SPore atlaS of iSoSPorate fernS of Punta lara  
nature reServe, argentina  
atlaS de eSPoraS de helechoS iSoSPoradoS de la reServa natural  
Punta lara, argentina  
1
,2  
, Juan P. Ramos Giacosa  
Daniel A. Gorrer * , Pedro C. Berrueta  
and Gabriela E. Giudice  
María L. Luna  
Summary  
Background and aims: The morphological characteristics of the spores provide  
information for the identification of fern taxa. To deepen the analyses of the  
morphological characteristics of the spores of the isosporated ferns inhabiting the  
Punta Lara Nature Reserve using light microscopy.  
1
.
Laboratorio de Anatomía  
Comparada, Propagación  
Conservación de Embriofitas  
Dr. Elías de la Sota”, Facultad  
y
M&M: The spores of the isosporate ferns that grow in the Punta Lara Nature Reserve  
de Ciencias Naturales y Museo,  
Universidad Nacional de La Plata,  
Boulevard 120 entre 61 y 64, La  
Plata, Argentina.  
(Buenos Aires Province, Argentina) were studied under a light microscope. The  
study was carried out with fresh materials collected during three years (2016-2018)  
at different sites of the Reserve. Twenty fern taxa, 16 native and 4 exotic, were  
analysed. The registered characteristics were: colour, shape, major and minor  
equatorial diameters, polar diameter, length and characteristics of the laesura and  
wall ornamentation.  
Results: The colour of the spores may be yellow, light brown, dark brown and only in  
Equisetum they are green (chlorophyllous). Most spores are monolete (13 species),  
other trilete (6 species) and only one species has alete spores. The spore walls  
may be smooth, wrinkled, folded, verrucated, tuberculated, reticulated and winged.  
Conclusions: The morphology of the spores allows the identification of the ferns  
of the Reserve at a generic and specific level and provides information for  
palaeopalynological and aeropalynological studies and of soil spore banks.  
2
.
Consejo Nacional de  
Investigaciones Científicas  
Técnicas (CONICET), Godoy Cruz  
290, Ciudad Autónoma de Buenos  
Aires, Argentina.  
. Comisión de Investigaciones  
y
2
3
Científicas de la Provincia de  
Buenos Aires (CIC-BA), Camino  
Gral. Belgrano y 526, La Plata,  
Argentina.  
Key wordS  
Ferns, light microscope, morphology, Punta Lara Reserve, spores  
Citar este artículo  
reSumen  
GORRER, D. A., P. C. BERRUETA, J.  
P. RAMOS GIACOSA, M. L. LUNA &  
G. E. GIUDICE. 2021. Spore atlas  
of isosporate ferns of Punta Lara  
Nature Reserve, Argentina. Bol. Soc.  
Argent. Bot. 56: 17-32.  
Introducción y objetivo: Las características morfológicas de las esporas brindan  
información para la identificación de taxa de helechos. Profundizar los análisis de  
las características morfológicas de las esporas de los helechos isosporados que  
habitan en la Reserva Natural de Punta Lara utilizando microscopía óptica.  
M&M: Se estudiaron con microscopio óptico las esporas de helechos isosporados que  
crecen en la Reserva Natural Punta Lara (provincia de Buenos Aires, Argentina).  
El estudio fue llevado a cabo con material fresco colectado durante 3 años (2016-  
2018) en diferentes sitios de la Reserva. Se analizaron 20 taxa de helechos, 16  
nativos y 4 exóticos. Las características registradas fueron: color, forma, diámetros  
ecuatoriales mayor y menor, diámetro polar, longitud y características de la lesura  
y ornamentación de la pared.  
Resultados: El color de las esporas puede ser amarillo, castaño claro, castaño  
oscuro y solo en el caso de Equisetum son verdes (clorofílicas). La mayoría de  
esporas son monoletes (13 especies), otras triletes (6 especies) y una sola especie  
posee esporas aletes. Las paredes de las esporas pueden ser lisas, plegadas,  
verrucosas, tuberculadas, reticuladas y ruguladas-crestadas.  
Conclusiones: La morfología de las esporas permite la identificación de los helechos  
de la Reserva a nivel de género y especie y aporta información para estudios  
paleopalinológicos, aeropalinológicos y de bancos de esporas del suelo.  
PalabraS clave  
Recibido: 15 Oct 2020  
Esporas, helechos, microscopía óptica, morfología, Reserva Punta Lara.  
Aceptado: 15 Mar 2021  
Publicado impreso: 31 Mar 2021  
Editora: Olga Gladys Martínez  
ISSN versión impresa 0373-580X  
ISSN versión on-line 1851-2372  
17  
Bol. Soc. Argent. Bot. 56 (1) 2021  
introduction  
this area (Ramos Giacosa et al., 2014, 2017;  
Luna et al., 2016; Ramos Giacosa et al., 2017;  
The Punta Lara Nature Reserve (PLNR) Gorrer et al., 2018).  
34º47’33’’ S & 58º0’28.32’’ W) is a protected The spores provide useful systematic  
area located on the banks of La Plata River, characters to distinguish genera, and in some  
2 km north of the city of La Plata (Province cases species (Tryon & Lugardon, 1991).  
(
1
of Buenos Aires, Argentina). From the In particular, the characteristics of the  
phytogeographical point of view the Reserve spores under light microscope are a relevant  
is located in the Chaco Domain, Oriental source of information for paleobotanical  
Pampean District of the Pampean Province of and paleoecological studies, and also in the  
the Neotropical Region (Cabrera, 1976; Arana et aerobiological and forensic fields (Harris, 1957;  
al., 2017). It covers 6.000 hectares and extends Vaughn et al., 1990; Farfán-Santillán et al.,  
over 8 kilometers of coastline where different 2016).  
environments and communities develop, among  
Previous descriptions of the spores of some  
them the gallery forests, which constitute ferns that grow in Buenos Aires Province are  
the world’s southernmost subtropical riparian found in Michelena (1989, 1993, 1998) and  
forests (Cabrera & Dawson, 1944). Guerrero et Giudice (1999). Also, some characteristics of  
al. (2018) postulated that the marginal forest of the spores of certain taxa growing in the Reserve  
Punta Lara is a recently installed association, were provided during the reproductive studies  
established in the mid-nineteenth century when in the genera Ctenitis (Ramos Giacosa et al.,  
the climate of the Río de la Plata region 2017), Microgramma C. Presl, and Pleopeltis  
presented an increase in rainfall and minimum Humb. & Bonpl. ex Willd. (Gorrer et al., 2018),  
temperature, a trend that continues until the Amauropelta Kunze, Christella H. Lév. and  
present. Currently, the Reserve is the core area Goniopteris C. Presl (=Thelypteris Schmidel)  
of the Pereyra Iraola Biosphere Reserve within (Giudice et al., 2014; Ramos Giacosa et al.,  
the framework of the UNESCO MAB Program 2014).  
(
Barbetti, 2008). In this zone, the marginal  
As a complement of the mentioned works,  
forests develop on the border of incoming the objective of this study was to deepen the  
streams formed by La Plata River and comprise analyses of the morphological characteristics  
arboreal species, shrubs, epiphytes and an of the spores of the isosporated ferns inhabiting  
herbaceous stratum represented by various the Punta Lara Nature Reserve using light  
species of ferns, among other groups of plants.  
microscopy. This information will be useful  
The first floristic studies in the Reserve were for systematic, palynological and paleo-  
carried out by Cabrera & Dawson (1944), which environmental studies and conservation in  
described 8 species of isosporated ferns. Later, protected areas.  
Moschione (1987) cited 16 species of ferns.  
More recent investigations conducted by this  
research group reported the presence of 20 native material and methodS  
species of isosporate ferns growing in different  
habitats of the Reserve (Giudice et al., 2011,  
The study was carried out with fresh materials  
2
014). Some exotic species such as Adiantum collected during three years (2016-2018) at  
capillus-veneris L., Christella dentata (Forssk.) different sites within four cores of the Reserve  
Brownsey & Jermy, Cyclosorus interruptus (Fig. 1). The spores belong to the following  
(
Willd.) H. Itô and Pteris tremula R. Br., are 16 native taxa: Adiantum raddianum C. Presl,  
also registered (Giudice et al., 2011; Arana et Amauropelta decurtata (Link) Salino & T. E.  
al., 2020). Almeida, Asplenium claussenii Hieron., A.  
Our studies in this area also included the sellowianum C. Presl ex Hieron., A. ulbrichtii  
reproductive aspects of some native ferns, as Rosenst., Blechnum auriculatum Cav., Ctenitis  
well as the analyzes of soil spore banks as submarginalis (Langsd. & Fisch.) Ching,  
contributions to biodiversity conservation in Doryopteris concolor (Langsd. & Fisch.) Kuhn,  
18  
D. A. Gorrer et al. - Spore of Punta Lara Reserve  
D. pentagona Pic. Serm., Equisetum giganteum  
L., Gastoniella chaerophylla (Desv.) Li Bing  
Zhang & Liang Zhang, Goniopteris burkartii  
C. Chr. ex Abbiatti, Microgramma mortoniana  
de la Sota, Pleopeltis macrocarpa (Bory ex  
Willd.) Kaulf., P. minima (Bory) J. Prado &  
R.Y. Hirai, Rumohra adiantiformis (G. Forst.)  
Ching and 4 exotic species very frequent in  
the study area: Adiantum capillus-veneris L.,  
Christella dentata (Forssk.) Brownsey & Jermy,  
Cyclosorus interruptus (Willd.) H. Itô and  
Pteris tremula R. Br. The voucher specimens are  
deposited in the Herbarium LP of the Museum  
of Natural Sciences of La Plata (Table 1).  
Likewise, the microscopic preparations are  
preserved in the Laboratorio de Anatomía  
Comparada, Propagación y Conservación de  
Embriófitas “Dr. Elías R. de la Sota”, Facultad  
de Ciencias Naturales y Museo, Universidad  
Nacional de La Plata. For the taxa nomenclature,  
the update of the Catalog of Vascular Plants of  
the Southern Cone was followed (Zuloaga et al.,  
Fig. 1. Study area. The circle include the base  
station, “El burrito” trail, “Fern ditch”, “El Mirador”  
Stall, Yabotí Bridge, “Las Cañas” Stream and “La  
2
019). The spores were placed on to microscope Medialuna” Stall. The triangle symbolizes “La  
slides with glycerin jelly without prior treatment Araucaria” Stall. The rhombus symbolizes “El  
Ché” trail. The quadrate symbolizes Baldovinos  
Channel.  
and studied and photographed under a Nikon  
E200 light microscope (LM).  
The analyzed characteristics were: color,  
shape in polar and equatorial view, laesura  
type and wall ornamentation. The quantitative  
data refers to the major and minor equatorial  
diameters, polar diameter and laesura length.  
The spores showed coloration from yellow,  
The spore’s measures were randomly estimated light brown to dark brown, and only in the case  
on 20 spores in each sample. The averages of the of Equisetum they were green (chlorophyllous).  
4
quantitative variables were obtained for each Most spores are monolete (thirteen), other trilete  
species and also for the respective genera and (six) and only one alete.  
families. With these data, graphics were made  
The largest spores belong to the family  
to compare the quantitative variables between Polypodiaceae (Microgramma mortoniana 61.4  
species, genera and families using Microsoft µm largest equatorial diameter) and the smallest  
Excel 2013. The palynological terminology used ones to Pteridaceae (Doryopteris pentagona,  
in the descriptions refers to Tryon & Lugardon 28.1 µm and Pteris tremula 30.5 µm).  
(
1991). The figures were made using the Corel  
According to the type of wall ornamentation,  
we find granular, folded, verrucous, tuberculated,  
psilated, reticulated and regulated-cristated  
spores.  
Draw X3 program.  
reSultS  
Taking into account the morphological  
characteristics of the spores under LM, a  
The morphological characteristics of the dichotomous key is presented below.  
spores of each species are given in Table 2. The Comparisons regarding the quantitative  
spore measurements are given in Table 3. The characteristics (measurements) of the spores are  
spores are illustrated in Figs. 2-6. presented in Figs. 7-9.  
19  
Bol. Soc. Argent. Bot. 56 (1) 2021  
Table 1. Material studied (*exotics).  
Specie  
Collector and collection number  
Berrueta et al. 119, 237  
Location (PLNR)  
Adiantum capillus-veneris*  
Base station  
Adiantum raddianum  
Amauropelta decurtata  
Asplenium claussenii  
Berrueta 176, Berrueta & Gorrer w/n, Berrueta et al. w/n Base station  
Berrueta 109, 204  
“El Burrito” trail  
“Fern ditch”  
Berrueta et al. w/n  
Berrueta et al. 235, 308  
Berrueta et al. 245  
“La Araucaria” Stall  
“Fern ditch”  
Asplenium sellowianum  
Asplenium ulbrichtii  
Berrueta & Gorrer 120, 127  
Berrueta & Gorrer 160  
Berrueta et al. 508, 509, 510  
Berrueta 105, 154, 205  
Ramos Giacosa 24  
“Fern ditch”  
“La Araucaria” Stall  
“Las Cañas” Stream  
“El Burrito” trail  
“La Medialuna” Stall  
“El Burrito” trail  
“La Araucaria” Stall  
“Las Cañas” Stream  
“El Burrito” trail  
“El Ché” trail  
Blechnum auriculatum  
Christella dentata*  
Ctenitis submarginalis  
Cyclosorus interruptus*  
Doryopteris concolor  
Doryopteris pentagona  
Equisetum giganteum  
Gastoniella chaerophylla  
Berrueta & Gorrer w/n  
Berrueta et al. 288, 289, 290  
Ramos Giacosa 30  
Berrueta et al. w/n, Bejar w/n  
Berrueta 265, Berrueta et al. 337, Berrueta et al. w/n  
Berrueta 157  
“Las Cañas” Stream  
Yabotí Bridge  
Goniopteris burkartii  
Berrueta 230, 530  
Berrueta 215  
“El Mirador” Stall  
“Fern ditch”  
Microgramma mortoniana  
Berrueta 216  
Bejar w/n  
“Las Cañas” Stream  
“Fern ditch”  
Berrueta 217  
Pleopeltis macrocarpa  
Berrueta 218  
“Las Cañas” Stream  
“Fern ditch”  
Berrueta & Gorrer w/n  
Ramos Giacosa w/n  
Pleopeltis minima  
Pteris tremula*  
Baldovinos Channel  
“El Mirador” Stall  
Baldovinos Channel  
“Las Cañas” Stream  
Berrueta et al. 139, Berrueta et al. 366, Berrueta w/n  
Berrueta et al. 625, 626  
Ramos Giacosa 23  
Rumohra adiantiformis  
20  
D. A. Gorrer et al. - Spore of Punta Lara Reserve  
Key to the identification of the ferns of the PLNR using the characteristics of the spores  
1
1
. Alete spores, with elaters. ......................................................................................... Equisetum giganteum  
'. Monolete or trilete spores, without elaters.  
2
. Monolete spores.  
3
3
. Psilate ornamentation. ................................................................................... Blechnum auriculatum  
'. Verrucate or folded ornamentation.  
4
. Verrucate ornamentation.  
5
5
. Evident verrucae. ............................................................................ Microgramma mortoniana  
'. Small verrucae, not clearly evident. .................................................................... Pleopeltis sp.  
4
'. Folded ornamentation.  
6
. Short and subglobose folds.  
7
. Abundant folds, densely distributed. ................................................ Ctenitis submarginalis  
'. Scarce folds. ................................................................................... Rumohra adiantiformis  
7
6
'. Alate-cristate, reticulate, alate or echinulate-alate folds.  
8
8
. Alate-cristate folds. ....................................................................................... Asplenium sp.  
'. Other types of folds.  
9
9
. Reticulate folds. ......................................................................... Amauropelta decurtata  
'. Equinulate-alate or alate folds.  
1
1
0. Equinulate-alate folds. .......................................................... Cyclosorus interruptus  
0'. Alate folds.  
11. Folds partially fused. ............................................................... Chrystella dentata  
11'. Folds totally fused. ............................................................. Goniopteris burkartii  
2
'. Trilete spores.  
1
2. With equatorial ridge.  
1
1
3. Tuberculate ornamentation. .................................................................................. Pteris tremula  
3'.Verrucate ridged ornamentation. ......................................................... Gastoniella chaerophylla  
1
2'. Without equatorial ridge.  
1
1
4. Granular ornamentation. ........................................................................................ Adiantum sp.  
4'. Rugulate-cristate or psilate ornamentation.  
1
5. Rugulate-cristate. ................................................................................. Doryopteris concolor  
5'. Psilate. ............................................................................................... Doryopteris pentagona  
1
21  
Bol. Soc. Argent. Bot. 56 (1) 2021  
22  
D. A. Gorrer et al. - Spore of Punta Lara Reserve  
Table 3. Spore measurements. Dimensions in µm.  
Major equatorial  
diameter (DEMa)  
Minor equatorial  
diameter (DEMe)  
Polar diameter Laesura length  
Taxa  
(DP)  
(L)  
Adiantum capillus-veneris  
A. raddianum  
35 (46.1) 52.5  
35 (42.7) 48  
38.5 (45.8) 52.5  
38.5 (44.3) 49  
21 (26.3) 31.5  
27.1 (32.4) 35.4  
20.3 (24.1) 28  
24.5 (29) 31.5  
22.8 (27.6) 31.5  
23.6 (29.9) 42  
28 (31.7) 35  
35 (39.2) 45.5  
31.5 (40.3) 45.5  
24.5 (28.4) 35  
28 (31.8) 35  
17.5 (20) 24.5  
14 (15.8) 22.8  
14 (15.3) 17.5  
14 (24) 31.5  
Asplenium claussenii  
A. sellowianum  
28 (37.9) 45.5  
35 (44.9) 49  
A. ulbrchtii  
24 (31.8) 35  
21.7 (23.7) 28  
24.5 (28) 31.5  
16.5 (20.1) 24.5  
17.5 (27.6) 35  
Blechnum auriculatum  
Christella dentata  
35 (42.1) 49  
35 (39.4) 45.5  
35 (41) 49  
22.8 (28.4) 31.5 15.8 (24.3) 32.4  
Ctenitis submarginalis  
Cyclosorus interruptus  
Doryopteris concolor  
D. pentagona  
24.5 (29.7) 42  
28 (32.4) 38.5  
22.8 (27) 31.5  
24.5 (26) 28  
14 (17.5) 21  
28 (35) 42  
45.5 (53.8) 61.3  
24.5 (29.6) 34.1  
24.5 (28.1) 31.5  
47.3 (51) 56  
24.5 (29.6) 35  
24.5 (27.9) 31.5  
10.5 (13.7) 15.8  
10.5 (12.5) 17.5  
Equisetum giganteum  
Gastoniella chaerophylla  
Microgramma mortoniana  
Pleopeltis macrocarpa  
P. minima  
35 (36.6) 40.3  
54.3 (61.4) 73.5  
52.5 (60.6) 68.3  
45.5 (49.7) 59.5  
24.5 (30.5) 35  
31.5 (33.1) 35  
40.3 (47) 53.4  
33.3 (40.9) 45.5  
35 (39.3) 42  
38.5 (42.9) 49  
38.5 (44.6) 52.5  
28 (35) 42  
24.5 (28.6) 33.3 10.5 (14.3) 17.5  
33.3 (39.1) 45.5  
33.3 (42.1) 49  
29.8 (33.1) 42  
22.8 (25.7) 28  
17.5 (21) 21.5  
28 (31) 34.1  
28 (36.5) 45.5  
28 (35.7) 45.5  
24.5 (28.4) 35  
10.5 (12.8) 17.5  
15.8 (16.9) 17.5  
28 (35.6) 42  
Pteris tremula  
27.1 (31.2) 35  
17.5 (23.2) 29.8  
24.5 (32) 42  
Rumohra adiantiformis  
Goniopteris burkartii  
Amauropelta decurtata  
24.5 (29) 35  
24.5 (29.9) 35  
24.5 (30) 35  
23  
Bol. Soc. Argent. Bot. 56 (1) 2021  
Fig. 2. Spores of Adiantum capillus-veneris, Adiantum raddianum, Amauropelta decurtata and Asplenium  
claussenii. A-C: Adiantum capillus-veneris: A: Trilete spore in proximal view, granulate ornamentation. B:  
Spore in distal view with straight sides. C: Spore in equatorial view. D-F: A. raddianum: D: Trilete spore in  
proximal view, granulate ornamentation. E: Spore in distal view with convex sides. F: Spore in equatorial  
view with granulate ornamentation. G-I: Amauropelta decurtata: G: Monolete spore in proximal view with  
reticulate folds. H: Spore in distal view with prominent wing-like folds at the edges. I: Spore in equatorial  
view with reticulate folds and wing like-folds at the edges. J-L: Asplenium claussenii: J: Monolete spore in  
proximal view, alate-cristate folds continuous at the edges. K: Spore in distal view with continuous alate-  
cristate folds along the edges. L: Spore in equatorial view with alate-cristate folds on the edges and on the  
body of the spore. Scales= A-L: 10 µm.  
24  
D. A. Gorrer et al. - Spore of Punta Lara Reserve  
Fig. 3. Spores of Asplenium sellowianum, Asplenium ulbrichtii, Blechnum auriculatum and Christella  
dentata. A-C: Asplenium sellowianum: A: Monolete spore in proximal view, coarse alate-cristate folds are  
observed. B: Spore in distal view, coarse alate-cristate folds are observed both, on the edges and on the  
body of the spore. C: spore in equatorial view, coarse alate-cristate folds are observed. D-F: A. ulbrichtii:  
D: Monolete spore in proximal view, low alate-cristate folds with erose margin are observed. E: Spore in  
distal view, alate-cristate folds with erose margin are observed at the edges and on the body of the spore.  
F: Spore in equatorial view, alate-cristate folds with erose margin are observed. G-I: Blechnum auriculatum:  
G: monolete spore in proximal view. H: Spore in distal view with psilate ornamentation. I: Spore in equatorial  
view. J-L: Christella dentata: J: Monolete spore in proximal view, continuous alate folds are observed at  
the edges. K: Spore in distal view, short alate folds, partially fused in the body of the spore. L: Spore in  
equatorial view, short alate folds and erose margin are observed. Scales= A-L: 10 µm.  
25  
Bol. Soc. Argent. Bot. 56 (1) 2021  
Fig. 4. Spores of Ctenitis submarginalis, Cyclosorus interruptus, Doryopteris concolor and Doryopteris  
pentagona. A-C: Ctenitis submarginalis: A: Monolete spore in proximal view, short and subglobose folds are  
observed. B: Spore in distal view, short and subglobose folds are observed over the entire surface. C: Spore  
in equatorial view, short and subglobose folds are observed. D-F: Cyclosorus interruptus: D: Monolete spore  
in proximal view, echinulate-alate folds are observed. E: Spore in distal view, short echinulate-alate folds are  
observed mainly in the body of the spore. F: Spore in equatorial view with short echinulate-alate folds. G-I:  
Doryopteris concolor: G: Trilete spore in proximal view, a surface with low rugulate-cristate are seen at the  
edges. H: Spore in distal view, low cristae or rugulae form the ornamentation. I: Spore in equatorial view, low  
cristae or rugulae are observed at the edges. J-L: D. pentagona: J: Trilete spore in proximal view, convex  
sides. K: spore in distal view, psilated. L: Spore in equatorial view. Scales= A-L: 10 µm.  
26  
D. A. Gorrer et al. - Spore of Punta Lara Reserve  
Fig. 5. Spores of Equisetum giganteum, Gastoniella chaerophylla, Goniopteris burkartii and Microgramma  
mortoniana. A-C: Equisetum giganteum: A: Alete spore, globose, chlorophyllous, with translucent elaters  
wound on the spore. B: Spore with elaters partially unrolled, psilated. C: Spore with elaters totally unrolled.  
D-F: Gastoniella chaerophylla. D: Trilete spore in proximal view, irregular ridges-verrucae surrounding the  
laesura. E: Spore in distal view, irregular ridges-verrucae are observed. F: Spore in equatorial view, an  
equatorial ridge is observed at the equator. G-I: Goniopteris burkartii: G: Monolete spore in proximal view,  
alate folds are observed at the edges. H: Spore in distal view, alate folds both on the edges and on the  
body of the spore are observed. I: Spore in equatorial view, alate folds totally fused. J-L: Microgramma  
mortoniana: J: Monolete spore in proximal view, the ornamentation is made up of verrucae. K: Spore in  
distal view, uniformly distributed verrucae are observed. L: Spore in equatorial view, verrucae tend to be  
small towards laesura. Scales= A-B: 20 µm; C: 40 µm; D-L: 10 µm.  
27  
Bol. Soc. Argent. Bot. 56 (1) 2021  
Fig. 6. Spores of Pleopeltis macrocarpa, Pleopeltis minima, Pteris tremula and Rumohra adiantiformis. A-C:  
Pleopeltis macrocarpa: A: Monolete spore in proximal view, very low verrucae are observed at the edges. B:  
Spore in distal view, small verrucae, not clearly evident are observed at the edges of the spore. C: spore in  
equatorial view. D-F: P. minima: D: Monolete spore in proximal view, small verrucae not clearly evident are  
observed at the edges of the spore. E: Spore in distal view. F: Spore in equatorial view. G-I: Pteris tremula:  
G: Trilete spore in proximal view, tuberculated. H: Spore in distal view, smaller tubercles towards the equator  
are observed. I: Spore in equatorial view, an equatorial ridge is observed at the equator, the tubercles are  
seen larger towards the poles. J-L: Rumohra adiantiformis: J: Monolete spore in proximal view, continuous  
folds are observed at the edges. K: Spore in distal view, short and long folds are observed at the edges. L:  
Spore in equatorial view, few short, subglobose folds are observed. Scales= A-L: 10 µm.  
28  
D. A. Gorrer et al. - Spore of Punta Lara Reserve  
Fig. 7. Average spore size by species in the Punta Lara Natural Reserve. Abbreviations= DEMa: major  
equatorial diameter; DEMe: minor equatorial diameter; DP: polar diameter; L: laesura.  
Fig. 8. Average size of the spores by genera in the Punta Lara Natural Reserve. Abbreviations= DEMa:  
major equatorial diameter; DEMe: minor equatorial diameter; DP: polar diameter; L: laesura.  
29  
Bol. Soc. Argent. Bot. 56 (1) 2021  
Fig. 9. Average spore size by family in the Punta Lara Nature Reserve. Abbreviations= DEMa: major  
equatorial diameter; DEMe: minor equatorial diameter; DP: polar diameter; L: laesura.  
diScuSSion and concluSionS  
normally, thus achieving apogamy, hybridization  
and polyploidy (Wagner, 1974; Devi, 1977).  
Detailed knowledge of spore morphology is  
The morphological characteristics of the an important tool for paleo-environmental  
spores allowed the identification of most fern reconstructions(Sánchez-Dzibetal., 2009;Poliakova  
taxa at a specific level, except for the genera & Behling, 2016). In this way, the knowledge of  
Adiantum, Asplenium and Pleopeltis. According current palynological floras allows comparing with  
to Simabukuro et al. (1998, 2000), the spores fossil ones and to establish relationships between  
of related species within these genera have very them (Solé de Porta & Murillo-Pulido, 2005).  
similar morphological characteristics.  
The spores of A. claussenii, C. dentata, C.  
The largest spores belonged to the genera interruptus, D. pentagona, G. burkartii and P.  
Microgramma and Pleopeltis, both epiphytic tremula are illustrated for the first time under the  
taxa. They also showed verrucate ornamentation. light microscope.  
According to Tryon et al. (1990), epiphytic fern  
spores have walls with complex ornamentation.  
The information provided here constitutes a  
contribution to soil spore bank analyses, as well  
In the exotic species A. capillus-veneris as fossil plant identification and aeropalinological  
both, trilete and monolete spores, were found. studies, all of which employ spore characteristics for  
According to Michelena (1989) and Ramos Giacosa taxonomic identification.  
(
2014) observations in Pteridaceae and Anemia  
respectively, it is common to find different types  
of spores (trilete, monolete and intermediates) in contributionS of authorS  
the same specimen, and also at different stages  
of development (normal, aborted and immature).  
DAG, GEG and JPRG analyzed the data. DAG  
These variations were mentioned as characteristic and JPRG edited the figures and tables. JPRG and  
of species where meiosis does not develop MLL revised the language. DAG, PCB and MLL  
30  
D. A. Gorrer et al. - Spore of Punta Lara Reserve  
collected the material. All authors participated in GIUDICE, G. E., J. P. RAMOS GIACOSA, M. L. LUNA,  
the writing of the manuscript.  
A. YÁÑEZ & E. R. DE LA SOTA. 2011. Diversidad  
de helechos y licofitas de la Reserva Natural Punta  
GIUDICE, G. E., J. P. RAMOS GIACOSA & M. L.  
LUNA. 2014. Registro de Thelypteris decurtata  
(Link) de la Sota ssp. platensis (Weath.) de la Sota en  
la Reserva Natura Punta Lara, Provincia de Buenos  
Aires. Un aporte para la conservación de helechos  
nativos de distribución restringida. Historia Natural  
acKnowledgmentS  
We thank the staff of Punta Lara Natural Reserve for  
their help during field trips. This study was supported  
by Research Projects of Universidad Nacional de La  
Plata, Argentina (11/N725 and 11/N850).  
(3era. ser.) 4: 105-110.  
referenceS  
GORRER, D. A., P. C. BERREUTA, J. P. RAMOS  
GIACOSA, G. E. GIUDICE & M. L. LUNA. 2018.  
Morfogénesis de la fase sexual de los helechos  
epífitos Microgramma mortoniana y Pleopeltis  
macrocarpa (Polypodiaceae) de la Reserva Natural  
Punta Lara, Buenos Aires, Argentina. Rev. Biol. Trop.  
E. GIUDICE & M. L. LUNA. 2020. Pteris tremula  
(
Polypodiopsida: Pteridaceae): A Naturalized  
ARANA, M. D., G. A. MARTÍNEZ, A. J. OGGERO,  
E. S. NATALE, & J. J. MORRONE. 2017. Map  
and shapefile of the biogeographic provinces of  
GUERRERO, E., J. DESCHAMPS & E. TONNI. 2018. La  
BARBETTI, C. 2008. Memoria Académica – FaHCE.  
La reserva natural Punta Lara: Área núcleo de la  
reserva de la biosfera Pereyra Iraola. Bases para  
una representación integrada en el espacio costero  
ev.806/ev.806.pdf). [Access: August, 7, 2020].  
CABRERA, A. L. 1976. Regiones fitogeográficas  
argentinas. Enciclopedia Argentina de Agricultura  
y Jardinería. Acme, Buenos Aires.  
HARRIS, W. F. 1957. A manual of the spores of New  
LUNA, M. L., A. YÁÑEZ, J. P. RAMOS GIACOSA, D.  
A. GORRER, P. C. BERRUETA & G. E. GIUDICE.  
2016. In vitro spore culture and reproductive aspects  
of the annual fern Annogramma chaerophylla  
MICHELENA, I. G. 1989. Esporas de Adiantaceae  
(Pteridophyta) de la Provincia de Buenos Aires,  
Argentina. Bol. de la ALPP 12: 25-31.  
MICHELENA, I. G. 1993. Esporas de las Aspleniaceae  
CABRERA, A. L. & G. DAWSON. 1944. La Selva  
Marginal de Punta Lara en la ribera argentina del  
Río de la Plata. Revista Mus. La Plata, Secc. Bot. 5:  
2
67-382.  
DEVI, S. 1977. Investigations on the surface ultrastructure  
of some spores of Asplenium (Aspleniaceae).  
Brenesia 9: 1-7.  
FARFÁN-SANTILLÁN, N., A. MENDOZA-RUIZ, B.  
PÉREZ-GARCÍA & E. VELÁZQUEZ-MONTES.  
MICHELENA, I. G. 1998. Esporas de la familia  
Thelypteridaceae (Pteridophyta) de la Provincia de  
Buenos Aires, Argentina. Polen 9: 25-34.  
2
016. Palinología de las especies mexicanas de  
MOSCHIONE, F. N. 1987. Ampliación de la distribución  
de seis especies de Helechos (Pteridophyta,  
Filicopsida), en la ribera argentina del Rio de La Plata.  
Garganchillo 1: 7-13.  
POLIAKOVA, A. & H. BEHLING. 2016. Pollen and  
fern spores recorded in recent and late Holocene  
marine sediments from the Indian Ocean and Java  
GIUDICE, G. E. 1999. Sinopsis de las especies argentinas  
del género Adiantum L. (Pteriadaceae- Pteridophyta).  
31  
Bol. Soc. Argent. Bot. 56 (1) 2021  
RAMOS GIACOSA, J. P. 2014. Abnormal spore  
morphology and wall ultrastructure in Anemia  
tomentosa var. anthriscifolia and A. tomentosa var.  
SIMABUKURO, E. A., L. M. ESTEVES & G. M.  
FELIPPE. 2000. Fern spore rain collected at  
two different heights at Moju Guaçu (São Paulo,  
Brazil). Fern Gaz. 16: 147-166.  
SOLÉ DE PORTA, N. & M. T. MURILLO-PULIDO.  
2005. Estudio palino-botánico de algunas especies  
de Pteridophyta de Colombia. Rev. Acad. Colomb.  
Cienc. 29: 183-2018.  
TRYON, R. M., A. F. TRYON & K. U. KRAMER.  
1990. Pteridaceae. In: KRAMER, K. U. & P.  
S. GREEN (eds.), The Families and Genera of  
Vascular Plants: Pteridophytes and Gymnosperm,  
TRYON, A. F. & B. LUGARDON. 1991. Spores of the  
RAMOS GIACOSA, J. P., G. E. GIUDICE, L. PIPO  
M. L. LUNA. 2014. Morfología de las esporas,  
&
desarrollogametofíticoyconservacióndeThelypteris  
abbiattii y T. hispidula (Thelypteridaceae) de la  
Reserva Natural Punta Lara, Buenos Aires. Bol. Soc.  
RAMOS GIACOSA, J. P., D. A. GORRER, G. E.  
GIUDICE & M. L. LUNA. 2017. Gametophyte  
development and conservation of Ctenitis  
submarginalis (Dryopteridaceae) in Buenos Aires  
SÁNCHEZ-DZIB, Y. A., S. SOSA-NÁJERA & M. S.  
LOZANO-GARCÍA. 2009. Morfología polínica de  
especies de la selva mediana subperennifolia en la  
SIMABUKURO, E. A., L. M. ESTEVES & G. M.  
FELIPPE. 1998. Analysis of a fern spore bank in  
Southeast Brazil. Hoehnea, 25: 45-57.  
VAUGHN,M.B.J.,J.G.JONES&D.C.MILDENHALL.  
1990. Forensic Palynology in the United States of  
WAGNER, W. H. 1974. Structure of spores in relation to  
ZULOAGA, F. O., M. J. BELGRANO & C.A. ZANOTTI.  
2019. Actualización del catálogo de las plantas  
32