. F. 1989. Visualisation  
and interpretation of plant isozymes. In: SOLTIS,  
D. E. & SOLTIS, P. S. (eds.), Isozymes in plant  
biology. pp. 5-45. Dioscorides Press, Portland.  
WILSON, L. M., J. FEHRER, S. BRÄUTIGAM & G.  
GROSSKOPF. 2006. A new invasive hawkweed,  
Hieracium glomeratum (Lactuceae, Asteraceae),  
in the Pacific Northwest. Canad. J. Bot. 84: 133-  
142. https://doi.org/10.1139/B05-149  
ZAHN, K. H. 1922-1930. Hieracium. In: Ascherson,  
P.  
& P. Graebner (eds.), Synopsis der  
mitteleuropäischen Flora 12: 1-492. Gebrüder  
Bornträger, Leipzig.  
ZULOAGA, F. O. & O. MORRONE. 1999. Catálogo  
de las Plantas de la Argentina II, Dicotyledonae.  
Monogr. Syst. Bot. Missouri Bot. Gard. 74: 1-1269.  
326